You measure how much each Berkeley instructor likes dogs on a 5-point Likert scale, and how much each instructor likes cats on a 5-point Likert scale. Which of the following operations is valid for this data? a. Compute the difference in sample averages. b. Compute the difference in sample medians. c. Compute the fraction of instructors who rate dogs higher than cats.
d. Perform a dependent t-test to assess whether instructors like dogs or cats more.

Answers

Answer 1

In this scenario, the valid operations for the given data are: . Compute the difference in sample averages, Compute the difference in sample medians, Compute the fraction of instructors who rate dogs higher than cats,  Perform a dependent t-test to assess whether instructors like dogs or cats more.

a. Compute the difference in sample averages: This operation is valid as it allows you to compare the average likings for dogs and cats among the instructors. By calculating the average ratings for dogs and cats separately and then finding the difference between them, you can assess the relative preference for dogs and cats among the instructors.

b. Compute the difference in sample medians: This operation is also valid as it provides an alternative measure of central tendency for the likings of dogs and cats. By calculating the median ratings for dogs and cats separately and finding the difference between them, you can evaluate the difference in the central likings for dogs and cats.

c. Compute the fraction of instructors who rate dogs higher than cats: This operation is valid as it allows you to determine the proportion of instructors who prefer dogs over cats. By comparing the individual ratings for dogs and cats and counting the fraction of instructors who rate dogs higher, you can assess the preference for dogs over cats.

d. Perform a dependent t-test to assess whether instructors like dogs or cats more: This operation is not valid with the given data. A dependent t-test is used when you have paired data or repeated measures on the same individuals. In this case, the Likert scale ratings for dogs and cats are independent measures, and therefore, a dependent t-test is not appropriate.

Learn more about data from

https://brainly.com/question/30308987

#SPJ11


Related Questions

sin (√xy) x-y (a) Find the domain of f(x, y) = = (b) Find the limit (2 marks) sin (√xy) lim (x,y) →(0,0) x-y or show that the limit does not exist. (3 marks) (c) Find the tangent plane to the graph of f(x, y) = xy + 2x + y at (0, 0, f(0, 0)). (2 marks) (d) Check the differentiability of f(x, y) = xy + 2x + y at (0,0). (3 marks) = x² + xy in (e) Find the tangent plane to the surface S defined by the equation z² + yz R³ at the point (1, 1, 1). (5 marks) (f) Find the maximum rate of change of f(x, y) = yexy at the point (0, 2) and the direction (a unit vector) in which it occurs. (5 marks)

Answers

The maximum rate of change of f(x, y) = yexy at the point (0, 2) is 1, and the direction in which it occurs is given by the unit vector of the gradient vector, which is (6/√37, 1/√37).

(a) The domain of f(x, y) = sin(√xy) is determined by the values of x and y for which the expression inside the sine function is defined. Since the square root of a non-negative number is always defined, the domain is all real numbers for x and y where xy ≥ 0.

(b) To find the limit lim(x,y)→(0,0) sin(√xy)/(x-y), we can approach the point (0,0) along different paths and check if the limit exists and is the same regardless of the path taken.

Approach 1: x = 0, y = 0

lim(x,y)→(0,0) sin(√xy)/(x-y) = sin(0)/(0-0) = 0/0, which is an indeterminate form.

Approach 2: y = x

lim(x,y)→(0,0) sin(√xy)/(x-y) = sin(√x²)/(x-x) = sin(|x|)/0, which is undefined.

Since the limit does not exist, we can conclude that lim(x,y)→(0,0) sin(√xy)/(x-y) does not exist.

(c) To find the tangent plane to the graph of f(x, y) = xy + 2x + y at (0, 0, f(0, 0)), we need to find the partial derivatives of f(x, y) with respect to x and y, evaluate them at (0, 0), and use those values in the equation of a plane.

Partial derivative with respect to x:

∂f/∂x = y + 2

Partial derivative with respect to y:

∂f/∂y = x + 1

Evaluating at (0, 0):

∂f/∂x = 0 + 2 = 2

∂f/∂y = 0 + 1 = 1

The equation of the tangent plane is given by:

z - f(0, 0) = (∂f/∂x)(x - 0) + (∂f/∂y)(y - 0)

z - 0 = 2x + y

Simplifying, the tangent plane is:

z = 2x + y

(d) To check the differentiability of f(x, y) = xy + 2x + y at (0, 0), we need to verify that the partial derivatives ∂f/∂x and ∂f/∂y exist and are continuous at (0, 0).

Partial derivative with respect to x:

∂f/∂x = y + 2

Partial derivative with respect to y:

∂f/∂y = x + 1

Both partial derivatives are continuous at (0, 0). Therefore, f(x, y) = xy + 2x + y is differentiable at (0, 0).

(e) To find the tangent plane to the surface S defined by the equation z² + yz = x² + xy² at the point (1, 1, 1), we need to find the partial derivatives of the equation with respect to x, y, and z, evaluate them at (1, 1, 1), and use those values in the equation of a plane.

Partial derivative with respect to x:

∂(z² + yz - x² - xy²)/∂x = -2x - y²

Partial derivative with respect to y:

∂(z² + yz - x² - xy²)/∂y = z - 2xy

Partial derivative with respect to z:

∂(z² + yz - x² - xy²)/∂z = 2z + y

Evaluating at (1, 1, 1):

∂(z² + yz - x² - xy²)/∂x = -2(1) - (1)² = -3

∂(z² + yz - x² - xy²)/∂y = (1) - 2(1)(1) = -1

∂(z² + yz - x² - xy²)/∂z = 2(1) + (1) = 3

The equation of the tangent plane is given by:

z - 1 = (-3)(x - 1) + (-1)(y - 1) + 3(z - 1)

z - 1 = -3x + 3 + -y + 1 + 3z - 3

-3x - y + 3z = -2

Simplifying, the tangent plane is:

3x + y - 3z = 2

(f) To find the maximum rate of change of f(x, y) = yexy at the point (0, 2) and the direction (a unit vector) in which it occurs, we need to find the gradient vector of f(x, y), evaluate it at (0, 2), and determine its magnitude.

Gradient vector of f(x, y):

∇f(x, y) = (∂f/∂x, ∂f/∂y)

= (yexy + y²exy, exy + 2xy)

Evaluating at (0, 2):

∇f(0, 2) = (2e⁰² + 2²e⁰², e⁰² + 2(0)(2))

= (2 + 4, 1)

= (6, 1)

The magnitude of the gradient vector ∇f(0, 2) is given by:

||∇f(0, 2)|| = √(6² + 1²)

= √37

The maximum rate of change occurs in the direction of the gradient vector divided by its magnitude:

Maximum rate of change = ||∇f(0, 2)||/||∇f(0, 2)||

= √37/(√37)

= 1

To learn more about equation visit;

https://brainly.com/question/10413253

#SPJ11

(1 point) Evaluate the triple integral \( \iiint_{E} x y d V \) where \( E \) is the solid tetrahedon with vertices \( (0,0,0),(4,0,0),(0,4,0),(0,0,6) \)

Answers

The solution to the integral is 170.6666667, which is equal to frac{11}{5}\cdot 4^{5}.

iiint_{E} x y d V\),

where \(E\) is the solid tetrahedron with vertices (0,0,0), (4,0,0), (0,4,0), (0,0,6).

The region in space is in the first octant and has a rectangular base in the xy-plane.

We shall express the integrand as the product of a function of x and a function of y and then integrate.

x varies from 0 to sqrt{6} / 3, the line connecting (0, 0, 0) and (0, 0, 6).

The plane that passes through the points (4, 0, 0), (0, 4, 0), and (0, 0, 0) is given by

x / 4 + y / 4 + z / 6 = 1, and so the planes that bound E are given by:

z = 6 - (3 / 2) x - (3 / 2) y & x = 4, quad y = 4 - x, quad z = 0

We first determine the bounds of integration. The planes that bound E are x=0, y=0, z=0, and x+2y+2z=6.

The region in space is in the first octant and has a rectangular base in the xy-plane.

The vertices of E are (0,0,0), (4,0,0), (0,4,0) and (0,0,6).

The volume of E is frac{1}{3} times the area of the rectangular base times the height of E.

The base has dimensions 4 by 4. The height of E is the distance between the plane x+2y+2z=6 and the xy-plane. This is equal to 3.

We shall express the integrand as the product of a function of x and a function of y and then integrate. The resulting integral is: int_{0}^{4}\int_{0}^{4-x}\int_{0}^{6-1.5x-1.5y}xydzdydx

Therefore, the solution to the integral is 170.6666667, which is equal to frac{11}{5}\cdot 4^{5}.

Learn more about solid tetrahedron visit:

brainly.com/question/30656583

#SPJ11

Month Actual
Jan 1023
Feb 1095
Mar 1008
Apr 1086
May 1081
Jun 1036
Jul 1058
Aug 1128
Sep 1113
Oct 1027
Nov 1021
Dec 1081
Using the Naiive Forecast, compute the following performance measures: (Remember use only April to December for these computations.)

The ME is . Format with two decimal places.

The MSE is . Format as a whole number

The MAD is . Format as a whole number

The MAPE is . Format as a percentage with two decimal places. If your calculator reads .110400 you would enter 11.04 and know that means 11.04%

The Tracking Signal is . Format with two decimal places.

Answers

To compute the performance measures using the Naive Forecast, we need to use the actual values from April to December.

ME (Mean Error) is the average of the forecast errors. To compute it, we subtract the actual values from the forecasts and take the average. In this case, since we are using the Naive Forecast, the forecast for each month is equal to the actual value of the previous month. Therefore, we have:

ME = (1086 - 1008) + (1081 - 1086) + (1036 - 1081) + (1058 - 1036) + (1128 - 1058) + (1113 - 1128) + (1027 - 1113) + (1021 - 1027) + (1081 - 1021) = -29

The MSE (Mean Squared Error) is the average of the squared forecast errors. To compute it, we square each forecast error, sum them up, and then divide by the number of observations. In this case, we have:

MSE = [(1086 - 1008)^2 + (1081 - 1086)^2 + (1036 - 1081)^2 + (1058 - 1036)^2 + (1128 - 1058)^2 + (1113 - 1128)^2 + (1027 - 1113)^2 + (1021 - 1027)^2 + (1081 - 1021)^2] / 9 = 2218

MAD (Mean Absolute Deviation) is the average of the absolute forecast errors. To compute it, we take the absolute value of each forecast error, sum them up, and then divide by the number of observations. In this case, we have:

MAD = (|1086 - 1008| + |1081 - 1086| + |1036 - 1081| + |1058 - 1036| + |1128 - 1058| + |1113 - 1128| + |1027 - 1113| + |1021 - 1027| + |1081 - 1021|) / 9 = 33

MAPE (Mean Absolute Percentage Error) is the average of the absolute forecast errors as a percentage of the actual values. To compute it, we divide each absolute forecast error by the actual value, sum them up, and then divide by the number of observations. In this case, we have:

MAPE = (|1086 - 1008| / 1008 + |1081 - 1086| / 1086 + |1036 - 1081| / 1081 + |1058 - 1036| / 1036 + |1128 - 1058| / 1058 + |1113 - 1128| / 1128 + |1027 - 1113| / 1113 + |1021 - 1027| / 1027 + |1081 - 1021| / 1021) / 9 * 100 = 2.99%

The Tracking Signal is the ratio of the cumulative forecast errors to the MAD. To compute it, we sum up the forecast errors and divide by the MAD. In this case, we have:

Tracking Signal = (-29) / 33 = -0.88

Learn more about mean error here:

brainly.com/question/33145025

#SPJ11

Describe the sampling distribution of Assumo the size of the population is 30,000 n=1300, p=0.346 Describe the shape of the sampling distribution of Choose the correct answer below A. The shape of the sampling distribution of p is not normal because ns005N and op(1-0) 10 B The shape of the sampling distribution of p is not normal because n 0.05N and no(1-0) 10 C. The shape of the sampling distribution of p is approximately normal because n005N and rp(1-p) > 10. D The shape of the sampling distribution of p is approximately normal because n005N and np(1-p) 10

Answers

The correct answer is D. The shape of the sampling distribution of p is approximately normal because n > 0.05N and np(1-p) > 10.In statistics,  sampling distribution refers to the distribution of a sample statistic.

   

In statistics, the sampling distribution refers to the distribution of a sample statistic, such as the proportion (p) in this case, obtained from repeated random samples of the same size from a population. The shape of the sampling distribution is important because it affects the accuracy of statistical inferences.

For the sampling distribution of p to be approximately normal, two conditions must be met: the sample size (n) should be large relative to the population size (N), and the product of the sample size and the probability of success (np) and the probability of failure (n(1-p)) should both be greater than 10.

In the given scenario, n = 1300, and assuming the population size is 30,000, we have n > 0.05N, satisfying the first condition. Additionally, since np(1-p) = 1300 * 0.346 * (1-0.346) is greater than 10, it satisfies the second condition as well. Therefore, the shape of the sampling distribution of p is approximately normal.

To learn more about statistic click here : brainly.com/question/32237714

#SPJ11

Assume that a sample is used to estimate a population mean μμ. Find the margin of error M.E. that corresponds to a sample of size 20 with a mean of 48.5 and a standard deviation of 5.8 at a confidence level of 90%.
Report ME accurate to one decimal place because the sample statistics are presented with this accuracy.
M.E. =
Answer should be obtained without any preliminary rounding. However, the critical value may be rounded to 3 decimal places.
Please show work I am trying to understand.

Answers

The margin of error (M.E.) corresponding to a sample size of 20, a mean of 48.5, and a standard deviation of 5.8 at a 90% confidence level is approximately 2.2 (rounded to 1 decimal place).

To find the margin of error (M.E.), we need to calculate the critical value corresponding to a confidence level of 90% and multiply it by the standard error of the sample mean. The critical value can be obtained from the standard normal distribution (Z-distribution) or the t-distribution, depending on the sample size. Since the sample size is 20, which is relatively small, we will use the t-distribution. First, we need to find the critical t-value for a confidence level of 90% with a sample size of 20.

Looking up the value in the t-distribution table or using a calculator, we find that the critical t-value is approximately 1.725 (rounded to 3 decimal places). Next, we calculate the standard error (SE) of the sample mean using the formula: SE = (standard deviation) / sqrt(sample size). SE = 5.8 / sqrt(20) ≈ 1.297 (rounded to 3 decimal places). Finally, we calculate the margin of error (M.E.) by multiplying the critical t-value by the standard error: M.E. = (critical t-value) * SE; M.E. = 1.725 * 1.297 ≈ 2.235 (rounded to 1 decimal place). Therefore, the margin of error (M.E.) corresponding to a sample size of 20, a mean of 48.5, and a standard deviation of 5.8 at a 90% confidence level is approximately 2.2 (rounded to 1 decimal place).

To learn more about confidence level click here: brainly.com/question/22851322

#SPJ11

A large company offers free grapefruit juice to their employees each morning. Roughly half of the employees drink the grapefruit juice each day at work, whereas the rest of the employees do not. A year after the free grapefruit juice program was started, a health survey was conducted. The employees who drink the juice reported feeling more energetic on average than the employees who drink no juice. The company concluded that drinking grapefruit juice improves productivity. a) Was this study a randomized comparative experiment? O Yes O No b) What was the treatment? O The placebo. O The grapefruit juice. O There was no treatment because the study was not a randomized comparative experiment.

Answers

No, this study was not a randomized comparative experiment.

a) The study was not a randomized comparative experiment because there was no random assignment of employees into groups. In a randomized comparative experiment, participants are randomly assigned to different treatment groups to ensure unbiased results. However, in this case, employees were not randomly assigned to drink or not drink grapefruit juice; they made the decision themselves. Therefore, there may be confounding factors or self-selection bias that could influence the reported results.

b) The treatment in this scenario was the grapefruit juice. However, it is important to note that the study did not meet the criteria for a controlled experiment, as there was no randomization. The company simply offered free grapefruit juice to their employees, and it was up to the individuals to decide whether or not to drink it. Consequently, the observed differences in reported energy levels between juice drinkers and non-drinkers cannot be solely attributed to the grapefruit juice itself, as there may be other factors at play. Therefore, while the employees who drank grapefruit juice reported feeling more energetic on average, the company's conclusion that drinking grapefruit juice improves productivity is not supported by this study alone.

Learn more about productivity  : brainly.com/question/30333196

#SPJ11

A catering company is planning to open a new outlet at a developing industrial area in the centre of city. After conducting extensive market surveys, the research department provides the following estimates: a weekly demand of 80 packages at a price of RM350 per package and a weekly demand of 120 packages at a price of RM300 per package. assuming the relationship between the price (p) and the demand (x) is linear, derive the price-demand function, p=a+bx. Select one: a. p=400+2.25x b. p=450−1.25x C. p=450+1.25x d. p=400−1.25x

Answers

A catering company plans to open a new outlet in an industrial area. Market surveys indicate a weekly demand of 80 packages at RM350 per package and 120 packages at RM300 per package. The company needs to create a linear price-demand function. The correct answer is d. p=400−1.25x.

To derive the price-demand function, we need to find the values of 'a' and 'b' in the equation p=a+bx, where 'p' represents the price and 'x' represents the demand.

We are given two sets of data points: (80, RM350) and (120, RM300). We can use these data points to form two equations and solve them simultaneously to find 'a' and 'b'.

Using the first data point (80, RM350):

350 = a + b * 80   --(1)

Using the second data point (120, RM300):

300 = a + b * 120   --(2)

We can solve these equations to find the values of 'a' and 'b'. Subtracting equation (2) from equation (1), we get:

(350 - 300) = (a + b * 80) - (a + b * 120)

50 = -40b

Dividing both sides by -40, we get:

b = -50/40

b = -1.25

Substituting the value of 'b' (-1.25) into equation (1), we can solve for 'a':

350 = a + (-1.25) * 80

350 = a - 100

a = 350 + 100

a = 450

Therefore, the price-demand function is p = 450 - 1.25x, which corresponds to option d.

To know more about demand function refer here:

https://brainly.com/question/32962084#

#SPJ11

please answer #2
2. Find (a) \( x^{*} \) and (b) \( f\left(x^{*}\right) \) described in the "Mean Value Theorem for integrals" for the following function over the indicated interval. \[ f(x)=\frac{1}{x^{2}} ;[1,3] \te

Answers

The value of x* is the same as the value of c, i.e., x* = c and the value of f(x*) described in the Mean Value Theorem for integrals is f(c) = 1/c2 = 4/9. Therefore, (a) x* = c, and (b) f(x*) = 4/9.

The Mean Value Theorem is defined as the average of the y-values between the end points of an interval and is equal to the value of the derivative at some point within the interval.

Given the function, f(x) = 1/x2; [1, 3]

Let us find the definite integral of the function, f(x) from a to b, where a = 1 and b = 3.

∫f(x) dx = ∫1/x2 dx= (-1/x) [1, 3] = (-1/3) - (-1/1) = 2/3

f(x) is continuous on [1, 3] and differentiable on (1, 3)

Therefore, there is a point c in (1, 3) such that Mean value = f’(c) = (f(3) – f(1))/(3 – 1)= (1/9 – 1)/(2)= -4/9

Mean value = f’(c) = -4/9.

The value of x* in (1, 3) is the same as the value of c, i.e., x* = c.

The function f(x) is decreasing in the interval [1, 3].

Therefore, f(1) > f(c) > f(3)f(1) = 1/1² = 1f(3) = 1/3² = 1/9

Hence, the value of f(x*) described in the Mean Value Theorem for integrals is f(c) = 1/c2 = 4/9. Therefore, (a) x* = c, and (b) f(x*) = 4/9.

Thus, we can say that the value of x* is the same as the value of c, i.e., x* = c and the value of f(x*) described in the Mean Value Theorem for integrals is f(c) = 1/c2 = 4/9.

Therefore, (a) x* = c, and (b) f(x*) = 4/9.

Learn more about Mean Value Theorem visit:
brainly.com/question/30403137

#SPJ11

Determine the critical value of χ^2 with 1 degree of freedom for α=0.025. Click the icon to view a table of critical values of χ^2 . The critical value of χ^2 is ___. (Round to three decimal places as needed.)

Answers

The critical value of χ² with 1 degree of freedom for α = 0.025 is given by χ² = 3.841.The critical value of χ² with 1 degree of freedom for α = 0.025 is 3.841.What is the chi-square distribution? The chi-square distribution, often known as a chi-squared distribution, is a continuous probability distribution that is often used in statistics.

A chi-squared distribution is the sum of the squares of independent standard normal random variables that have been standardized. In statistics, the chi-square distribution is frequently used to determine if a sample's variance is equal to the population's variance. This is often accomplished by determining the difference between the observed data and the theoretical data expected, and then squaring that value. That value is then divided by the expected value to obtain the chi-square value.

To know more about standardized visit:

https://brainly.com/question/31979065

#SPJ11

19. [3/5 Points] DETAILS PREVIOUS ANSWERS DEVORESTAT9 7.3.035. (b) Predict the strain for a single adult in a way that conveys information about precision and reliability. (Use a 95% prediction interval. Round your answers to two decimal places.) %, % Silicone implant augmentation rhinoplasty is used to correct congenital nose deformities. The success of the procedure depends on various biomechanical properties of the human nasal periosteum and fascia. An article reported that for a sample of 17 (newly deceased) adults, the mean failure strain (%) was 26.0, and the standard deviation was 3.3. (a) Assuming a normal distribution for failure strain, estimate true average strain in a way that conveys information about precision and reliability. (Use a 95% confidence interval. Round your answers to two decimal places.) 24.3 %, 27.7 %

Answers

To predict the strain for a single adult in a way that conveys information about precision and reliability with the use of a 95% prediction interval, follow the steps below:The formula for a prediction interval (PI) is:PI = X ± t(α/2, n-1) * s√1+1/n

Where,X is the sample mean,t is the t-distribution value for the given level of confidence and degrees of freedom,s is the sample standard deviation,n is the sample size.The given mean is 26.0, the sample size is 17, and the standard deviation is 3.3.The value of t for a 95% prediction interval at 16 degrees of freedom (n-1) is 2.131.With the use of the given values, substitute in the formula as follows:

PI = 26 ± 2.131 * 3.3√1+1/17= 17.97 to 34.03

The predicted strain for a single adult with a 95% prediction interval of 17.97% to 34.03%. Silicone implant augmentation rhinoplasty is a surgical method that corrects congenital nose deformities. It has a high success rate, but it depends on various biomechanical properties of the human nasal periosteum and fascia. It is essential to predict the strain for a single adult that conveys the information on precision and reliability. For predicting strain in a single adult, the 95% prediction interval method is used. A prediction interval (PI) is a statistical method that predicts a range of values in which the true population parameter will fall. The formula for PI is: X ± t(α/2, n-1) * s√1+1/n. In this case, the given mean is 26.0, the sample size is 17, and the standard deviation is 3.3. The value of t for a 95% prediction interval at 16 degrees of freedom (n-1) is 2.131. By substituting the values in the formula, the predicted strain for a single adult with a 95% prediction interval of 17.97% to 34.03%. The 95% prediction interval conveys information on the precision and reliability of the strain prediction.

Predicting strain for a single adult in a way that conveys information on precision and reliability is essential. The 95% prediction interval is a statistical method that predicts a range of values in which the true population parameter will fall. The formula for a prediction interval is X ± t(α/2, n-1) * s√1+1/n. By substituting the given values in the formula, the predicted strain for a single adult is 17.97% to 34.03% with a 95% prediction interval. This method of predicting strain is precise and reliable.

To learn more about prediction interval visit:

brainly.com/question/32668867

#SPJ11

For a 4-units class like Statistics, students should spend average of 12 hours per week studying for the class. A survey was done on students, and the distribution of total study hours per week is bell-shaped with a mean of 15 hours and a standard deviation of 2 hours.
Use the Empirical Rule to answer the following questions.
a) 99.7% of the students spend between and hours on this class.
b) What percentage of the students between 13 and 21 hours on this class? %
c) What percentage of the students below 19 hours? %

Answers

We used the empirical rule to find the percentage of students who spend a certain amount of time studying for a Statistics class. We found that approximately 68% of the students spend between 13 and 21 hours on the class, and 97.72% spend below 19 hours.

According to the empirical rule, for a normal distribution of a data set, approximately 68% of the values fall within one standard deviation of the mean, 95% fall within two standard deviations, and 99.7% fall within three standard deviations.Here, the mean of the distribution of total study hours is 15 hours and the standard deviation is 2 hours. Therefore, the answers to the given questions are:a) 99.7% of the students spend between 9 and 21 hours on this class.

This is because, within three standard deviations of the mean (15 - 3(2) = 9 and 15 + 3(2) = 21), approximately 99.7% of the values lie.

b) To find the percentage of students that spend between 13 and 21 hours, we need to calculate the z-scores for the two values. The z-score for 13 is (13-15)/2 = -1 and the z-score for 21 is (21-15)/2 = 3. Therefore, we need to find the area under the normal curve between z = -1 and z = 3.

Using the standard normal distribution table, we find that the area between z = -1 and z = 3 is 0.9987. Thus, the percentage of students who spend between 13 and 21 hours on this class is 99.87%.c) To find the percentage of students who spend below 19 hours, we need to find the area under the normal curve to the left of 19. To do this, we first need to calculate the z-score for 19.

The z-score is (19-15)/2 = 2. We can then use the standard normal distribution table to find the area to the left of z = 2, which is 0.9772.

Therefore, the percentage of students who spend below 19 hours on this class is 97.72%.Answer: a) 99.7% of the students spend between 9 and 21 hours on this class.b) 99.87% of the students spend between 13 and 21 hours on this class.c) 97.72% of the students spend below 19 hours.

: In this question, we used the empirical rule to find the percentage of students who spend a certain amount of time studying for a Statistics class. We found that approximately 68% of the students spend between 13 and 21 hours on the class, and 97.72% spend below 19 hours.

To know more about empirical rule visit:

brainly.com/question/30573266

#SPJ11

Use Frobenius' Method to solve the following differential equations. a. 2xy" + 5y + xy = 0 b. xy" (x + 2)y' + 2y = 0

Answers

Equate the coefficient of each power of x to zero and solving the resulting recurrence relation which= (n+r)(n+r-1)cₙ + 5cₙ + rcₙ = 0

Frobenius' method is a technique used to solve second-order linear differential equations with a regular singular point. The method involves assuming a power series solution and determining the recurrence relation for the coefficients. Let's apply Frobenius' method to the given differential equations:

a) 2xy" + 5y + xy = 0:

Step 1: Assume a power series solution of the form y(x) = ∑(n=0)^(∞) cₙx^(n+r), where cₙ are the coefficients and r is the singularity.

Step 2: Differentiate y(x) twice to find y' and y":

y' = ∑(n=0)^(∞) (n+r)cₙx^(n+r-1)

y" = ∑(n=0)^(∞) (n+r)(n+r-1)cₙx^(n+r-2)

Step 3: Substitute the power series solution and its derivatives into the differential equation.

2x∑(n=0)^(∞) (n+r)(n+r-1)cₙx^(n+r-2) + 5∑(n=0)^(∞) cₙx^(n+r) + x∑(n=0)^(∞) cₙx^(n+r) = 0

Step 4: Simplify the equation and collect terms with the same power of x.

∑(n=0)^(∞) [(n+r)(n+r-1)cₙ + 5cₙ + rcₙ]x^(n+r) = 0

Step 5: Equate the coefficient of each power of x to zero and solve the resulting recurrence relation.

(n+r)(n+r-1)cₙ + 5cₙ + rcₙ = 0

b) xy" (x + 2)y' + 2y = 0:

Follow the same steps as in part a, assuming a power series solution and finding the recurrence relation.

Please note that solving the recurrence relation requires further calculations and analysis, which can be quite involved and require several steps. It would be more appropriate to present the detailed solution with the coefficients and recurrence relation for a specific case or order of the power series.

To learn more about Frobenius' method click here:

brainly.com/question/31236446

#SPJ11

please answer now, needed urgently
SECTION A-STATISTICS
Al. Total cycle times of heavy machinery to transport material on a site were observed and found to be (in minutes):
31 18 17 24 20
19 16 24 25 19 24 26 31 28
17 18 11 18
Find the sample mean, standard deviation, skewness coefficient, and coefficient of kurtosis of this set of data. Plot its histogram.
A2. The following measurements represent the weights of 35 identical spare parts for an engine.
Weight in kg
6.716.766.726.70 6.786.70662
6766.676.666.626.766.73685
6.726.766.766.626.62
6.766.706.756
6.746,816.796.78
Obtain a frequency table.
a) Draw a histogram and a frequency polygon. b) Draw a cumulative frequency diagram.
e) Estimate the fraction of these parts that will have a weight less than 6.71 kg. d) Estimate the weight which is not exceeded by 80 percent of these parts.
A3. Three hundred and three tensile pieces of a certain new brittle prime coat material used for experimental stress analysis gave the tensile strengths in the table below at the age of 7 days.
Strength (AN)
interval
Number of tex
pieces
200 210
230 260
32
260 290
290 20
320 50
350 180
380 410
416 400
443 470
3
470- 500
a) Draw the histogram and frequency polygon.
by Draw the cumulative frequency diagram. e) Calculate the mean tensile strength and indicate this
on the histogram.
d) Calculate the range and standard deviation.
e) If the permissible tensile strength allowed in design is equal to the mean less 2.33 times the standard deviation, calculate this allowable strength and indicate whether any of the 303 brittle prime coat test pieces fell below this strength

Answers

(A1)Kurtosis ≈ (-0.79) (rounded to two decimal places). (A2) Weight = 6.76 kg. (A3) Since the permissible strength is negative (-59.78 kg), none of the 303 brittle prime coat test pieces fell below this strength.

A1. To find the sample mean, standard deviation, skewness coefficient, and coefficient of kurtosis of the given data set, we can perform the following calculations:

Data set: 31 18 17 24 20 19 16 24 25 19 24 26 31 28 17 18 11 18

Sample Mean (X):

X = (31 + 18 + 17 + 24 + 20 + 19 + 16 + 24 + 25 + 19 + 24 + 26 + 31 + 28 + 17 + 18 + 11 + 18) / 18

X = 392 / 18

X ≈ 21.78 (rounded to two decimal places)

Standard Deviation (s):

Variance (s²) = Σ((x - X)²) / (n - 1)

s² = ((31 - 21.78)² + (18 - 21.78)² + ... + (18 - 21.78)²) / (18 - 1)

s² = (196.27 + 12.57 + ... + 2.34) / 17

s² ≈ 24.32 (rounded to two decimal places)

s = √s²

s ≈ 4.93 (rounded to two decimal places)

Skewness Coefficient:

Skewness = (Σ((x - X)³) / (n ×s³))

Skewness = ((31 - 21.78)³ + (18 - 21.78)³ + ... + (18 - 21.78)³) / (18 × 4.93³)

Skewness ≈ (-0.11) (rounded to two decimal places)

Coefficient of Kurtosis:

The coefficient of kurtosis measures the shape of the data distribution.

Kurtosis = (Σ((x - X)⁴) / (n × s⁴))

Kurtosis = ((31 - 21.78)⁴ + (18 - 21.78)⁴ + ... + (18 - 21.78)⁴) / (18 × 4.93⁴)

Kurtosis ≈ (-0.79) (rounded to two decimal places)

Histogram:

Below is a representation of the histogram for the given data set in figure image:

A2. To create a frequency table and perform other calculations, let's organize the given data:

Data set: 6.71 6.76 6.72 6.70 6.78 6.70 6.66 6.62 6.76 6.70 6.66

6.73 6.66 6.76 6.68 6.85 6.72 6.76 6.72 6.62 6.76 6.76 6.66

6.62 6.76 6.70 6.75 6.71 6.74 6.81 6.79 6.78 6.74 6.73 6.71

6.82 6.81 6.76 6.78

Frequency Table:

Weight (kg) Frequency

6.62          2

6.66          5

6.68          1

6.70          6

6.71            2

6.72            4

6.73             2

6.74             3

6.75             1

6.76             8

6.78            4

6.79             1

6.81              2

6.82             1

6.85              1

Estimated Fraction:

Cumulative Frequency for 6.71 kg: 12

Fraction = 12 / 35 ≈ 0.343 (rounded to three decimal places)

Estimated Weight:

Cumulative Frequency for 80%: 28

Weight = 6.76 kg

A3.

Strength (AN) Interval Number of Pieces

 200 - 210       |       32

 210 - 230             260

 230 - 260             290

 260 - 290              20

 290 - 320              50

 320 - 350             180

 350 - 380             410

 380 - 410             416

 410 - 443             470

 443 - 470              3

 470 - 500             -

Mean Tensile Strength:

Mean = (205 × 32 + 220 × 260 + 245 × 290 + 275 × 20 + 305 × 50 + 335 × 180 + 365 × 410 + 395 × 416 + 426.5× 470 + 456.5 × 3) / 303

Mean ≈ 373.13 (rounded to two decimal places)

Range and Standard Deviation:

Range = 500 - 200 = 300

Variance = [(205 - 373.13)² × 32 + (220 - 373.13)² × 260 + ... + (456.5 - 373.13)² × 3] / (303 - 1)

Variance ≈ 34518.78 (rounded to two decimal places)

Standard Deviation = √Variance

Standard Deviation ≈ 185.74 (rounded to two decimal places)

Permissible Tensile Strength:

Permissible Strength ≈ 373.13 - (2.33 × 185.74)

Permissible Strength ≈ 373.13 - 432.91

Permissible Strength ≈ -59.78

Conclusion:

Since the permissible strength is negative (-59.78 kg), none of the 303 brittle prime coat test pieces fell below this strength.

To know more about Histogram:

https://brainly.com/question/31356069

#SPJ4

An industrial company claims that the mean pH level of the water in a nearby river is 6.8. You randomly select 19 water samples and measure the pH of water. The sample mean and standard deviation are 6.7 and 0.24 respectively. Is there enough evidence to reject the company's claim at (alpha= 0.05). Assume normal distribution.

Answers

An industrial company claims that the mean pH level of the water in a nearby river is 6.8. A random sample of 19 water samples is selected, and the pH of water is measured.

The sample mean and standard deviation are 6.7 and 0.24, respectively. We need to check whether there is enough evidence to reject the company's claim at (alpha=0.05). Let μ be the true mean pH level of water in the river. Standard deviation: The test statistic to test the null hypothesis is given as: Substituting the given values of the sample mean, standard deviation, and sample size, we get

z = (6.7 - 6.8) / (0.24 / √19)

= -1.32 Critical values of z for

As the calculated value of the test statistic z lies outside the acceptance region, i.e.,-1.32 < ±1.96Therefore, we reject the null hypothesis. There is enough evidence to reject the company's claim at (alpha=0.05).Thus, we can conclude that the mean pH level of water in the river is not 6.8.

To know more about industrial visit :

https://brainly.com/question/32562440

#SPJ11

Give brief discussion of the multiple linear regression model. Write down the definition of this model with all assumptions, illustrate possible applications in practice, specify a R function for fitting this model.

Answers

Multiple linear regression model is a statistical technique used to establish the linear relationship between a dependent variable and two or more independent variables. The model is a linear combination of independent variables and a constant term. It assumes that the residuals are normally distributed with constant variance.

The assumptions of multiple linear regression are:1. Linearity: There is a linear relationship between the dependent variable and the independent variables.

2. Independence: The observations are independent of each other.

3. Homoscedasticity: The variance of the residuals is constant across all levels of the independent variables.

Applications of multiple linear regression model are:1. Sales forecasting: It can be used to predict sales of a product based on factors such as price, advertising, and competitor's prices.

2. Credit scoring: It can be used to predict the probability of default for a borrower based on factors such as income, debt-to-income ratio, and credit history.

R function for fitting multiple linear regression model is lm() in R programming language.

The syntax for the lm() function is:lm(formula, data, subset, weights, na.action, method = "qr",model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, ...)where

x: A logical value indicating whether the model matrix should be returnedy: A logical value indicating whether the response variableshould be returned

qr: A logical value indicating whether the QR decomposition of the model matrix should be returnedsingular.

ok: A logical value indicating whether singular modelsare acceptable

contrasts: An optional list of contrasts to be used in the fitting process

offset: An optional offset vector.

To know more about linear regression visit:

https://brainly.com/question/32505018

#SPJ11

A study involving stress is conducted among the independent students on a college campus. The stress scores follow a uniform distribution (continuous) with the lowest stress score equal to one and the highest equal to five. Using a random sample of 75 students, find: a. The second decile for the mean stress score of the 75 students b. The probability that out of the 75 students at least 30 students have a score less than or equal to 4. a. first decile =2.89;p= close to 1 b. first decile =2.59;p= close to 0 c. first decile =2.89;p= close to 0 d. first decile =2.59;p= close to 1

Answers

Uniform distribution:The distribution which is defined by two parameters, a minimum value and a maximum value is known as the Uniform distribution.The distribution is continuous and has a constant probability density function, denoted by[tex]f (x) = 1/(b-a) for a ≤ x ≤ b.[/tex]

The second decile for the mean stress score of the 75 students is given by, [tex]D2 = a + (2/10)(b - a)[/tex]Where a = 1 (minimum stress score) and b = 5 (maximum stress score)[tex]D2 = 1 + (2/10)(5 - 1) = 1 + 0.8 = 1.8[/tex]Hence, the second decile for the mean stress score of the 75 students is 1.8.The probability that out of the 75 students at least 30 students have a score less than or equal to 4:Since the probability of a stress score less than or equal to 4 is 4/5, the probability of a stress score greater than 4 is 1/5.

[tex]P(X ≥ 30) = 1 - 0.00003 ≈ 1[/tex] Hence, the probability that out of the 75 students at least 30 students have a score less than or equal to 4 is approximately equal to 1. Therefore, the correct option is:First decile[tex]=2.89;p= close to 1[/tex]

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

The following data are a realization of an i.i.d. sequence with the common mean value μ
9, 5, 5, 3, 6, 7, 5, 8, 5, 5, 2, 8, 5, 6, 4, 5, 4, 5, 5, 3, 4, 7, 5, 4, 1, 2, 6, 7, 8, 8, 2, 2, 3, 2, 8, 10, 3, 4, 5, 2, 4, 5, 5, 3, 4, 6, 6, 6, 3, 4
(i) Calculate the table of relative frequencies and draw a graph of relative frequencies.
(ii) What is the meaning of a 90% confidence interval for the mean value μ? Find three different approximate 90% confidence intervals for the mean value μ. Which one has the smallest width?

Answers

(i) The table of relative frequencies and the graph show the distribution of the given data.

(ii) A 90% confidence interval for the mean value μ represents a range of values within which we can be 90% confident that the true population mean falls, and three different approximate 90% confidence intervals are provided, with the third one having the smallest width.

We have,

(i)

To calculate the table of relative frequencies, we count the occurrences of each value in the given data and divide it by the total number of observations.

Data: 9, 5, 5, 3, 6, 7, 5, 8, 5, 5, 2, 8, 5, 6, 4, 5, 4, 5, 5, 3, 4, 7, 5, 4, 1, 2, 6, 7, 8, 8, 2, 2, 3, 2, 8, 10, 3, 4, 5, 2, 4, 5, 5, 3, 4, 6, 6, 6, 3, 4

Value | Frequency | Relative Frequency

1 | 1 | 0.02

2 | 6 | 0.12

3 | 7 | 0.14

4 | 9 | 0.18

5 | 14 | 0.28

6 | 7 | 0.14

7 | 3 | 0.06

8 | 5 | 0.10

9 | 1 | 0.02

10 | 1 | 0.02

(ii)

The 90% confidence interval for the mean value μ represents a range of values within which we can be 90% confident that the true population mean falls.

To calculate the confidence interval, we can use the formula:

Confidence interval = (sample mean) ± (critical value * standard error)

To find the critical value, we need to determine the appropriate value from the t-distribution table or use statistical software.

For a 90% confidence level with a large sample size (which is often assumed for the central limit theorem to hold), we can approximate the critical value to 1.645.

1st Confidence Interval:

Sample mean = 5.04 (calculated from the given data)

Standard deviation = 2.21 (calculated from the given data)

Standard error = standard deviation / sqrt(sample size)

Sample size = 50 (total number of observations)

Confidence interval = 5.04 ± (1.645 * (2.21 / √(50)))

Confidence interval ≈ 5.04 ± 0.635

Confidence interval ≈ (4.405, 5.675)

2nd Confidence Interval:

Using the same calculations as above, we can find another confidence interval:

Confidence interval ≈ (4.339, 5.741)

3rd Confidence Interval:

Confidence interval ≈ (4.372, 5.708)

Out of the three confidence intervals, the third one (4.372, 5.708) has the smallest width, which indicates a narrower range of values and provides a more precise estimate for the true population mean.

Thus,

(i) The table of relative frequencies and the graph show the distribution of the given data.

(ii) A 90% confidence interval for the mean value μ represents a range of values within which we can be 90% confident that the true population mean falls, and three different approximate 90% confidence intervals are provided, with the third one having the smallest width.

Learn more about confidence intervals here:

https://brainly.com/question/32546207

#SPJ4

Ninety-two pairs of data yielded a correlation coefficient of r=0.295.
a) find the critical value in table 1 (critical values for the ppmc) using x=0.05.
b) complete the following statement with the phrase IS or IS NOT. Based on the critical value in part (a), there ___ a significant correlation between the data pairs.

Answers

Based on the correlation coefficient of r=0.295 and a significance level of 0.05, the critical value obtained from Table 1 is not provided. Consequently, it is not possible to determine if there is a significant correlation between the data pairs.

a) To find the critical value in Table 1 (critical values for the Pearson product-moment correlation coefficient), we look for the column corresponding to α = 0.05 and the row that corresponds to the degrees of freedom (df) for the data. Since we have 92 pairs of data, the degrees of freedom can be calculated as df = n - 2 = 92 - 2 = 90. Intersecting the α = 0.05 column with the row for df = 90, we find the critical value to be approximately 0.195.

b) Based on the critical value obtained in part (a), we can determine whether the correlation between the data pairs is significant. Comparing the correlation coefficient (r = 0.295) to the critical value (0.195), we observe that the correlation coefficient is larger in magnitude than the critical value. In hypothesis testing, if the absolute value of the correlation coefficient is greater than the critical value, it suggests that the correlation is statistically significant. Therefore, we can conclude that there IS a significant correlation between the data pairs.

To learn more about correlation refer:

https://brainly.com/question/29153310

#SPJ11

What data display is most appropriate for each situation?

Answers

Line graph - Decrease in attendance

Bar graph - Students in sports

Stem and Leaf plot - Heights of 80 adults

Number of dogs - Line plot

Select the basic integration formula you can use to find the indefinite integral. ∫(12cos(5x))e sin(5x)
dx
∫u n
du
∫e u
du
∫sin(u)du
∫cos(u)du

Identify u. u

Answers

The given integral is ∫12cos(5x)e sin(5x)dx.The basic integration formula we can use to find the indefinite integral of the above expression is ∫u dv = uv − ∫v du.

Upon applying integration by parts for the integral, we can get:

∫12cos(5x)e sin(5x)dx= ∫12 cos(5x)d[− 1/5 e −5x] = − 1/5 e −5x cos(5x) − ∫[d/dx(− 1/5 e −5x)] cos(5x)dx= − 1/5 e −5x cos(5x) − ∫1/5 e −5x sin(5x) d(5x)= − 1/5 e −5x cos(5x) + 1/25 e −5x sin(5x) + C.

We need to integrate by parts.

The integral can be rewritten as:∫12cos(5x)e sin(5x)dx = ∫12cos(5x)d[− 1/5 e −5x] = − 1/5 e −5x cos(5x) − ∫[d/dx(− 1/5 e −5x)] cos(5x)dx= − 1/5 e −5x cos(5x) − ∫1/5 e −5x sin(5x) d(5x)

As we can see here, u= sin(5x) and dv = 12 cos(5x)dx. So, du/dx = 5 cos(5x) and v = 2 sin(5x).

Therefore, ∫12cos(5x)e sin(5x)dx = − 1/5 e −5x cos(5x) − ∫1/5 e −5x sin(5x) d(5x) = − 1/5 e −5x cos(5x) + 1/25 e −5x sin(5x) + C . where c is constant of integration.

To know more about integral visit:

brainly.com/question/31109342

#SPJ11

A marketing survey conducted in which students are to taste two different brands of soft drink. Their lack is in correctly identify the branded Arndom sample of 180 students is taken. Assume that the dudents have no ability to distinguish between the two brands. Complete (a) through (d) below
a. What is the probability that the sample wil have between 50% and 60% of the identifications correct?______________________ (Round to four decimal places as needed)
b. The probability is 90% that the sample percentage is contained within what symmetrical limits of the population percentage? Identify the limbs of the population percentage.
The lower Imitia ___________
The upper kmt is __________
(Round to four decimal places as needed)
There is a 90% probability that the sample percentage will be contained within symmetrically around the population percentage.

Answers

The probability that the sample will have between 50% and 60% of the identifications correct is approximately 0.0833. The lower limit of the population percentage is approximately 0.5273, and the upper limit is approximately 0.6837.

To calculate the probability and limits, we can use the binomial distribution formula. In this case, the probability of correctly identifying the branded Arndom sample is assumed to be 0.5 since the students have no ability to distinguish between the two brands. The sample size is 180 students.

a. To find the probability of having between 50% and 60% of identifications correct, we need to calculate the cumulative probability from 50% to 60%. We can use a cumulative binomial distribution formula or approximation methods like the normal approximation to the binomial distribution.

Using the normal approximation, we can calculate the z-scores for 50% and 60% as follows:

z₁ = (0.50 - 0.50) / √((0.50 * 0.50) / 180) ≈ 0

z₂ = (0.60 - 0.50) / √((0.50 * 0.50) / 180) ≈ 3.3541

We can then look up the corresponding probabilities associated with these z-scores in the standard normal distribution table or use a calculator. The probability of obtaining between 50% and 60% of identifications correct is approximately the difference between these two probabilities.

b. To find the symmetric limits of the population percentage with a 90% probability, we need to calculate the z-score corresponding to a 5% probability on each tail of the normal distribution. This is because the total probability in the two tails is 10% (100% - 90%), and we want to find the symmetric limits.

The z-score corresponding to a 5% probability is approximately 1.645. We can use this z-score to find the lower and upper limits of the population percentage by calculating the corresponding sample percentages.

Lower limit:

p- z * √((p* (1 - p)) / n)

= 0.50 - 1.645 * √((0.50 * 0.50) / 180)

≈ 0.5273

Upper limit:

p+ z * √((p* (1 - p)) / n)

= 0.50 + 1.645 * √((0.50 * 0.50) / 180)

≈ 0.6837

Therefore, with a 90% probability, the sample percentage will be contained within symmetric limits of approximately 0.5273 and 0.6837.

To know more about the binomial distribution, refer here:

https://brainly.com/question/29137961#

#SPJ11

Evaluate the integral ∫2ln(x)xdx Select one: a. ln(x)x 2
− 2
x 2

+C b. ln(x)x 2
−x 2
+c c. ln(x)x 2
+ 2
x 2

+C d. ln(x)x 2
+x 2
+c

Answers

The intergration of ∫2ln(x)xdx is ln(x)x^2 + x^2 + C (Option d)

To evaluate the integral ∫2ln(x)xdx, we can use integration by parts.

Let's assume u = ln(x) and dv = 2x dx. Then, we can find du and v using these differentials,

du = (1/x) dx

v = ∫dv = ∫2x dx = x^2

Using the formula for integration,

∫u dv = uv - ∫v du

we have:

∫2ln(x)xdx = uv - ∫v du

= ln(x) * (x)^2 - ∫(x)^2 * (1/x) dx

= ln(x) * (x)^2 - ∫x dx

= ln(x) * (x)^2 - (1/2) * (x)^2 + C

= x^2 (ln(x) - 1/2) + C

Therefore, the correct answer is d. ln(x)x^2 + x^2 + C.

To learn more about Integration visit:

https://brainly.com/question/30094386

#SPJ11

Find the solution of the given initial value problem. ty' + 4y = t² − t +7, y(1) = 5, t> 0 Y ||

Answers

The solution to the initial value problem is:

y = (1/7)t^2 - (1/6)t + (7/5) + (761/210)t^(-5).

To solve the given initial value problem, we can use an integrating factor to solve the linear first-order ordinary differential equation. The integrating factor for the equation ty' + 4y = t² - t + 7 is given by:

μ(t) = e^(∫(4/t) dt) = e^(4ln|t|) = t^4.

Now, we multiply both sides of the equation by the integrating factor:

t^4(ty') + 4t^4y = t^6 - t^5 + 7t^4.

Simplifying:

t^5y' + 4t^4y = t^6 - t^5 + 7t^4.

This can be rewritten as:

(d/dt)(t^5y) = t^6 - t^5 + 7t^4.

Now, we integrate both sides with respect to t:

∫(d/dt)(t^5y) dt = ∫(t^6 - t^5 + 7t^4) dt.

Integrating:

t^5y = (1/7)t^7 - (1/6)t^6 + (7/5)t^5 + C,

where C is the constant of integration.

Dividing both sides by t^5:

y = (1/7)t^2 - (1/6)t + (7/5) + C/t^5.

Now, we can use the initial condition y(1) = 5 to find the value of the constant C:

5 = (1/7)(1^2) - (1/6)(1) + (7/5) + C/(1^5).

5 = 1/7 - 1/6 + 7/5 + C.

Multiplying through by the common denominator 210:

1050 = 30 - 35 + 294 + 210C.

Simplifying:

1050 = 289 + 210C.

Rearranging and solving for C:

210C = 1050 - 289,

C = 761/210.

To learn more about equation visit;

https://brainly.com/question/10413253

#SPJ11

Solution 3 of 4 You were asked to make a decision, given the following information: Our environment is very sensitive to the amount of ozone in the upper atmosphere. The level of ozone normally found is \( 4.8 \) parts/million (ppm). A researcher believes that the current ozone level is not at a normal level. The mean of 16 samples is \( 4.4 \) ppm with a variance of \( 0.64 \). Assume the population is normally distributed. A level of significance of \( 0.05 \) will be used. Make the decision to reject or fail to reject the null hypothesis. The \( P \)-value is the probability of observing a value of the test statistic as extreme or more extreme than the one observed in the data, assuming that the null hypothesis is true. If we are using technology, we want to find \( P(|t| \geq 2) \) for the \( t \)-distribution with, \( d f=16-1=15 \). So the exact \( P \)-value, rounded to four decimal places, is \( 0.0639 \). If we are using the table of \( t \)-critical values, then we want to find the critical values for the area in two tails for the \( t \)-distribution with 15 degrees of freedom. Since the \( t \)-distribution is symmetric, we want to compare the critical values with the absolute value of the test statistic: 2 . The two critical values that lie on either side of the test statistic create an interval for the \( P \)-value from the smaller area to the larger area, which is \( (0.05,0.1) \).

Answers

Using the table of t-critical values, the critical value for a two-tailed test with 15 degrees of freedom falls within the interval (0.05, 0.1), which supports the decision to fail to reject the null hypothesis.

The p-value is the probability of observing a value of the test statistic as extreme or more extreme than the one observed in the data, assuming the null hypothesis is true. In this case, we are interested in calculating \(P(|t| \geq 2)\), where t follows a t-distribution with 15 degrees of freedom.

Using technology or a t-table, we find that the exact p-value is approximately 0.0639 (rounded to four decimal places). Since this p-value is greater than the chosen significance level of 0.05, we fail to reject the null hypothesis. This means we do not have sufficient evidence to conclude that the current ozone level is not at a normal level.

Alternatively, using the table of t-critical values, we compare the absolute value of the test statistic (2) with the critical values for a two-tailed test with 15 degrees of freedom. The critical values create an interval for the p-value, which in this case is (0.05, 0.1). Since the p-value falls within this interval, we again fail to reject the null hypothesis.

Therefore, the decision is to fail to reject the null hypothesis.

Learn more about hypothesis testing here: brainly.com/question/17099835

#SPJ11

35. The number dimensions, a solid has: A. 3 B. 2 C. 0 D. 1 ​

Answers

Thus, a solid has three dimensions and the correct answer is option (c).

PLEASE HELPPP MEEEEEEE

Answers

The values of ;

angle 1 = 67°

x = 16.3

y = 6.36

What is trigonometric ratio?

The trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

To calculate the value of angle 1;

angle 1 = 180-( 23+90)

angle 1 = 180 - 113

angle 1 = 67°

Calculating y using trigonometry ratio

Tan 23 = y/15

0.424 = y/15

y = 0.424 × 15

y = 6.36

Calculate x using trigonometry ratio;

cos23 = 15/x

0.921 = 15/x

x = 15/0.921

x = 16.3

therefore the values of x and y are 16.3 and 6.36 respectively.

learn more about trigonometric ratio from

https://brainly.com/question/24349828

#SPJ1

The director of research and development is testing a new medicine. She wants to know if there is evidence at the 0.05 level that the medicine relieves pain in more than 390 seconds. For a sample of 75 patients, the mean time in which the medicine relieved pain was 398 seconds. Assume the population standard deviation is 24. Find the P-value of the test statistic. Round your answer to four decimal places.

Answers

The P-value of the test statistic is 0.171.

The director of research and development is conducting a hypothesis test to see if there is evidence at the 0.05 level that the medicine relieves pain in more than 390 seconds. The null hypothesis is that the mean time in which the medicine relieves pain is 390 seconds, and the alternative hypothesis is that the mean time is greater than 390 seconds. The test statistic is calculated as follows:

z = (398 - 390) / (24 / sqrt(75)) = 0.33

The P-value is the probability of obtaining a test statistic at least as extreme as the one observed, assuming that the null hypothesis is true. The P-value for a z-test with a test statistic of 0.33 is 0.171. Since the P-value is greater than 0.05, the null hypothesis cannot be rejected. Therefore, there is not enough evidence to conclude that the medicine relieves pain in more than 390 seconds.

The P-value can also be calculated using a statistical software program. For example, in R, the following code can be used to calculate the P-value:

z = (398 - 390) / (24 / sqrt(75))

pnorm(z)

The output of this code is 0.171.

Learn more about statistic here: brainly.com/question/31538429

#SPJ11

f(x)-f(a) a. Use the definition man = lim x-a x→a b. Determine an equation of the tangent line at P. c. Plot the graph of f and the tangent line at P. f(x)=x² +5, P(4,21) a. mtan = 8 b. y = 8x-32 to find the slope of the line tangent to the graph off at P.

Answers

The slope of the tangent line to the graph of f(x) = x² + 5 at point P(4, 21) is 8. The equation of the tangent line is y = 8x - 32.

To find the slope of the tangent line, we can use the definition of the derivative. The derivative of f(x) is given by f'(x) = 2x. Evaluating f'(x) at x = 4, we get f'(4) = 2(4) = 8, which is the slope of the tangent line at P.

The equation of a line can be written in the form y = mx + b, where m is the slope and b is the y-intercept. Using the slope 8 and the coordinates of point P (4, 21), we can substitute these values into the equation to find the y-intercept. Plugging in x = 4 and y = 21, we have 21 = 8(4) + b. Solving for b, we get b = -32. Thus, the equation of the tangent line is y = 8x - 32.

To plot the graph of f(x) and the tangent line at P, we can draw the parabolic curve of f(x) = x² + 5 and the straight line y = 8x - 32 on the same coordinate plane. The point P(4, 21) will lie on both the curve and the tangent line. The tangent line will have a slope of 8, indicating a steeper incline compared to the parabolic curve at P.

To learn more about slope of the tangent line click here: brainly.com/question/32393818

#SPJ11

Suppose L=2,X=(−[infinity],[infinity])×R +

,≿ is represented by the utility function u(x)=x 1

+ln(1+x 2

). Show that it is quasilinear. Is it convex? Strictly convex? Homothetic?

Answers

a. The function is not strictly convex.Now, let's check the homotheticity of the function. A function is homothetic if it is continuous, quasiconcave and there exists a positive function, v(x1), such that u(x)=v(x1)f(x2).  b. We can say that the function is homothetic.

We are also given the values of L, X and the utility function. The values are[tex]L=2,X=(−[infinity],[infinity])×R +​,[/tex]≿ is represented by the utility function[tex]u(x)=x 1​+ln(1+x 2​).[/tex]

Let's solve this.

Suppose the utility function u(x) is represented as:

[tex]u(x)=x 1​+ln(1+x 2​)[/tex]

We can see that the utility function is quasilinear. It has a linear component in x1 and a quasi-linear component in x2.

Therefore, we can say that the utility function is quasilinear.Now, let's check the convexity of the utility function. We will find the Hessian matrix and check its properties. The Hessian matrix is given by: H = [0 0; 0 1/(1+x2)^2]The determinant of [tex]H is 0(1/(1+x2)^2)-0(0) = 0[/tex], which is neither positive nor negative.

Hence, the Hessian matrix is neither positive definite nor negative definite.

Therefore, we cannot determine whether the function is convex or concave.

However, we can check the strict convexity of the function by checking if the Hessian matrix is positive definite or not. The eigenvalues of the Hessian matrix are 0 and [tex]1/(1+x2)^2[/tex], which are non-negative.

Hence, the Hessian matrix is positive semi-definite.

Therefore, the function is not strictly convex.Now, let's check the homotheticity of the function. A function is homothetic if it is continuous, quasiconcave and there exists a positive function, v(x1), such that [tex]u(x)=v(x1)f(x2)[/tex]

If we take [tex]v(x1) = x1, then u(x)=x1(1+ln(1+x2)) = x1ln(e^(1+x2)) = ln(e^(1+x2)^x1)[/tex]

Therefore, we can say that the function is homothetic.

Learn more about homothetic in this link:

https://brainly.com/question/33408373

#SPJ11

The grade appeal process at a university requires that a jury be structured by selecting eight individuals randomly from a pool of ten students and twelve faculty. (a) What is the probability of selecting a jury of all students? (b) What is the probability of selecting a jury of all faculty? (c) What is the probability of selecting a jury of two students and six faculty? (a) What is the probability of selecting a jury of all students? (Round to five decimal places as needed.) (b) What is the probability of selecting a jury of all faculty? (Round to five decimal places as needed.) (c) What is the probability of selecting a jury of two students and six faculty? (Round to five decimal places as needed.)

Answers

The probability of selecting a jury of two students and six faculty is P(two students and six faculty) = 41580/(22C8) = 0.36889 (rounded to 5 decimal places). Answer: (a) 0.00193, (b) 0.00907, (c) 0.36889.

(a) Probability of selecting a jury of all students Let S be the event of selecting a student and F be the event of selecting a faculty member. There are 10 students and 12 faculty members in a pool of 10 + 12 = 22 individuals. The probability of selecting a student from the pool of individuals is P(S) = Number of ways to select a student/Total number of individuals = 10/22Similarly, the probability of selecting a faculty member from the pool of individuals is P(F) = Number of ways to select a faculty member/Total number of individuals = 12/22Since we are selecting a jury of eight individuals out of ten students and twelve faculty members, there is only one way to select a jury of all students. Hence, the probability of selecting a jury of all students is P(all students) = (10/22) * (9/21) * (8/20) * (7/19) * (6/18) * (5/17) * (4/16) * (3/15) = 0.00193 (rounded to 5 decimal places).(b) Probability of selecting a jury of all faculty There is only one way to select a jury of all faculty.

Hence, the probability of selecting a jury of all faculty isP(all faculty) = (12/22) * (11/21) * (10/20) * (9/19) * (8/18) * (7/17) * (6/16) * (5/15) = 0.00907 (rounded to 5 decimal places).(c) Probability of selecting a jury of two students and six faculty The number of ways to select two students from ten students = 10C2 = (10 * 9)/(2 * 1) = 45.The number of ways to select six faculty from twelve faculty = 12C6 = (12 * 11 * 10 * 9 * 8 * 7)/(6 * 5 * 4 * 3 * 2 * 1) = 924. The number of ways to select two students and six faculty from a pool of ten students and twelve faculty members = 45 * 924 = 41580. Hence, the probability of selecting a jury of two students and six faculty is P(two students and six faculty) = 41580/(22C8) = 0.36889 (rounded to 5 decimal places).

To know more about probability visit:-

https://brainly.com/question/31828911

#SPJ11

Other Questions
The functions f and g are integrable and 26f(x)dx=6, 26g(x)dx=4, and 36f(x)dx=3. Evaluate the integral below or state that there is not enough information. 624f(x)dx Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. 624f(x)dx= (Simplify your answer.) B. There is not enough information to evaluate 624f(x)dx. CHAPTER 33 gives you a brief overview of Workers Compensation law. Workers' compensation, commonly referred to as "workers comp," is a government-mandated program that provides benefits to workers who become injured or ill on the job or as a result of the job. It is effectively a disability insurance program for workers, providing cash benefits, healthcare benefits, or both to workers who suffer injury or illness as a direct result of their jobs.Oftentimes, questions arise as to whether or not an injury qualifies under workers compensation. Consider the following two scenarios. Use your textbook and information about workers compensation law found on the internet. Then make an argument for each scenario on why or why not the injury qualifies for workers compensation.Scenario 1:Jane is traveling from her residence to her place of work. She is running late and texts her supervisor while driving to let her know that she will be a little late. Jane then hits the back of another vehicle because she was looking down to text. Luckily, the driver of the other vehicle was unharmed. However, Jane broke her arm. Does Janes injury qualify for workers compensation, why or why not?Scenario 2:Keith is responsible for transporting goods to several businesses. He is running late on one of his deliveries and decides to text the business owner to let him know that he is running late. Keith has a car accident while transporting the goods. He admitted to the driver of the car he hit that he was looking at his phone when the accident occurred. The other driver is unharmed, but Keith is now complaining of back pain. Does Keiths injury qualify for workers compensation?The purpose of this discussion is to have a good understanding of what constitutes a Workers' Compensation law and why it is important. The amount a person would have to deposit today (present value) at a 10 percent interest rate to have $3,100 five years from now Numeric Response Determine whether the following statements are true or false. Increasing the sample size while keeping the confidence level the same will result in a smaller confidence interval. True False The value of zc is a value from the standard normal distribution such that P(zc On January 2, 2021, Sheridan Company issued a 5-year, $9,140,000 note at LIBOR with interest paid annually. The variable rate is reset at the end of each year. The LIBOR rate for the first year is 6.8% Sheridan Company decides it prefers fixed-rate financing and wants to lock in a rate of 7%. As a result, Sheridan enters into an interest rate swap to pay 7% fixed and receive LIBOR based on $9,140,000. The variable rate is reset to 7.4% on January 2,2022 . Compute the net interest expense to be reported for this note and related swap transactions as of December 31,2021. Net interest expense $ 10. Suppose that X1, X2, X3,... Exp(A) for some X>0. For sufficiently large n, is X, approximately standard normal in its distribution? Explain. Fruit Fusions Incorporated (FFI) manufactures industrial gold press machines for the food service industry. They currently apply overhead at a rate of 60% of machine hours. FFI currently purchases a component for $115, they are considering making the component themselves. Manufacturing the component will incur the following costs: direct materials: $33, direct labor: $55, and incremental overhead of $12. Should the company make or buy the component? Using First-In-First-Out method in process costing, the work in progress at 1 point the end of the process will come from which units? OA. Beginning units in process and units completed OB. Beginning Wildhorse Kicks Co. has three divisions which are operated as profit centers. Actual operating data for the divisions listed alphabetically are as follows. Men's Shoes Operating Data Women's Shoes Children's Shoes Contribution margin $302,000 (3) $242,000 141,000 (4) (5) Controllable fixed costs Controllable margin (1) $101,000 107,000 Sales 833,000 513,000 (6) Variable costs (2) 341,000 261,000 Prepare a responsibility report for the Women's Shoe Division assuming (1) the data are for the month ended June 30, 2022, and (2) all actual data equal budgeted data except variable costs which are $23,000 over budget. WILDHORSEKICKS CO. Women's Shoe Division Responsibility Report For the Month Ended June 30, 2022 Difference Favorable (F) Unfavorable (U) Not Applicable (NA) Budget Actual riable Costs $ $ $ $ iles ontrollable Margin ontrollable Fixed Costs ontribution Margin $ $ $ $ $ Adjusting entries are necessary in order to: MULTIPLE CHOICEA. Properly measure the period's income.B. Bring asset accounts to correct balances.C. Bring liability accounts to correct balances.D. All of the above. Holtzman Clothiers's stock currently sells for $16.00 a share. It just paid a dividend of $3.25 a share (i.e., D0 = $3.25). The dividend is expected to grow at a constant rate of 10% a year.What stock price is expected 1 year from now? Round your answer to the nearest cent.$What is the required rate of return? Do not round intermediate calculations. Round your answer to two decimal places.% At his current income level, Zach's income elasticity for 1980 's used cars is - 0.25, If the price of 1980 s used cars increases by 20\%, the substitution effect will eause Zach to his consumption of 1980 s used cars, and the income effect will cause Zach to his consumption of 1980 's used cars. increase; increase increase; decrease decrease, increase decrease; decrease Suppose a competitive firm has as its total cost function: TC=29+2q2TC=29+2q2 Suppose the firm's output can be sold (in integer units) at $77 per unit. Use calculus and formulas to find a solution (don't just build a table in a spreadsheet as in the previous lesson). Hint 1: The first derivative of the total profit function, which is cumulative, is theSuppose a competitive firm has as its total cost function:TC=29+2q2TC=29+2q2Suppose the firm's output can be sold (in integer units) at $77 per unit.Use calculus and formulas to find a solution (don't just build a table in a spreadsheet as in the previous lesson).Hint 1: The first derivative of the total profit function, which is cumulative, is the marginal profit function, which is incremental. The lecture and formula summary explain how to compute the derivative.Set the marginal profit equal to zero to define an equation for the optimal quantity q.Hint 2: When computing the total profit for a candidate quantity, use the total profit function you define (rather than summing the marginal profits using the marginal profit function).1.How many integer units should the firm produce to maximize profit?Please specify your answer as an integer. In the case of equal profit from rounding up and down for a non-integer initial solution quantity, proceed with the higher quantity.2.What is the total profit at the optimal integer output level?Please specify your answer as an integer. ast Hik Home Healthcare Services was organized five years ago by four friends who each invested $18,000 in the company and, in urn, were issued in total 8,800 shares of $1.00 por volue common stock. To date, they are the only stockholders. At the end of last cear, the accounting records refected total assets of $724,000($52,000 cash; $513,000 land, $57,000 equipment; and $102,000 suldings), total tiabilisies of $220,000 (short-term notes payable $102,000 and long-term notes payable $118,000, and stockholders equity of $504,000($23,000 common stock; $92.000 additional paid-in copital; and $389.000 retained earnings). During the current year, the followigg summarized events occurred: a. Sold 9,700 addilional shares of stock to the original organizers for a total of $102,000 cash. b. Purchased a bullding for $60,000, equipment fot $11,000, and four acres of land for $23,000, paid $15,000 in cash and signed a note for the balance (due in 15 years) (Hint Five different accounts are affected.) c. Sold one acre of tand acquired in (b) for $5,750 cash to another company. d. Purchased shortherm lfwestments for $20.000cosh. e. One stockholder reported to the compony that 370 shares of his East Hill stock had been sold and transferted to another stockholder for $3,800 cash. f. Lent one of the shareholders $5,500 for moving costs and received a signed, six-month note from the shareholder. 9. Borrowed $8.000 from a local bank; signed a note due in six months Required: 1. Wos East HiW Home Healthcore Services organized as a sole proprietorship, a partnership, or a corporation? 2. During the curfent year, the records of the company were inadequate. You were asked to prepare the summary of transactions shown above. To develop a quick assessment of their economic effects on East Hiil Home Healtheare Services, complete the tabulation that follows. The first event is used as an example. 4. Based only on the completed tabulation, provide the following amounts. 5. Compute the current ratio for the currentyeac. Complete this question by entering your answers in the tabs below. Dunno the curreet yest, the records of the company were insdequate. You were asked to prepore the summary of transactans shown above. To develop a quick assessment of to Mealthcare Services, complete the tabutation that follows. The first event is veed as an oxarople. Notel Erter secrenses to wccounts with a minus wign. Calculate the time needed to burn Carry life particle of graphite (99.9% C Punnits) in 12% oxygen stream if 900c at I ate. for the high gas velocity and assumed that film diffusion does not offer any resistance Dato Radius = 12mm, bulk density = 2.49/cm reaction rate constant C=25cm/sec and R = 82.66 cm atm. Mol K Karim Corporation requires a minimum $8,000 cash balance. Loans taken to meet this requirement cost 1% interest per month (paid at the end of each month). Any preliminary cash balance above $8,000 is used to repay loans at month-end. The cash balance on July 1 is $8,400, and the company has no outstanding loans. Budgeted cash receipts (other than for loans received) and budgeted cash payments (other than for loan or interest payments) follow. Which of the following does a software license usually specify? A. number of people authorized to use the software b. amount of RAM required to run the software c. geographic locations where users can run the software d. steps for installing and uninstalling the software ocument4 Q Search in Document ? Home Insert Design Layout References Mailings Review View Acrobat +Share Calibri(Body) T 12 A Aa ?= Z AaBbCcDdEe AaBbCcDdEe AaBbCcD AaBbCcDdEe Nermal Buppeds on Heading 1 Heating 2 AaBb AaBbCcDdEc TMD Subtitle Paste U obe X Styles Pane Beryl's Iced Tea currently rents a bottling machine for $55,000 per year, including all maintenance expenses. It is considering purchasing a machine instead, and is comparing two options: a. Purchase the machine it is currently renting for $165,000. This machine will require $23,000 per year in ongoing maintenance expenses. b. Purchase a new, more advanced machine for $260,000. This machine will require $17,000 per year in ongoing maintenance expenses and will lower bottling costs by $11,000 per year. Also, $38,000 will be spent upfront training the new operators of the machine. Suppose the appropriate discount rate is 7% per year and the machine is purchased today. Maintenance and bottling costs are paid at the end of each year, as is the rental of the machine. Assume also that the machines will be depreciated via the straight-line method over seven years and that they have a ten-year life with a negligible salvage value. The corporate tax rate is 20%. Should Beryl's Iced Tea continue to rent, purchase its current machine, or purchase the advanced machine? To make this decision,calculate the NPV of the FcF associated with each alternative. Note: the NPV will be negative, and represents the PV of the costs of the machine in each case. IVP V dI 7 70 -303,030 The machine will cost $55,000 per year to rent. To find the after-tax free cash amount you use the following formula: FCF= Rent (1 Tax rate) FCF = $55,000 (1 0.20) =$44,000 The NPV of $44,000 for 10 years at a discount rate of 7% equals $309,038, which represents the present value of the costs of this arrangement. Page 1 of 1 0 words English (United States) + 177% Voltaic electronic uses standard part in manufacture of different types of radios. The total cost of producing 35.000 parts is $110,000,which include fixed costs $50,000 and variable costs of $60,000. The company can buy the part from outside supplier for $1per unit and avoid 30% of the fixed costs. Assume the company can use the fixed manufacturing space to make another product that can earn a profit of $15,000. If Voltaic outsources, what will be the effect on operating income?A. decrease of $55,000 B. increase of $15,000 C. decrase te $15,000 D. increase of $55,000 1. In a photoelectric effect experiment radiation is incident on arubidium (Rb) surface. Nophotoelectrons are ejected from this surface until the wavelengthof the incident light fallsbelow 571 nm.a) Find the work function of rubidium in eV. b) If the incident radiation has a wavelength of 350 nm, whatpotential differencemust be applied to the electrodes to stop the fastestphotoelectrons emitted by Rbto reach the opposite electrode? c) Assume that in the experimental setup for this photoelectriceffect experiment, thetwo electrodes (emitting electrode and collecting electrode) areparallel to eachother and separated by 0.20m. Ignore edge effects and find:(i) The magnitude of the electric field between the electrodes whena potentialdifference of 1.2V is applied to the electrodes. (ii) The magnitude of the acceleration of an electron between thetwo plates.(Hint: you need to use F=ma and the electric field you found inpart (i) above.)