Answer:
( x - 3.5)² - 29/4
Step-by-step explanation:
Given :-
x² - 7x + 5Writing in ( x - a)² - b form ,
x² - 7x + 5 x² - 7 * 2/2 * x + 5 x² - (7/2) * 2 * x + 5 x² - (7/2)*2*x +(7/2)²-(7/2)²+5( x - 7/2)² + 5 - 49/4( x - 7/2)² + ( 20-49)/4( x - 3.5)² - 29/4"1. A z-score of zero always means
a.
the raw score does not exist.
b.
the raw score exists, but is negligible.
c.
the raw score almost never occurs.
d.
the raw score is equal to the mean."
Answer:
d.
Step-by-step explanation:
Here is an answer I found on the internet (kudos to investopedia.com)
If a Z-score is 0, it indicates that the data point's score is identical to the mean score.
In other words, it's saying that a z-score of zero has a standard deviation of zero.
Help pls with answer!!!Rewrite the function in the given form.
Answer:
[tex]g(x) = \frac{-2}{x-1}+5\\\\[/tex]
The graph is shown below.
=========================================================
Explanation:
Notice that if we multiplied the denominator (x-1) by 5, then we get 5(x-1) = 5x-5.
This is close to 5x-7, except we're off by 2 units.
In other words,
5x-7 = (5x-5)-2
since -7 = -5-2
Based on that, we can then say,
[tex]g(x) = \frac{5x-7}{x-1}\\\\g(x) = \frac{5x-5-2}{x-1}\\\\g(x) = \frac{(5x-5)-2}{x-1}\\\\g(x) = \frac{5(x-1)-2}{x-1}\\\\g(x) = \frac{5(x-1)}{x-1}+\frac{-2}{x-1}\\\\g(x) = 5+\frac{-2}{x-1}\\\\g(x) = \frac{-2}{x-1}+5[/tex]
This answer can be reached through alternative methods of polynomial long division or synthetic division (two related yet slightly different methods).
-------------------------
Compare the equation [tex]g(x) = \frac{-2}{x-1}+5\\\\[/tex] to the form [tex]g(x) = \frac{a}{x-h}+k\\\\[/tex]
We can see that
a = -2h = 1k = 5The vertical asymptote is x = 1, which is directly from the h = 1 value. If we tried plugging x = 1 into g(x), then we'll get a division by zero error. So this is why the vertical asymptote is located here.
The horizontal asymptote is y = 5, which is directly tied to the k = 5 value. As x gets infinitely large, then y = g(x) slowly approaches y = 5. We never actually arrive to this exact y value. Try plugging in g(x) = 5 and solving for x. You'll find that no solution for x exists.
The point (h,k) is the intersection of the horizontal and vertical asymptote. It's effectively the "center" of the hyperbola, so to speak.
The graph is shown below. Some points of interest on the hyperbola are
(-1,6)(0,7) .... y intercept(1.4, 0) .... x intercept(2, 3)(3, 4)Another thing to notice is that this function is always increasing. This means as we move from left to right, the function curve goes uphill.
Algebraically show that each of the given combinations are equivalent to the given functions.
h(x) • j(x) is equivalent to k(2) given:
h(x) = - 3x – 1;j(x) = – 7x + 11 ; k(x) = 21.22 – 262 – 11
h(x).j(x) = (
Is h(x).j(x) equivalent to k(x)? yes
Answer:
Yes they ate Equivalent
Step-by-step explanation:
Given the expression
h(x) = - 3x – 1;j(x) = – 7x + 11 ; k(x) = 21.22 – 262 – 11
H(x)•j(x) = (-3x-1)(-7x+11)
H(x)•j(x) = (-3x)(-7x)-3x(11)-1(-7x)(-1)(11)
H(x)•j(x) = 21x²-33x+7x-11
H(x)•j(x) = 21x²-26x-11
This shows that H(x)•j(x) = k(x)
Find the area of the regular pentagon. 4.1 cm 6 cm Area = [?] cm? Enter your answer to the nearest tenth.
Answer:
Area of the given regular pentagon is 61.5 cm².
Step-by-step explanation:
Area of a regular polygon is given by,
Area = [tex]\frac{1}{2}aP[/tex]
Here, a = Apothem of the polygon
P = Perimeter of the polygon
Apothem of the regular pentagon given as 4.1 cm.
Side of the pentagon = 6 cm
Perimeter of the pentagon = 5(6)
= 30 cm
Substituting these values in the formula,
Area = [tex]\frac{1}{2}(4.1)(30)[/tex]
= 61.5 cm²
Therefore, area of the given regular pentagon is 61.5 cm².
You plan to conduct a survey to find what proportion of the workforce has two or more jobs. You decide on the 95% confidence level and a margin of error of 2%. A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.
How many in the workforce should be interviewed to meet your requirements? (Round up your answer to the next whole number.)
Answer:
865 in the workforce should be interviewed to meet your requirements
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.
This means that [tex]\pi = \frac{5}{50} = 0.1[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How many in the workforce should be interviewed to meet your requirements?
Margin of error of 2%, so n for which M = 0.02.
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.02 = 1.96\sqrt{\frac{0.1*0.9}{n}}[/tex]
[tex]0.02\sqrt{n} = 1.96\sqrt{0.1*0.9}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.1*0.9}}{0.02}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96\sqrt{0.1*0.9}}{0.02})^2[/tex]
[tex]n = 864.4[/tex]
Rounding up:
865 in the workforce should be interviewed to meet your requirements
Which expression gives the best estimate of 30 percent of 61?
The answers are below:
Hurry, please!
Answer:
it would be 1/4(60)
Step-by-step explanation:
30 percent of 61 is 18.3 and 1/4 of 60 is 15 which is closest to 18.3
An urn has 21 balls that are identical except that 8 are white, 7 are red, and 6 are blue. What is the probability that all are white if 3 are selected randomly without replacement?
Answer:
.0421
about 4.21%
Step-by-step explanation:
[tex]\frac{{8\choose3}}{{21\choose3}}=\frac{56}{1330}=.042105263[/tex]
The population of a bacteria colony is growing exponentially, doubling every 6 hours. If there are 150 bacteria currently present, how many (to the nearest ten bacteria) will be present in 10 hours
Answer:
If rounded to the nearest 10 bacteria, then it would be 500 bacteria.
Step-by-step explanation:
First multiply 150 by two in order to get 300, that leaves 4 hours to figure out. From there you can figure out the rest by seeing that 4 is 2/3 of 6. I converted it into the decimal number .66. Multiply 300 by .66 to get 198 and then add it to 300 to get 498. Then just round it up to the nearest 10 bacteria which leaves you with the final answer of 500 bacteria.
Graph the line that represents this equation:
y = -5.1 +2
Please help me out here.
Answer:
19.634954085
Step-by-step explanation:
Pipe Diameter = Height of the trench
Pipe Height = Width of the trench
V = Pi*r^2*L/ Pi*r^2*h
= 22/7 x (2.5/2)^2 x 4
= 19.634954085
I WILL GIVE BRAINLIEST FAST
TRUE OR FALSE?
The triangles shown below must be congruent
B is the answer.
The triangles doesnt creates a SSS,SAS,SAA, scenario.
This triangle isn't ASA because the triangles share the same side but it have different angles that include the side.
What is the slope of a line perpendicular to the line whose equation is 2x+4y=-642x+4y=−64. Fully simplify your answer.
9514 1404 393
Answer:
2
Step-by-step explanation:
Solving the given equation for y, you have ...
2x +4y = -64
4y = -2x -64
y = -1/2x -16
The coefficient of x is the slope of the given line: -1/2. The slope of the perpendicular line is the opposite reciprocal of this:
-1/(-1/2) = 2
The slope of the perpendicular line is 2.
.4.1 Here are the data from Exercise 2.3.10 on the num-ber of virus-resistant bacteria in each of 10 aliquots: 14 14 15 26 13 16 21 20 15 13 (a) Determine the median and the quartiles. (b) Determine the interquartile range. (c) How large would an observati
Answer:
(a)
[tex]Q_1 = 14[/tex]
[tex]Median = 15[/tex]
[tex]Q_3 = 20[/tex]
(b) [tex]IQR = 6[/tex]
Step-by-step explanation:
Given
[tex]14\ 14\ 15\ 26\ 13\ 16\ 21\ 20\ 15\ 13[/tex]
[tex]n = 10[/tex]
Solving (a): Median and the quartiles
Start by sorting the data
[tex]Sorted: 13\ 13\ 14\ 14\ 15\ 15\ 16\ 20\ 21\ 26[/tex]
The median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
[tex]Median = \frac{10 + 1}{2} = \frac{11}{2} = 5.5th[/tex]
This implies that the median is the average of the 5th and the 6th data;
So;
[tex]Median = \frac{15+15}{2} = \frac{30}{2} = 15[/tex]
Split the dataset into two halves to get the quartiles
[tex]Lower: 13\ 13\ 14\ 14\ 15\[/tex]
[tex]Upper: 15\ 16\ 20\ 21\ 26[/tex]
The quartiles are the middle items of each half.
So:
[tex]Lower: 13\ 13\ 14\ 14\ 15\[/tex]
[tex]Q_1 = 14[/tex] ---- 14 is the middle item
[tex]Upper: 15\ 16\ 20\ 21\ 26[/tex]
[tex]Q_3 = 20[/tex] ---- 20 is the middle item
Solving (b): The interquartile range (IQR)
This is calculated as:
[tex]IQR = Q_3 - Q_1[/tex]
[tex]IQR = 20 - 14[/tex]
[tex]IQR = 6[/tex]
Solving (c): Incomplete details
In your office desk drawer you have 10 different flavors of fruit leather. How many distinct flavor groupings can you make with your fruit leather stash?
A factory produces 80 % round and 20 % square buttons. Suppose that 10 % of theround buttons and 50 % of the square buttons are red. What is the probability that arandomly selected red button is square?
Answer:
5/9
Step-by-step explanation:
Let the total number of buttons is x.
Round buttons = 80% of x = 0.8xSquare buttons = 0.2xNumber of red buttons:
0.1*0.8x + 0.5*0.2x = 0.08x + 0.1x = 0.18xNumber of red square buttons is 0.1x
Required probability:
P = 0.1x/0.18x = 10/18 = 5/9Find the indicated side of the
right triangle.
45
у
9
45
х
x = [?]
Enter
Answer:
9
Step-by-step explanation:
it is estimated that 50% of emails are spam emails. Some software has been applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails and the probability for a flase positive is 5%. What is the probability that an email is detected as spam
Answer:
0.52 = 52% probability that an email is detected as spam.
Step-by-step explanation:
Probability that an email is detected as spam:
99% of 50%(are spam).
5% of 100 - 50 = 50%(false positives, that is, e-mails that are not spam but are detected as spams).
What is the probability that an email is detected as spam?
[tex]p = 0.99*0.5 + 0.05*0.5 = 0.52[/tex]
0.52 = 52% probability that an email is detected as spam.
Screenshot of the question
9514 1404 393
Answer:
x = 1, x = 7
Step-by-step explanation:
You can see from the graph that the x-intercepts of f(x) are ...
0 = f(-3)
0 = f(3)
To find the corresponding values of x for f(x-4), we can solve ...
0 = f(x -4)
x -4 = -3 ⇒ x = 1
x -4 = 3 ⇒ x = 7
The x-intercepts of the function after translation 4 units right are ...
x = 1, x = 7
__
Your sketch will be the same curve moved 4 units to the right. (Add 4 to every x-value shown.)
What is the area of triangle ABC? - OP 03 square units 0 7 square units o 11 square units 0 15 square units see pic
Answer:
7 sq unit
Step-by-step explanation:
Area of triagle ABC = Area of rectangle mnBp - Area of trangle AmC - Are of triangle CnB - Area of triangle ABp
Area of rectangle mnBp = 5x3 = 15 sq unit
Area of trangle AmC = 4x2 /2 = 4 sq unit
Are of triangle CnB = 5x1 /2 = 2.5 sq unit
Area of triangle ABp = 3x1 /2 = 1.5 sq unit
I believe you can work out thd answer from the above
Dada la función f(x)=1+6Sen(2x+π/3) . Halle: Período, amplitud y desfase (1.5 puntos) Dominio y rango de la función (1.5 puntos) Grafique la función trigonométrica (2 puntos)
Dada una ecuación de la forma
y = A sin(B(x + C)) + DTenemos que:
la amplitud es Ael periodo es 2π/Bel desfase es C (a la izquierda es positivo)el desplazamiento vertical es DSabemos que:
f(x)=1+6Sen(2x+π/3)
Y podemos reescribirla como:
f(x)=6Sen(2(x+π/6))+1
Siendo:
A = 6 → AmplitudT = 2π/B = 2π/2 = π → PeríodoC = π/6 → DesfaseEl dominio de un a función trigonométrica es todo el conjunto de los números reales (x ∈ R ).La imagen de una función trigonométrica de esta forma es:
y ∈ [-A+D,A+D]
y ∈ [-6+1, 6+1]
y ∈ [-5,7]
La gráfica se adjunta.
Answer pllllllleeeaaaaasssss
(3.1) … … …
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2x-y}{x-2y}[/tex]
Multiply the right side by x/x :
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2-\dfrac yx}{1-\dfrac{2y}x}[/tex]
Substitute y(x) = x v(x), so that dy/dx = x dv/dx + v :
[tex]x\dfrac{\mathrm dv}{\mathrm dx} + v = \dfrac{2-v}{1-2v}[/tex]
This DE is now separable. With some simplification, you get
[tex]x\dfrac{\mathrm dv}{\mathrm dx} = \dfrac{2-2v+2v^2}{1-2v}[/tex]
[tex]\dfrac{1-2v}{2-2v+2v^2}\,\mathrm dv = \dfrac{\mathrm dx}x[/tex]
Now you're ready to integrate both sides (on the left, the denominator makes for a smooth substitution), which gives
[tex]-\dfrac12\ln\left|2v^2-2v+2\right| = \ln|x| + C[/tex]
Solve for v, then for y (or leave the solution in implicit form):
[tex]\ln\left|2v^2-2v+2\right| = -2\ln|x| + C[/tex]
[tex]\ln(2) + \ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]\ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]v^2-v+1 = e^{\ln\left(1/x^2\right)+C}[/tex]
[tex]v^2-v+1 = \dfrac C{x^2}[/tex]
[tex]\boxed{\left(\dfrac yx\right)^2 - \dfrac yx+1 = \dfrac C{x^2}}[/tex]
(3.2) … … …
[tex]y' + \dfrac yx = \dfrac{y^{-3/4}}{x^4}[/tex]
It may help to recognize this as a Bernoulli equation. Multiply both sides by [tex]y^{\frac34}[/tex] :
[tex]y^{3/4}y' + \dfrac{y^{7/4}}x = \dfrac1{x^4}[/tex]
Substitute [tex]z(x)=y(x)^{\frac74}[/tex], so that [tex]z' = \frac74 y^{3/4}y'[/tex]. Then you get a linear equation in z, which I write here in standard form:
[tex]\dfrac47 z' + \dfrac zx = \dfrac1{x^4} \implies z' + \dfrac7{4x}z=\dfrac7{4x^4}[/tex]
Multiply both sides by an integrating factor, [tex]x^{\frac74}[/tex], which gives
[tex]x^{7/4}z'+\dfrac74 x^{3/4}z = \dfrac74 x^{-9/4}[/tex]
and lets us condense the left side into the derivative of a product,
[tex]\left(x^{7/4}z\right)' = \dfrac74 x^{-9/4}[/tex]
Integrate both sides:
[tex]x^{7/4}z=\dfrac74\left(-\dfrac45\right) x^{-5/4}+C[/tex]
[tex]z=-\dfrac75 x^{-3} + Cx^{-7/4}[/tex]
Solve in terms of y :
[tex]y^{4/7}=-\dfrac7{5x^3} + \dfrac C{x^{7/4}}[/tex]
[tex]\boxed{y=\left(\dfrac C{x^{7/4}} - \dfrac7{5x^3}\right)^{7/4}}[/tex]
(3.3) … … …
[tex](\cos(x) - 2xy)\,\mathrm dx + \left(e^y-x^2\right)\,\mathrm dy = 0[/tex]
This DE is exact, since
[tex]\dfrac{\partial(-2xy)}{\partial y} = -2x[/tex]
[tex]\dfrac{\partial\left(e^y-x^2\right)}{\partial x} = -2x[/tex]
are the same. Then the general solution is a function f(x, y) = C, such that
[tex]\dfrac{\partial f}{\partial x}=\cos(x)-2xy[/tex]
[tex]\dfrac{\partial f}{\partial y} = e^y-x^2[/tex]
Integrating both sides of the first equation with respect to x gives
[tex]f(x,y) = \sin(x) - x^2y + g(y)[/tex]
Differentiating this result with respect to y then gives
[tex]-x^2 + \dfrac{\mathrm dg}{\mathrm dy} = e^y - x^2[/tex]
[tex]\implies\dfrac{\mathrm dg}{\mathrm dy} = e^y \implies g(y) = e^y + C[/tex]
Then the general solution is
[tex]\sin(x) - x^2y + e^y = C[/tex]
Given that y (1) = 4, we find
[tex]C = \sin(1) - 4 + e^4[/tex]
so that the particular solution is
[tex]\boxed{\sin(x) - x^2y + e^y = \sin(1) - 4 + e^4}[/tex]
Work out the area of the shape,show working out
help me and I think I did the sides wrong
Find the values of x for which the denominator is equal to zero for y=x^2/x^2+1 .
Answer:
Step-by-step explanation:
I assume that you mean y = x²/(x²+1), not y = x²/x²+1.
x²+1 = 0
x² = -1
x = ±√(-1) = ±i
deleted: deleted by user
If P(E)=0.55, P(E or F)=0.65, and P(E and F)=0.20, find P(F).
P(F)=
(Simplify your answe
Answer:
.3
Step-by-step explanation:
let x= P(f)
.65= .55+x-.2
P(F)=.3
Use completing the square to solve x^2+6x=13
Answer:
x = -3 +/- square root(22)
Step-by-step explanation:
x = -b +/- square root(b^2 - 4ac) / 2a
ax^2 + bx + c = 0
these are both the quadratic formula but one is solved for the x and another for 0
a= 1
b= 6
c = -13
x= -6 +/- square root( 6^2 - 4(1)(13)) / 2(1)
x = -6 +/- sqrt( 36 + 52) / 2
x= -6 +/- sqrt (88) / 2
sqrt of 88 = 2 x sqrt (22)
divide 2 on each
x= -3 +/- sqrt (22)
Exponential and Alogarithmic Functions - Alegebra question
Answer:
Step-by-step explanation:
Find the area of the irregular figure. Round to the nearest hundredth.
Answer:
16 sq units
Step-by-step explanation:
Express each ratio as a fraction in its lowest terms.
18 hours to 2 days
Answer:
3/8.
Step-by-step explanation:
First convert days to hours:
2 days = 2 * 24 = 48 hours.
The greatest common factor of 18 and 48 = 6 so the required fraction is
18/48
= (18/6) / (48/6)
= 3/8.
The point-slope form of a line that has a slope of -2 and passes through point (5,-2) is shown below.
y+2=-2(x-5)
What is the equation in slope-intercept form?
O y=-2x+12
O y=-2x+8
O y=-22-7
O y=-2x-3
Savait
Answer:
y = -2x + 8Step-by-step explanation:
The equation in slope-intercept form: y = mx + b
y + 2 = -2(x - 5)
y + 2 = -2x + 10 {subtract 2 from both sides
y = -2x + 8
There are 1,200 people at the beach. If 88% of them went in the water, how many people DID NOT go in the water?
Answer:
144 people
Step-by-step explanation:
88% = 0.88
We multiply the total number with 0.88 to see how many people went in the water:
1200(0.88) = 1056
To find the number of those who did NOT go in the water, we subtract the product from the total number:
1200 - 1056 = 144
Answer:
144 people DID NOT go in the water
Step-by-step explanation:
We know that there at 1,200 ppl at the beach and 88% of them DID go into the water.
So the percent of people that DID NOT go into the water is 12%, because
100% - 88% = 12%
12% is the same as 0.12
Multiply 0.12 and 1,200 and you get: 144
Hope it helps (●'◡'●)