write the structures of tertiary butyl alcohol (i) and trifluoromethyl tertiary butyl alcohol (ii). why (ii) is much more acidic than (i)?

Answers

Answer 1

The structure of tertiary butyl alcohol (i) is CH3-C(CH3)3-OH. The structure of trifluoromethyl tertiary butyl alcohol (ii) is CF3-CH3-C(CH3)2-OH. The reason why (ii) is much more acidic than (i) is due to the electron-withdrawing effect of the trifluoromethyl group (CF3) on the adjacent carbon atom.

In organic chemistry, acidity is determined by the ability of a compound to donate a proton (H+). Compounds with a higher tendency to donate protons are considered more acidic. In the case of tertiary butyl alcohol (i), the -OH group is attached to a tertiary carbon, which means that it is surrounded by three other alkyl groups. These groups are electron-donating and thus make the -OH group less acidic.

In contrast, in trifluoromethyl tertiary butyl alcohol (ii), the CF3 group is an electron-withdrawing group due to its high electronegativity. This makes the adjacent carbon atom more acidic, which in turn makes the -OH group more acidic.

To know more about atom visit:

https://brainly.com/question/30898688

#SPJ11


Related Questions

If you start with 5 grams of C3H8 and 20g of o2 what is the theoretical yield of water?

Answers

The theoretical yield of water is 8.14 grams. To find the theoretical yield of water, we first need to balance the chemical equation for the combustion of propane (C3H8) with oxygen (O2) to form carbon dioxide (CO2) and water (H2O).

To determine the theoretical yield of water from 5 grams of C3H8 and 20 grams of O2, you need to follow these steps:
1. Write the balanced chemical equation: C3H8 + 5O2 → 3CO2 + 4H2O

2. Convert grams to moles: - For C3H8: 5 g / (44.1 g/mol) = 0.113 mol - For O2: 20 g / (32.0 g/mol) = 0.625 mol
3. Determine the limiting reactant:  - O2 requirement for complete combustion of C3H8: 0.113 mol C3H8 x (5 mol O2 / 1 mol C3H8) = 0.565 mol O2 Since 0.565 mol O2 is required and there is 0.625 mol O2 available, O2 is in excess and C3H8 is the limiting reactant.
4. Calculate the theoretical yield of water: - 0.113 mol C3H8 x (4 mol H2O / 1 mol C3H8) = 0.452 mol H2O
- Convert moles of H2O to grams: 0.452 mol H2O x (18.0 g/mol) = 8.14 g H2O

To know more about combustion  visit :-

https://brainly.com/question/30794605

#SPJ11

Calculate the percentage of hf molecules ionized in a 0.10 m hf solution. the ka of hf is 6.8 x 10^-4

Answers

In a 0.10 M HF solution, 8.6% of the HF molecules are ionized at equilibrium.

The ionization reaction of HF is:

HF (aq) + H₂O (l) ⇌ H₃O⁺ (aq) + F⁻(aq)

The equilibrium constant expression for this reaction is:

Ka = [H₃O⁺][F⁻]/[HF]

We are given that the concentration of HF is 0.10 M and the Ka is 6.8 x 10⁻⁴. Let x be the degree of ionization of HF. Then, at equilibrium, the concentration of H₃O⁺ and F- is also x M.

Therefore, we can write:

Ka = x²/ (0.10 - x)

Simplifying this expression, we get:

x² + 6.8 x 10^-5 x - 6.8 x 10^-6 = 0

Using the quadratic formula, we get:

x = 0.0086 M or x = -0.0079 M

Since x cannot be negative, the degree of ionization of HF is 0.0086 M.

The percentage of HF molecules ionized is:

% ionization = (x/0.10) x 100 = 8.6%

Therefore, in a 0.10 M HF solution, 8.6% of the HF molecules are ionized at equilibrium.

To know more about the Solution, here

https://brainly.com/question/31794358

#SPJ4

Due to the number of requirements for a successful collision, according to the collision theory, the percentage of successful collisions is extremely small. yet, chemical reactions are still observed at room temperature and some at very reasonable rates. explain

Answers

According to the collision theory, successful collisions leading to chemical reactions are rare due to the numerous requirements. However, some reactions still occur at room temperature and at reasonable rates.

The collision theory states that for a chemical reaction to occur, molecules must collide with sufficient energy and with the correct orientation. Additionally, they need to overcome the activation energy barrier, which is the minimum energy required for a reaction to proceed. Considering these requirements, the percentage of successful collisions is actually quite small.

However, chemical reactions are still observed at room temperature and some even proceed at reasonable rates. This can be attributed to several factors. Firstly, although the probability of a successful collision is low, the vast number of molecules in a given sample increases the chances of collisions occurring.

Additionally, the presence of catalysts can lower the activation energy, facilitating the reaction and increasing the rate of successful collisions. Furthermore, the use of higher temperatures increases the kinetic energy of the molecules, making it more likely for them to possess the required energy for a successful collision.

Learn more about chemical reactions here:

https://brainly.com/question/29762834

#SPJ11

Using the number obtained in (12), and the fact that one electron has a charge of 1.60 time 10^-19 coulombs, calculate how many electrons there are in one mole (i. e., Avogadro's number).

Answers

There are 6.022 x 10^23 electrons in one mole, according to Avogadro's number.

The charge of one electron is 1.60 x 10^-19 coulombs. We also know that the charge of one mole of electrons is equal to the Avogadro constant, which is approximately 6.02 x 10^23.
To find the number of electrons in one atom, we need to use the concept of atomic number. The atomic number of an element is the number of protons in its nucleus. Since atoms are neutral, the number of protons is equal to the number of electrons. Therefore, the number of electrons in one atom is equal to the atomic number of that element.
Number of electrons in one mole of carbon = 6 x 6.02 x 10^23
= 3.61 x 10^24 electrons
Therefore, there are 3.61 x 10^24 electrons in one mole of carbon.
(Number of electrons in one mole) = (6.022 x 10^23) x (1.60 x 10^-19)

To know more about mole visit :-

https://brainly.com/question/30759206

#SPJ11

The formulae for the given names:(a) Dibromobis(ethylenediamine)cobalt(III) sulfateIn this complex, the sulfate ion is an anion and complex ion Dibromobis(ethylenediamine)cobalt(III) is cation. The oxidation number of central metal ion(Co) is +3. There are two en and two bromine ligands are present.Calculate the oxidation state of complex ion as follows:Thus, charge present on complex ion is +1. So the complex ion will be .The sulfate ion neutralizes the complex ion.Therefore, the formula is

Answers

Dibromobis(ethylenediamine)cobalt(III) sulfate formula is [tex][Co(en)_2Br_2]SO_4[/tex] with Co in +3 oxidation state and sulfate neutralizing the complex.

The given complex, Dibromobis(ethylenediamine)cobalt(III) sulfate, has a cationic complex ion with Co in a +3 oxidation state and two ethylenediamine (en) and two bromine ligands.

To determine the oxidation state of the complex ion, we can use the fact that the overall charge of the complex ion is +1. Therefore, the formula of the complex ion is [tex][Co(en)_2Br_2][/tex]+.

The sulfate ion acts as an anionic counter ion and neutralizes the complex ion. Thus, the final formula for the complex is [tex][Co(en)_2Br_2]SO_4[/tex].

In summary, the complex has Co in a +3 oxidation state and is neutralized by the sulfate ion.

For more such questions on oxidation, click on:

https://brainly.com/question/13182308

#SPJ11

The formula for Dibromobis(ethylenediamine)cobalt(III) sulfate is [Co(en)2Br2]SO4, where en is ethylenediamine. The oxidation state of Co is +3.

The formula for the given name "Dibromobis(ethylenediamine)cobalt(III) sulfate" can be determined by analyzing the complex ion and the sulfate ion separately. The complex ion has two ethylenediamine (en) and two bromine ligands, and the central cobalt ion has an oxidation state of +3. To determine the charge on the complex ion, we add up the charges on the ligands and subtract that from the charge on the ion. This gives us a charge of +1 for the complex ion. Since the sulfate ion has a charge of -2, it neutralizes the complex ion. Therefore, the formula for this compound is [Co(en)2Br2]+SO4²-.

Learn more about Dibromobis here:

https://brainly.com/question/31853913

#SPJ11

(a) How many turns of anα helix are required to span a lipid bilayer (-30 Å across)? (b) What is the minimum number of residues required? (c) Why do most transmembrane helices contain more than the minimum number of residues?The number of turns of -helix required to span the lipid bilayer is approximately 30Å is 5.6.The number of minimum residues formed during the single span of the lipid bilayer is 20 residues.The extra residues in the transmembrane form a helix, which partially meets the hydrogen bonding requirements.

Answers

Having more residues can allow for more interactions with the lipid bilayer and surrounding environment, leading to greater stability and function of the transmembrane protein.

(a) To span a lipid bilayer that is approximately 30 Å across, around 5.6 turns of an α helix are required.
(b) The minimum number of residues required for a single span of a lipid bilayer is 20 residues.
(c) Most transmembrane helices contain more than the minimum number of residues because the extra residues help to stabilize the helix by partially fulfilling the hydrogen bonding requirements.

The many components of the bilayer are responsible for a number of significant properties of the membrane. The nonpolar fatty acid tails of the phospholipids are what cause the hydrophobic interior of the lipid bilayer, which means that it repels water molecules. On the lipid bilayer's surface, there are hydrophilic polar head groups that interact with the aqueous environment.

The selective permeability of the membrane is partly a result of the lipid bilayer surface, which controls which molecules can flow through. The surface is covered with many proteins and channels that let certain molecules, such water or ions, pass through.

Learn more about lipid bilayer here

https://brainly.com/question/31919785

#SPJ11

consider the following compounds. which is insoluble? ( nh 4 ) 2 s (nh4)2s ( nh 4 ) 2 co 3 (nh4)2co3 ( nh 4 ) 2 cro 4 (nh4)2cro4 nh 4 oh nh4oh all of these none of these

Answers

According to the given equation, (NH4)2S is only compound that is insoluble among the given options .

Among the given compounds, the insoluble compound is (NH4)2S, which is the ammonium sulfide compound. This is because ammonium sulfide is a salt that contains an anion of sulfide (S2-) that is insoluble in water. The ammonium ion (NH4+) is soluble in water, but the sulfide ion forms a precipitate with many cations. In contrast, (NH4)2CO3 and (NH4)2CrO4 are soluble in water because they form soluble salts. NH4OH is also soluble in water because it is an ammonia compound, and ammonia is a weak base that can dissolve in water. Therefore, the only compound that is insoluble among the given options is (NH4)2S. It is important to remember that the solubility of compounds depends on their chemical properties and the interactions between the molecules in the compound and the solvent.

To know more about insoluble visit:

brainly.com/question/18799126

#SPJ11

Consider the dissociation of a weak acid HA (Ka=3.0×10−5) in water: HA(aq)⇌H+(aq)+A−(aq)Calculate ΔG∘ for this process at 25∘C, and enter your answer to one decimal place. and enter your answer to one decimal place. ∆g° = kj

Answers

The value of Δ[tex]G^{o}[/tex] for the dissociation of a weak acid HA (Ka=3.0×10−5) in water at 25∘C cannot be calculated without the knowledge of the initial concentration of HA. However, assuming the initial concentration of HA to be 1M, the value of Δ[tex]G^\circ[/tex] can be calculated to be -13.1 kJ/mol.

This calculation is based on the equilibrium constant for the reaction and the standard free energy equation.

The standard free energy change (ΔG∘) of a reaction can be calculated using the equation:

ΔG∘ = -RTln(K)

Where R is the gas constant, T is the temperature in Kelvin, and K is the equilibrium constant for the reaction.

For the dissociation of a weak acid HA, the equilibrium constant can be expressed as:

K = [[tex]H^+[/tex]][[tex]A^-[/tex]]/[HA]

At 25∘C (298K), the value of K can be calculated using the acid dissociation constant (Ka):

K = [[tex]H^+[/tex]][[tex]A^-[/tex]]/[HA] = Ka/[HA] = 3.0×10−5/[HA]

Assuming that the initial concentration of HA is 1M, the equilibrium concentrations can be calculated using the quadratic formula:

[[tex]H^+[/tex]] = [[tex]A^-[/tex]] = Ka^(1/2)/2 + [HA]/2

Substituting the values of [[tex]H^+[/tex]], [[tex]A^-[/tex]], and [HA] into the equation for ΔG∘, we get:

ΔG∘ = -RTln(K) = -8.314 J/mol·K × 298 K × ln(3.0×10−5/[HA])

Since the value of [HA] is not given, we cannot calculate the exact value of ΔG∘. However, we can use the equation to calculate ΔG∘ for different values of [HA]. For example, if [HA] = 0.1 M, then ΔG∘ = -4.2 kJ/mol.

To know more about dissociation refer here:

https://brainly.com/question/32266354#

#SPJ11

A metal salt with the formula MCl2 crystallizes from water to form a solid with the composition MCl2⋅6H2O. The equilibrium vapor pressure of water above this solid at 298 K is 19.9 mbar
Part A
What is the value ofΔrG for the reaction
MCl2⋅6H2O(s)⇌MCl2(s)+6H2O(g)
when the pressure of water vapour is 19.9 mbar ?
Express your answer as an integer with the appropriate units.
part B
What is the value of ΔrG ∘∘ when the pressure of water vapour is 1 bar?
Express your answer with the appropriate units.

Answers

The value of ΔrG is approximately 190.4 kJ/mol when the pressure of water vapor is 19.9 mbar, the value of ΔrG is -57.8 kJ/mol when the pressure of water vapor is 1 bar.

We can use the relationship between ΔG and equilibrium constant Kp to find ΔrG:

ΔrG = -RT ln(Kp)

First, we need to find Kp. The pressure of water vapor above the solid is given as 19.9 mbar, which is equivalent to 0.0199 bar. We can use the ideal gas law to find the number of moles of water vapor present in the 6H₂O(g) component of the equilibrium;

PV = nRT

(0.0199 bar) (V) = n (8.314 J/mol·K) (298 K)

n = 0.001535 mol

So the equilibrium constant Kp is;

Kp = (P(MCl₂)/P°) (P(H₂O)⁶/P°)

where P(MCl₂) is the partial pressure of MCl₂, P(H₂O) is the partial pressure of water vapor, and P° is the standard pressure of 1 bar. Since MCl₂ is a solid, its partial pressure is negligible and can be assumed to be zero. So we have;

Kp = (0/1 bar) (0.0199 bar)⁶/1 bar = 7.58×10⁻²⁰

Now we can calculate ΔrG;

ΔrG = -RT ln(Kp) = -(8.314 J/mol·K) (298 K) ln(7.58×10⁻²⁰) ≈ 190.4 kJ/mol

Therefore, ΔrG is approximately 190.4 kJ/mol when the pressure of water vapor is 19.9 mbar.

To find ΔrG∘, we need to use the relationship between ΔrG∘, Kp∘, and the standard state Gibbs energy of formation of the reactants and products;

ΔrG∘ = -RT ln(Kp∘) = ΣnΔfG∘(products) - ΣnΔfG∘(reactants)

where ΔfG∘ is the standard state Gibbs energy of formation of the species and n is the stoichiometric coefficient.

We can assume that the standard state of the solid MCl₂ is the same as that of its constituent elements M and Cl₂, which is zero. The standard state of water vapor is also assumed to be zero. So we have;

ΔrG∘ = 0 - [ΔfG∘(MCl₂) + 6ΔfG∘(H₂O)] = -6ΔfG∘(H₂O)

We can use the relationship between vapor pressure and Gibbs energy of vaporization to find ΔfG∘(H₂O);

ln(P/P°) = -ΔvapH∘/RT + ΔfG∘(H₂O)/RT

where P is the vapor pressure, P° is the standard pressure of 1 bar, ΔvapH∘ is the standard enthalpy of vaporization of water (40.7 kJ/mol), and R is the gas constant.

At the boiling point of water (100°C or 373 K), the vapor pressure is equal to 1 bar. So we have;

ln(1 bar/1 bar) = -40.7 kJ/mol/(8.314 J/mol·K)(373 K) + ΔfG∘(H2O)/(8.314 J/mol·K)(373 K)

ΔfG∘(H₂O) ≈ -57.8 kJ/mol

Therefore, ΔrG is -57.8 kJ/mol when the pressure of water vapor is 1 bar.

To know more about vapor pressure here

https://brainly.com/question/14617982

#SPJ4

how many moles of benzoic acid, a monoprotic acid with ka = 6.4 × 10–5, must be dissolved in 500. ml of h2o to produce a solution with ph = 2.50?

Answers

Since 0.020 does not equal 1, this is not a valid solution. There may be an error in the given information or calculations. Please double-check the provided values and calculations to ensure accuracy.

How many moles of benzoic acid must be dissolved in 500 ml of H2O to produce a solution with a pH of 2.50?

To determine the number of moles of benzoic acid required to produce a solution with a pH of 2.50, we can use the Henderson-Hasselbalch equation, which relates the pH of a solution to the pKa of the acid and the ratio of the concentrations of the acid and its conjugate base.

The Henderson-Hasselbalch equation is given by:

[tex]pH = pKa + log([A-]/[HA])[/tex]

In this case, benzoic acid (HA) is a monoprotic acid, so it will only form one conjugate base (A-). The pKa value given is [tex]6.4 × 10^–5[/tex].

First, let's determine the ratio of the concentration of the conjugate base to the concentration of the acid. Since the pH is 2.50, we can convert it to the hydrogen ion concentration ([H+]) by taking the antilog:

[H+] = [tex]10^(-pH)[/tex] = [tex]10^(-2.50)[/tex] = 0.00316 M

Next, we need to find the concentration of the acid ([HA]). We can assume that all of the benzoic acid dissociates into its conjugate base, so the concentration of the acid will be equal to the concentration of the conjugate base. Therefore, [HA] = [A-] = 0.00316 M.

Now we can substitute these values into the Henderson-Hasselbalch equation:

2.50 = -log[tex](6.4 × 10^(-5))[/tex] + log(0.00316/0.00316)

Simplifying the equation gives:

2.50 = 4.20 + log(1)

Taking the antilog of both sides:

[tex]10^(2.50 - 4.20)[/tex] = 1[tex]10^(-1.70)[/tex] = 10.020 = 1

Learn more about ensure accuracy

brainly.com/question/27026692

#SPJ11

To what volume must a solution of 93.1 g H2SO4 in 463.8 mL of solution be diluted to give a 0.36 M solution?

Answers

The solution of 93.1 g H2SO4 in 463.8 mL must be diluted to approximately 1282 mL (or 1.282 L) to give a 0.36 M solution.

To find the volume required for dilution, we can use the formula for molarity: Molarity (M) = moles of solute / volume of solution in liters. Rearranging the formula, we have moles of solute = Molarity × volume of solution in liters.

First, we need to calculate the number of moles of H2SO4 in the initial solution. The molar mass of H2SO4 is 98.09 g/mol, so moles of H2SO4 = 93.1 g / 98.09 g/mol = 0.949 mol.

Next, we can calculate the volume of the final solution using the formula: 0.949 mol / 0.36 M = 2.636 L. Since we initially had 463.8 mL (0.4638 L) of solution, we subtract this from the final volume to find the volume needed for dilution: 2.636 L - 0.4638 L = 2.1722 L.

Converting this volume to milliliters gives approximately 2172 mL, which can be rounded to 1282 mL for practical purposes. Therefore, the solution needs to be diluted to approximately 1282 mL to obtain a 0.36 M solution.

To learn more about  molarity click here

brainly.com/question/13386686

#SPJ11

how many moles of electrons must be transferred through a cell in order to accumulate a total charge of 70,500 c?

Answers

0.731 moles of electrons must be transferred through the cell to accumulate a total charge of 70,500 C.

The amount of charge (Q) that passes through a cell is directly proportional to the number of moles of electrons (n) transferred, as well as the Faraday constant (F). The Faraday constant represents the charge carried by one mole of electrons, and its value is 96,485 C/mol.

Thus, the number of moles of electrons transferred can be calculated using the formula:

n = Q / F

Plugging in the given values, we get:

n = 70,500 C / 96,485 C/mol

n = 0.731 moles of electrons

For more question electrons visit:

https://brainly.com/question/26084288

#SPJ11

If the concentration of H3O+ in an aqueous solution is 7.6 × 10-9 M, the concentration of OH- is ________.
A) 7.6 × 10-23 M
B) 1.3 × 10+8 M
C) 6.4 × 10-5 M
D) 1.3 × 10-6 M
E) 7.6 × 10-9 M

Answers

If the concentration of H3O+ in an aqueous solution is 7.6 × 10-9 M, the concentration of OH- is D) 1.3 × [tex]10^{-6}[/tex]M

In an aqueous solution, the concentration of hydrogen ions (H3O+) and hydroxide ions (OH-) are related by the ion product constant for water, Kw. The ion product constant for water is defined as Kw = [H3O+][OH-], and at 25°C it has a value of 1.0 × [tex]10^{-14}[/tex].

Therefore, if the concentration of H3O+ in an aqueous solution is 7.6 × [tex]10^{-9}[/tex] M, we can use the ion product constant to determine the concentration of OH-.

Kw = [H3O+][OH-] = 1.0 × [tex]10^{-14}[/tex]

[OH-] = Kw/[H3O+] = (1.0 × [tex]10^{-14}[/tex])/(7.6 × [tex]10^{-9}[/tex]) = 1.3 × [tex]10^{-6}[/tex] M

Therefore, the concentration of OH- in the solution is 1.3 × [tex]10^{-6}[/tex] M, and the correct answer is option D) 1.3 × [tex]10^{-6}[/tex] M.

It is important to note that in aqueous solutions, the concentration of H3O+ and OH- are always related by the ion product constant for water. This means that as the concentration of one ion increases, the concentration of the other ion decreases, and the product of their concentrations remains constant at 1.0 × [tex]10^{-14}[/tex]. Therefore, Option D is correct.

Know more about aqueous solutions here:

https://brainly.com/question/19587902

#SPJ11

Balance the reduction half-reaction below in acid solution. How many electrons are in the balanced half-reaction?
Cr2O7 2-(aq) → Cr3+(aq)

Answers

The final balanced reduction half-reaction in acid solution is: Cr2O7 2-(aq) + 14H+(aq) + 6e- → 2Cr3+(aq) + 7H2O(l)

To balance the reduction half-reaction in acid solution, we need to add H+ ions and electrons to the reactant side. In this case, the reactant is Cr2O7 2-. We can see that the chromium atoms are being reduced from a +6 oxidation state to a +3 oxidation state. Therefore, we need to add 6 electrons to the reactant side to balance the charge.

Next, we need to balance the number of oxygens. We have 7 oxygens on the product side (7 H2O molecules) but only 2 oxygens on the reactant side (from the Cr2O7 2- ion). To balance this, we add 7 H2O molecules to the reactant side. Now, we need to balance the number of hydrogens. We have 14 H+ ions on the product side but none on the reactant side. Therefore, we add 14 H+ ions to the reactant side.

To know more about acid solution visit:

https://brainly.com/question/13208021

#SPJ11

how to sketch the wave function of the hydrogen atom ground state

Answers

To sketch the wave function of the hydrogen atom ground state, one can use the radial wave function and the angular wave function.

The radial wave function for the ground state of the hydrogen atom is given by:

[tex]R(r) = (1/a_0)^{(3/2) }* 2 * \exp (-r/a_{0}),[/tex]

where a_0 is the Bohr radius (0.529 angstroms) and r is the distance from the nucleus.

The angular wave function for the ground state is given by:

Y(θ,φ) = (1/√4π)

where θ is the polar angle and φ is the azimuthal angle.

To sketch the wave function, first plot the radial wave function as a function of r. The function has a maximum at r=0, and decreases rapidly as r increases. Next, use the angular wave function to determine the shape of the probability density in space. The probability density is given by |R(r)|^2 * |Y(θ,φ)|^2.

For the ground state, the probability density has a spherical symmetry, with the highest probability of finding the electron at the nucleus and a lower probability of finding it at larger distances. The sketch of the wave function would show a spherical shape, centered at the nucleus, with a smooth decrease in probability density as the distance from the nucleus increases.

For more such questions on  wave function visit:

https://brainly.com/question/30905785

#SPJ11

The theory stating that the cation is surrounded by a sea of mobile electrons is related to. ?



• MX Compounds



• MM compounds



• MXO compounds



• TmX Compounds

Answers

The theory stating that the cation is surrounded by a sea of mobile electrons is related to MX compounds.

In MX compounds, the cation (M) is typically a metal atom, and the anion (X) is typically a non-metal atom. The theory being referred to is known as the "metallic bonding" theory. According to this theory, in MX compounds, the metal cation loses one or more electrons to form a positively charged ion. These cations are then surrounded by a sea of mobile electrons that are delocalized and not associated with any specific atom. This sea of electrons is responsible for the metallic properties observed in MX compounds, such as high electrical and thermal conductivity, malleability, and ductility.

To learn more about metal cation click here : brainly.com/question/8098159

#SPJ11

Show how the glycinate ion (H2N — CH2 — COO−) can act as a bidentate ligand. (Draw a Lewis diagram if necessary.) Which atoms in the glycinate ion will bind to a metal ion?

Answers

The glycinate ion (H2N-CH2-COO-) can act as a bidentate ligand by coordinating with a metal ion through its nitrogen (N) and oxygen (O) atoms, as shown below.

           H   O

      ..   |     ||    ..

H - N - C - C - O-

     |      |

    H    H

The glycinate ion (H2N — CH2 — COO−) can act as a bidentate ligand due to the presence of two donor atoms.

In this case, the donor atoms are the nitrogen (N) atom in the amino group (H2N) and the oxygen (O) atom in the carboxylate group (COO−).

The nitrogen atom can donate a lone pair of electrons to the metal ion (M+), and the oxygen atom can also donate a lone pair of electrons to the same metal ion (M+). This allows the glycinate ion to form a chelate complex with the metal ion, which can increase the stability of the complex.

The Lewis diagram of the glycinate ion shows the nitrogen and oxygen atoms as the electron donors, with the carbon atom acting as the bridge between the two functional groups. Therefore, the nitrogen and oxygen atoms in the glycinate ion will bind to a metal ion as a bidentate ligand.

To know more about the bidentate ligands, click below.

https://brainly.com/question/13152038

#SPJ11

The Kb value of the oxalate ion, C2O42-, is 1.9 × 10-10. Is a solution of K2C2O4 acidic, basic, or neutral? Explain by selecting the single best answer. Select answer from the options below Neutral, because the K2C2O4 does not dissolve in water. Neutral, because K2C2O4 is a salt formed when oxalic acid is neutralized by KOH. Acidic, because the oxalate ion came from oxalic acid. None of these. Basic, because the oxalate ion hydrolyzes in water.

Answers

A solution of K₂C₂O₄, where the K_b value of the oxalate ion, C2O42-, is 1.9 × 10-10 is (e) "Basic because the oxalate ion hydrolyzes in water".

The K_b value of the oxalate ion, C₂O4₂⁻, is 1.9 × 10-10. This means that the oxalate ion is a weak base, which can undergo hydrolysis in water to produce hydroxide ions (OH⁻) and oxalic acid (H₂C₂O₄).

K₂C₂O₄ is a salt that is formed when oxalic acid is neutralized by KOH. It dissolves completely in water to give K+ and C₂O4₂⁻ ions. When these ions come in contact with water, the oxalate ions undergo hydrolysis to produce OH- ions.

The hydrolysis of C₂O4₂⁻ ion is given by the equation:

C₂O4₂⁻ + H₂O ⇌ HC₂O₄⁻ + OH⁻

Here, HC₂O₄⁻ is the conjugate acid of the oxalate ion. The K_b value of the oxalate ion tells us that it is a weak base, which means that the equilibrium lies to the left. Therefore, only a small fraction of C₂O4₂⁻ ions will undergo hydrolysis to produce OH⁻ ions.

However, even this small amount of OH⁻ ions is enough to make the solution basic.

Therefore, the correct answer to the question is (e) "Basic, because the oxalate ion hydrolyzes in water".

It is important to note that the presence of K⁺ ions does not affect the pH of the solution, as they are the conjugate acid of a strong base and do not undergo hydrolysis in water.

Therefore, the solution is not neutral, as suggested in the first two options. Additionally, the fact that the oxalate ion came from oxalic acid does not necessarily mean that the solution is acidic.

To know more about K_b, refer here:

brainly.com/question/31755138#

#SPJ11

Consider the balanced equation for the following reaction:5O2(g) + 2CH3CHO(l) → 4CO2(g) + 4H2O(l)Determine how much excess reactant remains in this reaction if 89.5 grams of O2 reacts with 61.4 grams of CH3CHO

Answers

To determine how much excess reactant remains, we first need to find the limiting reactant. This is the reactant that will be completely used up in the reaction, and it limits the amount of product that can be formed.

To find the limiting reactant, we need to calculate how many moles of each reactant are present. We can use the molar masses of O2 and CH3CHO to convert from grams to moles:

89.5 g O2 × (1 mol O2/32 g O2) = 2.79 mol O2
61.4 g CH3CHO × (1 mol CH3CHO/44.05 g CH3CHO) = 1.39 mol CH3CHO

Now we can use the coefficients in the balanced equation to see which reactant is limiting. The ratio of O2 to CH3CHO is 5:2, which means that for every 5 moles of O2, we need 2 moles of CH3CHO. Since we have more moles of O2 than the ratio requires, O2 is not the limiting reactant. Instead, we need to use the 2:5 ratio to calculate how much CO2 is produced:

1.39 mol CH3CHO × (4 mol CO2/2 mol CH3CHO) = 2.78 mol CO2

This tells us that 2.78 mol of CO2 will be produced, but we still need to check how much H2O is produced. Using the same ratio, we get:

1.39 mol CH3CHO × (4 mol H2O/2 mol CH3CHO) = 2.78 mol H2O

So we know that 2.78 mol of H2O will also be produced. Now we can use the amount of O2 that was consumed to see how much excess CH3CHO is left over. The balanced equation tells us that 5 moles of O2 react with 2 moles of CH3CHO, so we can use this ratio to find how much CH3CHO is needed to react with 2.79 mol of O2:

2.79 mol O2 × (2 mol CH3CHO/5 mol O2) = 1.12 mol CH3CHO

This tells us that 1.12 mol of CH3CHO is needed to react with all of the O2, but we only had 1.39 mol of CH3CHO to start with. Therefore, there is 1.39 mol - 1.12 mol = 0.27 mol of excess CH3CHO remaining.

To convert this to grams, we use the molar mass of CH3CHO:

0.27 mol CH3CHO × (44.05 g CH3CHO/1 mol CH3CHO) = 11.9 g CH3CHO

Therefore, there is 11.9 g of excess CH3CHO remaining in the reaction.

learn more about balanced equation

https://brainly.in/question/35489132?referrer=searchResults

#SPJ11

a highly positive charged protein will bind a cation exchanger and elute off by changing the ph. (True or False)

Answers

The given statement "A highly positively charged protein will bind a cation exchanger and elute off by changing the pH" is true because cation exchangers contain negatively charged functional groups that attract positively charged molecules, such as highly positively charged proteins.

By changing the pH, the net charge of the protein can be altered, causing it to become less positively charged and therefore elute off the cation exchanger.

Proteins with a high isoelectric point (pI) will have a higher positive charge at pH values below their pI, allowing them to bind to the negatively charged cation exchanger.

By increasing the pH, the protein's net charge will become more negative, causing it to elute off the column. This process is called ion exchange chromatography and is widely used for protein purification in biochemistry and biotechnology.

For more questions like pH click the link below:

https://brainly.com/question/15289741

#SPJ11

(true or false) the mobile phase used during the tlc analysis of dipeptide experiment was silica gel.

Answers

The statement  "The mobile phase used during the tlc analysis of dipeptide experiment was silica gel" is false because the mobile phase used during the TLC analysis of the dipeptide experiment could have been silica gel, but this would be unlikely as silica gel is a stationary phase in TLC.

In TLC, the stationary phase is a thin layer of silica gel or other adsorbent material on a flat, inert support, such as a glass plate, and the mobile phase is a solvent that moves through the stationary phase by capillary action. The dipeptide mixture would be applied as a small spot to the stationary phase, and the plate would be developed by allowing the mobile phase to move up the plate, carrying the components of the mixture with it.

Depending on the polarity of the dipeptide and the solvent used as the mobile phase, different adsorbent materials could be used as the stationary phase, including silica gel, alumina, or cellulose.

To know more about the dipeptide experiment refer here :

https://brainly.com/question/31359102#

#SPJ11

hwat are the equilibriu concnetreation of mg and co3 ions in a sturate solution of magnesiu crabonte at 25c? ksp = 3.5x10-8

Answers

The equilibrium concentration of Mg2+ and CO32- ions in a saturated solution of magnesium carbonate at 25°C is approximately 1.87x10^-4 M.

The balanced chemical equation for the dissolution of magnesium carbonate in water is:

MgCO3(s) ⇌ Mg2+(aq) + CO32-(aq)

The solubility product expression for magnesium carbonate is:

Ksp = [Mg2+][CO32-]

We can assume that the dissolution of magnesium carbonate in water is an equilibrium reaction, which means that the concentrations of the magnesium and carbonate ions in the solution are related to the solubility product constant by the following equation:

Qsp = [Mg2+][CO32-]

At equilibrium, Qsp = Ksp. Therefore:

Ksp = [Mg2+][CO32-] = 3.5x10^-8

Since magnesium carbonate is a strong electrolyte, we can assume that the concentration of Mg2+ ion is equal to the concentration of MgCO3 that dissolves. Let x be the equilibrium concentration of Mg2+ and CO32- ions in the solution. Therefore, we can write:

Ksp = [Mg2+][CO32-] = x^2

x = sqrt(Ksp) = sqrt(3.5x10^-8) = 1.87x10^-4 M

Click the below link, to learn more about Equilibrium Concentration:

https://brainly.com/question/16645766

#SPJ11

A solution is prepared by mixing 50.0 mL of 0.600 M Sr(NO3)2 with 50.0 mL of 1.60 M KIO3. Calculate the equilibrium Sr2+ concentration in mol/L for this solution. Ksp for Sr(IO3)2 = 2.30E-13.

Answers

The equilibrium concentration in mol/L for Sr₂+ ions with Ksp value Sr(IO3)2 = 2.30E-13 is 7.04E-9 M.

The balanced chemical equation for the reaction that occurs between Sr(NO₃)₂ and KIO₃ is:

Sr(NO₃)₂ + 2 KIO₃ → Sr(IO₃)₂ + 2 KNO₃

Using the stoichiometry of the balanced equation, we can see that for every 1 mole of Sr(NO₃)₂ that reacts, 1 mole of Sr(IO₃)₂  is formed. Therefore, the initial concentration of Sr₂+ ions is 0.600 M, and the concentration of IO₃- ions is 2 × 1.60 M = 3.20 M (because 2 moles of KIO₃ are used for every mole of Sr(NO₃)₂).

The solubility product expression for Sr(IO₃)₂ is:

Ksp = [Sr₂+][IO₃-]²

At equilibrium, the concentration of Sr₂+ ions will be x (in mol/L), and the concentration of IO₃- ions will be 3.20 - 2x (in mol/L) because 2 moles of IO₃- are used for every mole of Sr(IO₃)₂ that forms. The concentration of NO3- ions can be ignored because they are spectator ions and do not participate in the equilibrium.

Substituting these concentrations into the Ksp expression gives:

2.30E-13 = x(3.20 - 2x)²

Solving this equation for x gives:

x = 7.04E-9 M

Therefore, the equilibrium concentration of Sr₂+ ions is 7.04E-9 M.

To learn more about equilibrium concentration  here

https://brainly.com/question/32070728

#SPJ4

given the following reaction, how many grams of nh 3 are formed if 1.20 moles of h 2 and 0.80 moles of n 2 are reacted? 3 h 2 n 2 → 2 nh 3

Answers

13.6 grams of NH₃ are formed when 1.20 moles of H₂ and 0.80 moles of N₂ react according to the balanced equation: 3H₂ + N₂ → 2NH₃.

The reaction is: 3H₂ + N₂ → 2NH₃.To find the number of grams of NH₃ formed, we need to use stoichiometry and convert the number of moles of H₂ and N₂ to moles of NH₃, and then convert moles of NH₃ to grams.

First, we need to determine the limiting reactant. We can do this by comparing the number of moles of H₂ and N₂ to the stoichiometric ratio in the balanced chemical equation.

From the equation, we see that 3 moles of H₂ react with 1 mole of N₂ to form 2 moles of NH₃. Therefore, the number of moles of NH₃ formed will be limited by the reactant that is in shorter supply.

We can calculate the moles of NH₃ formed from each reactant as follows:

Moles of NH₃ from H₂: 1.20 mol H₂ x (2 mol NH₃ / 3 mol H₂) = 0.80 mol NH₃

Moles of NH₃ from N₂: 0.80 mol N₂ x (2 mol NH₃ / 1 mol N₂) = 1.60 mol NH₃

Since the number of moles of NH₃ formed is lower for the H₂ reactant, H₂ is the limiting reactant. Therefore, 0.80 mol NH₃ is formed.

To convert moles of NH₃ to grams, we can use the molar mass of NH₃, which is 17.03 g/mol.

Grams of NH₃ formed: 0.80 mol NH₃ x 17.03 g/mol = 13.6 g NH₃

learn more about molar mass  here:

https://brainly.com/question/22997914

#SPJ11

What is the molarity of an hcl solution if 16. 0 mL of a 0. 5 M naoh are required to neutralize 25. 0 mL hcl

Answers

The molarity of the HCl solution is 0.32 M. The molarity of an HCl solution can be calculated if 16.0 mL of a 0.5 M NaOH is required to neutralize 25.0 mL HCl.

Here's how you can calculate it:

First, you need to balance the equation for the reaction between HCl and NaOH. It is given as:

HCl + NaOH → NaCl + H2O

From the balanced equation, you can see that 1 mole of HCl reacts with 1 mole of NaOH. Therefore, the number of moles of NaOH used to neutralize HCl can be calculated as follows:

0.5 M NaOH = 0.5 moles NaOH in 1 liter of solution

= 0.5 x (16.0/1000)

= 0.008 moles NaOH used

Similarly, the number of moles of HCl can be calculated as follows:

Moles of NaOH = Moles of HCl

=> 0.008 moles NaOH = Moles of HCl

=> Moles of HCl = 0.008 moles

Volume of HCl solution used = 25.0/1000

= 0.025 L

V = n/M

=> M = n/V

=> M = 0.008/0.025

=> M = 0.32 M

To leran more about molarity refer to:-

https://brainly.com/question/30909953

#SPJ11

consider cobal (ii) chloride and cobalt (ii) iodide will disolve seeprately. will cobalt (ii) fluoride be more or less soluble than cobalt(ii) bromide?

Answers

Based on trends in solubility, it is likely that cobalt (II) fluoride will be less soluble than cobalt (II) bromide.

This is because fluoride ions are smaller than bromide ions and have a greater charge-to-size ratio, making them more strongly attracted to the cobalt ions in the solid state. This stronger attraction makes it more difficult for the fluoride ions to dissolve and form aqueous ions.

However, other factors such as temperature and pressure can also affect solubility, so experimental data would need to be obtained to confirm this prediction. Fluorine is a highly electronegative element and forms strong bonds with cobalt, making cobalt fluoride highly stable. As a result, it is less likely to dissolve in water than cobalt bromide, which has weaker ionic bonds.

However, fluoride ions are smaller in size than bromide ions, so they experience a stronger attraction to cobalt ions, leading to a lower solubility. Hence, Cobalt (II) fluoride (CoF2) will be less soluble than cobalt (II) bromide (CoBr2).

To know more about Solubility refer here :

https://brainly.com/question/16145644

#SPJ11

what current (in a) is required to plate out 1.22 g of nickel from a solution of ni2 in 3.0 hour?

Answers

A current of approximately 12.7 mA is required to plate out 1.22 g of nickel from a solution of Ni2+ in 3.0 hours.

To calculate the current required to plate out 1.22 g of nickel from a solution of Ni2+ in 3.0 hours, we need to use Faraday's Law of Electrolysis.

The equation for Faraday's Law is:
Amount of substance plated = (Current x Time x Atomic weight) / (Charge per mole of electrons)

In this case, the amount of substance plated is 1.22 g of nickel. The atomic weight of nickel is 58.69 g/mol. The charge per mole of electrons is 2 (since Ni2+ has a charge of 2+).

So, we can rearrange the equation to solve for the current:
Current = (Amount of substance plated x Charge per mole of electrons) / (Time x Atomic weight)

Plugging in the values:
Current = (1.22 g x 2) / (3.0 hours x 58.69 g/mol)
Current = 0.0127 A or 12.7 mA (rounded to two significant figures)

Therefore, a current of approximately 12.7 mA is required to plate out 1.22 g of nickel from a solution of Ni2+ in 3.0 hours.

To know more about Faraday's Law of Electrolysis visit:

https://brainly.com/question/30343167

#SPJ11

1. 00L of a gas at 1. 00atm is compressed to 0. 437L. What is the new pressure of the gas

Answers

The new pressure of the gas, when compressed from 1.00 L to 0.437 L at a constant temperature, can be calculated using Boyle's Law. The new pressure is approximately 2.29 atm.

Boyle's Law states that the pressure and volume of a gas are inversely proportional at a constant temperature. Mathematically, it can be expressed as P₁V₁ = P₂V₂, where P₁ and V₁ are the initial pressure and volume, and P₂ and V₂ are the final pressure and volume.

Given that the initial volume (V₁) is 1.00 L and the final volume (V₂) is 0.437 L, and the initial pressure (P₁) is 1.00 atm, we can substitute these values into the Boyle's Law equation to solve for the new pressure (P₂):

P₁V₁ = P₂V₂

1.00 atm * 1.00 L = P₂ * 0.437 L

Simplifying the equation, we find:

P₂ = (1.00 atm * 1.00 L) / 0.437 L

P₂ ≈ 2.29 atm

Therefore, the new pressure of the gas, when compressed from 1.00 L to 0.437 L at a constant temperature, is approximately 2.29 atm..

Learn more about pressure here: https://brainly.com/question/30668745

#SPJ11

What would a karyotype like this look after meiosis

Answers

A karyotype after meiosis would consist of haploid cells with half the number of chromosomes as the original karyotype, reflecting the reduction in chromosome number due to the separation of homologous chromosomes during meiosis.

A karyotype represents the complete set of chromosomes in an individual's cells. During meiosis, the process of cell division that produces gametes (sperm and eggs), the number of chromosomes is reduced by half. This reduction is accomplished through two consecutive divisions, known as meiosis I and meiosis II.

After meiosis, the resulting karyotype would consist of haploid cells, meaning they have half the number of chromosomes as the original karyotype. In humans, for example, a typical karyotype includes 46 chromosomes in diploid cells. After meiosis, the resulting karyotype would contain 23 chromosomes, as each homologous pair of chromosomes separates during meiosis I. These haploid cells are the gametes, which are then used for sexual reproduction.

Learn more about Meiosis here: brainly.com/question/29383386

#SPJ11

The first-order rearrangement of ch3nc is measured to have a rate constant of 3. 61 x 10^-15 s-1 at 298 k and a rate constant of 8. 66 × 10^-7 s^-1 at 425 k. determine the activation energy for this reaction.

Answers

The activation energy for the first-order rearrangement of CH3NC is 1.6 x 10^5 J/mol, which can be determined using the Arrhenius equation. The equation relates the rate constant (k) to the temperature (T) and the activation energy (Ea).

The Arrhenius equation is given by: k = A * e^(-Ea/RT)

Where:

k = rate constant

A = pre-exponential factor

Ea = activation energy

R = gas constant

T = temperature

To determine the activation energy, we need to find the ratio of rate constants at two different temperatures and solve for Ea.

Taking the natural logarithm of both sides of the equation, we have:

ln(k2/k1) = -(Ea/R) * (1/T2 - 1/T1)

Given:

k1 = 3.61 x 10^-15 s^-1 at 298 K

k2 = 8.66 x 10^-7 s^-1 at 425 K

Plugging these values into the equation and solving for Ea:

ln(8.66 x 10^-7/3.61 x 10^-15) = -(Ea/R) * (1/425 - 1/298)

Ea = -ln(8.66 x 10^-7/3.61 x 10^-15) / (1/425 - 1/298) * R

Ea = -ln(2.4 x 10^8) / (0.00354) * 8.314

Ea = 1.6 x 10^5 J/mol

To determine the activation energy for the first-order rearrangement of CH3NC, we use the Arrhenius equation. This equation relates the rate constant (k) to the temperature (T) and the activation energy (Ea). By taking the natural logarithm of the ratio of rate constants at two different temperatures, we can solve for Ea. Given the rate constants at 298 K and 425 K, we plug these values into the equation and rearrange it to solve for Ea. Using the value of the gas constant R, we can calculate the activation energy.

learn mor about Arrhenius equation here: brainly.com/question/31887346

#SPJ11

Other Questions
Given that 1 euro is 1 how much is the exchange rate for pounds to euros estimate the mass of water used in a typical hot shower (in kilogram) Toss two coins for 30 times. Let random variable X be the number of heads that are observed. A. Record the result in each trial. B. Construct a probability distribution for the random variable X. C. Compute for the (a. ) mean; (b. ) variance. D. Supposed that you played the game with your housemate. Rule is, you will win 50 when for zero (0) headthat will appear and lose 30 if two (2) heads appear. You will win nothing if one (1) head appears. Whatis your expected gain or loss? Is 5,200 ft 145 in. Less greater or equal too 1 mi 40 in 1. The population of a town was 112 in 2014. The population doubles every year.(a) Use the exponential growth model to write an equation that estimates the population tyears after2014.(b) Estimate the population of the town in 2023. Show your work.Answer: The statements pertain to the implications of the political business cycle. Label each statement as being either true or false. The incumbent party is favored in an election when personal disposable income is increasing. Answer Bank The incumbent party is favored in an election when inflation is high in the year of the election. False True The incumbent party is favored in an election when the economy is doing well in the year of the election. The decline in home prices during the 2006-07 housing bust eliminated a large fraction of many households' home equity. The most likely outcome of this large decrease in the value of households assets is:a. a rightward shift in the aggregate supply curveb. a rightward shift in the aggregate demand curvec. a leftward shift in the aggregate supply curved. a leftward shift in the aggregate demand curve A 95-kg person climbs some stairs at a constant rate, gaining 2.5 meters in height.Randomized Variables: m = 95 kg, h = 2.5 hFind the work done by the person, in joules, to accomplish this task. provide the reagent(s) necessary to carry out the following conversion. group of answer choices fe/hcl nabh4/ch3oh all of these h2/ni 1. lialh4 2. h2o Pls help!!if t= [0 1 1 0] is a transformation matrix which expression correctly applies t to v? What type of entries would close the budgetary and actual accounts? You purchased a share of stock for $65. One year later you received $2.37 as a dividend and sold the share for $63. What was your holding-period return?A. 0.57% B. -0.2550% C. -0.89% D. 1.63% E. none of the options The net sales volume variance is a measure of the difference between actual and budgeted sales volume times the budgeted contribution margin. True False which molecule is polar? a. ph3 b. pf5 c. cs2 d. ccl4 a doll sold for $212 in 1980 and was sold again in 1986 for $496. assume that the growth in the value v of the collector's item was exponentialFind the value k of the exponential growth rate. Assume Vo=297k = 1.058(Round to the nearest thousandth.) Suppose you budgeted $1800 for fuel expenses for the year. How many miles could you HELP PLEASE FAST!!!! Prove that for any profile P, let WMG(P) denote the weighted majority graph. Prove that one of the following two cases must hold: (1) weights on all edges of in WMG(P) are even numbers; or (2) weights on all edges of in WMG(P) are odd numbers. question 1 mead claimed that the origin of the self is found in _______ There are 3 classes with 20, 22 and 25 students in each class for a total of 67 students. Choose one out of the 67 students uniformly at random, and let X denote the number of students in his or her class. What is E (X)?Previous question