If the arrow lands on yellow you win $75, blue gives $25, green gives $10, and red gives $1. The expected value of the game is $27.75, written as a decimal rounded to two places.
To find the expected value of the game, we need to multiply the value of each piece by the probability of landing on that piece, and then add up all the products.
First, let's determine the probability of landing on each colored piece of the wheel. Since each piece is equally likely, we can find the probability by dividing 1 by the number of pieces.
There are 4 colors on the wheel (yellow, blue, green, and red), so the probability of landing on any color is 1/4 or 0.25.
Now, let's calculate the expected value of the game:
Expected Value = (Probability of Yellow) × (Value of Yellow) + (Probability of Blue) × (Value of Blue) + (Probability of Green) × (Value of Green) + (Probability of Red) × (Value of Red)
The probability of landing on yellow is 1/4, so the value of yellow is $75.
The probability of landing on blue is also 1/4, so the value of blue is $25.
The probability of landing on the green is 1/4, so the value of green is $10.
The probability of landing on red is also 1/4, so the value of red is $1.
Now we can calculate the expected value:
Expected value = (1/4) x $75 + (1/4) x $25 + (1/4) x $10 + (1/4) x $1
Expected value = $18.75 + $6.25 + $2.50 + $0.25
Expected value = $27.75
So the expected value of the game is $27.75. Written as a decimal rounded to two places, the answer is $27.75.
Learn more about expected value:
brainly.com/question/29093746
#SPJ11
what would be the difference in predicted price of two wines that both have a rating of 90, but one is produced in california, and one is produced in oregon? make sure to use your rounded coefficients from the estimated regression equation to calculate this. round your final answer to 2 decimal places. the model predicts that the california wine would be more expensive than the oregon wine.
The model predicts that California wine would be more expensive than Oregon wine by $28.00.
To calculate the difference in predicted price between the two wines, we need to use the estimated regression equation and substitute the values for the variables. Let's say our estimated regression equation is:
Price = 50 + 2.5(Rating) + 10(California) - 8(Oregon)
Both wines have a rating of 90, so we can substitute that value in:
Price of California wine = 50 + 2.5(90) + 10(1) - 8(0) = 295
Price of Oregon wine = 50 + 2.5(90) + 10(0) - 8(1) = 267
Therefore, the predicted price of California wine is $295 and the predicted price of Oregon wine is $267. The difference between the two is $28.00.
You can learn more about the estimated regression equation at: brainly.com/question/29730755
#SPJ11
Solve using elimination. 10x + 8y = 12 4x + y = –15 ( , )
Answer:
x = -6
Step-by-step explanation:
you have given
10x + 8y = 12 and 4x + y = -15
so you must put the one var. x or y by same cofficent and in opposite sighn
so 10x + 8y = 12
- 8 (4x + y = -15 ) ......... i multiplied by -8
10x + 8y = 12
-32x - 8y = 120
then you will add the equation
(10x + 8y) + (-32x - 8y) = 12 + 120
afeter you simlify it u will get
-22x = 132
-22x = 132
x = -6 .... by dividing both sides by -22
Answer:
(-6,9)
Step-by-step explanation:
Multiply 4x + y = -15 all the say through by -8 and then add to 10x + 8y = 12
-32x -8y = 120
10x + 8y = 12
-22x = 132 Divide both sides by -22
x = -6
Substitute -6 for x
4x + y = -15
4(-6) + y = -15
-24 + y = -15 Add 24 to both sides
y = 9
Check
10x + 8y = 12
10(-6) + 8(9) = 12
-60 + 72 = 12
12 = 12 checks
4x + y = -15
4(-6) + 9 = -15
-24 + 9 = -15
-15 = -15 Checks.
Helping in the name of Jesus.
the measure of an angle formed by two tangents
Answer:
BC = 24
Step-by-step explanation:
the angle between the tangent and the radius at the point of contact A is 90°
then Δ ABC is a right triangle
using the sine ratio in the right triangle
sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{AC}{BC}[/tex] = [tex]\frac{12}{BC}[/tex] ( multiply both sides by BC
BC × sin30° = 12 ( divide both sides by sin30° )
BC = [tex]\frac{12}{sin30}[/tex] = 24
TIME REMAINING
51:59
On a coordinate plane, 2 triangles are shown. Triangle D E F has points (6, 4), (5, 8) and (1, 2). Triangle R S U has points (negative 2, 4), (negative 3, 0), and (2, negative 2).
Triangle DEF is reflected over the y-axis, and then translated down 4 units and right 3 units. Which congruency statement describes the figures?
ΔDEF ≅ ΔSUR
ΔDEF ≅ ΔSRU
ΔDEF ≅ ΔRSU
ΔDEF ≅ ΔRUS
Answer:
(b) ΔDEF ≅ ΔSRU
Step-by-step explanation:
Given point coordinates D(6, 4), E(5, 8), F(1, 2), you want the congruence statement for ∆DEF, given points R(-2, 4), S(-3, 0), U(2, -2) and the fact that ∆DEF is reflected across the y-axis and translated (3, -4).
GraphThe attached graph plots the given points. It is pretty clear that corresponding vertices are (D, S), (E, R), (F, U).
∆DEF ≅ ∆SRU
TransformationReflection across the y-axis is described by ...
(x, y) ⇒ (-x, y)
Translation right 3 and down 4 is described by ...
(x, y) ⇒ (x +3, y -4)
Taken together, the transformation is ...
(x, y) ⇒ (-x +3, y -4)
Applied to points D, E, F, we have ...
D(6, 4) ⇒ D'(-3, 0) . . . . matches S
E(5, 8) ⇒ E'(-2, 4) . . . . matches R
These two matches are sufficient to tell us that point F will be transformed to point U, and the congruence statement is ...
∆DEF ≅ ∆SRU
Answer:
ΔDEF ≅ ΔSRU
Step-by-step explanation:
The answer above is correct.
Annie has 1 5/8 pounds of all-purpose flour
and 2 3/4 pounds of whole wheat flour in
her kitchen. How many pounds of flour
does Annie have in all?
The total amount of flour that Annie has is 4 3/8 pounds
How to calculate the total amount of flour ?Annie has 1 5/8 pounds of all-purpose flour
She also has 2 3/4 pounds of whole wheat flour
The total amount of flour is
1 5/8 + 2 3/4
= 13/8 + 11/4
The LCM is 8
13 + 22/8
= 35/8
= 4 3/8
Hence the total amount of flour that Annie has in her kitchen is 4 3/8 pounds
Read more on pounds here
https://brainly.com/question/3473154
#SPJ1
POEEASE HELP ME ISTG I CANT GET ANYONE TO ANSWER MY QUESTIONS ILL GIVE BRAINLIEST PLEASE I BEG YOU
A wooden block is a prism, which is made up of two cuboids with the dimensions shown. The volume of the wooden block is 427 cubic inches.
Part A
What is the length of MN?
Write your answer and your work or explanation in the space below.
Part B
200 such wooden blocks are to be painted. What is the total surface area in square inches of the wooden blocks to be painted?
PLEASE GIVE A SOMEWHAT DETAILED EXPLANATION THANK YOUU!!! ^^
The length of MN is 12 inches, total surface area in square inches of the wooden blocks to be painted is 80400 square inches and
The formula for volume of a cuboid is:
Volume = Length× Width × Height
Thus 427 = (MN × 7× 3) + (5 × 5 × 7)
427 = 21MN + 175
21MN = 252
MN = 252/21
MN = 12
2) Surface area of entire object is:
TSA = 2(12 × 3) + 2(12×7) - (5 × 7) + 2(7×3) + 3(5 × 7) + 2(5 ×5)
= 402 in²
For 200 blocks:
TSA = 200× 402 = 80400 in²
To learn more on Three dimensional figure click:
https://brainly.com/question/2400003
#SPJ1
determine the time necessary for p dollars to doubl when it is invested at ineterest rate r compounded annually, monthly, daily, and continously, (round your answers to two decimal places.)
The time necessary for p dollars to double when it is invested at interest rate r compounded annually is given by the formula:
t = (ln 2) / (r ln (1 + r))
When compounded monthly, the formula becomes:
t = (ln 2) / (12 r ln (1 + r/12))
When compounded daily, the formula becomes:
t = (ln 2) / (365 r ln (1 + r/365))
When compounded continuously, the formula becomes:
t = ln 2 / (r)
Note that ln is the natural logarithm function.
To use these formulas, you need to know the value of the interest rate r. For example, if r is 5%, then:
When compounded annually, t = (ln 2) / (0.05 ln 1.05) = 13.86 years
When compounded monthly, t = (ln 2) / (12 x 0.05 ln 1.0041) = 14.21 years
When compounded daily, t = (ln 2) / (365 x 0.05 ln 1.000137) = 14.27 years
When compounded continuously, t = ln 2 / (0.05) = 13.86 years
Therefore, the time necessary for p dollars to double depends on the interest rate and the frequency of compounding. Generally, the more frequently the interest is compounded, the shorter the time necessary for p dollars to double.
Learn more about natural logarithm function:
https://brainly.com/question/31390864
#SPJ11
which of the following represent the sum of the polynomials below
The sum of the polynomial is solved to be
A. 5x^5 + 7x^3 + 7x^2 + 25x
How to add the polynomialsTo find the sum of the given polynomials, we simply add the like terms. Like terms in this case are terms with the same degree of x.
The given polynomials are:
(9x^5 + 7x^3 + 21x) and
(-4x^5 + 7x^2 + 4x)
Adding the like terms:
9x^5 + (-4x^5) = 5x^5
7x^3 + 0 = 7x^3
0 + 7x^2 = 7x^2
21x + 4x = 25x
Putting it all together, we get:
(9x^5 + 7x^3 + 21x) + (-4x^5 + 7x^2 + 4x) = 5x^5 + 7x^3 + 7x^2 + 25x
Learn more about polynomials at
https://brainly.com/question/4142886
#SPJ1
find the perimeter of the regular hexagon
answers to choose from:
26 ft
60 ft
30 ft
15 ft
Find the slope and
-intercept from the following graph of a linear equation.
Answer:
Slope = 4
y-intercept = (0, 3)
Step-by-step explanation:
The slope of a line is a measure of its steepness. It represents how much the line rises or falls as it moves horizontally.
The slope of a line is calculated by dividing the change in y by the change in x between any two points on the line: "rise over run".
From inspection of the given graph, the y-value increases by 4 units each time the x-value increases by 1 unit, . Therefore, the rise is 4 units and the run is 1 unit. As 4/1 = 4, then the slope of the line is 4.
The y-intercept is the point at which the line intersects the y-axis, so when x = 0.
From inspection of the given graph, the line crosses the y-axis at 3, the y-intercept of the line is (0, 3).
An amount was invested at 5 ¾ % and grew to P250,500 on March
11, 2021. If it was invested on July 12, 2020, what was the amount
invested?
The amount invested was approximately P239,534.52.
To solve this problem, we can use the formula for compound interest:
A = P(1 + r/n)^(nt)
where A is the amount after t years, P is the principal amount, r is the annual interest rate (as a decimal), n is the number of times the interest is compounded per year, and t is the time in years.
In this problem, we know that the amount grew to P250,500 after some time. We also know that the interest rate is 5 3/4%, or 0.0575, and that the investment was made on July 12, 2020, which is about 8 months before March 11, 2021.
Let's first convert the interest rate to a monthly rate, since we need to compound the interest monthly:
r = 0.0575/12 = 0.004792
Next, let's calculate the number of months between July 12, 2020 and March 11, 2021:
8 months + 31 days/365 days = 8.0849 months
Now we can use the formula to solve for P:
250500 = P(1 + 0.004792/12)^(12*8.0849)
250500/P = 1.045305
P = 250500/1.045305
P = 239534.52
Therefore, the amount invested was approximately P239,534.52.
To learn more about principal visit:
https://brainly.com/question/31631148
#SPJ11
neckties and bacteria: a group of researchers investigated the contamination of medical personnel clothing at a new york hospital since there is a potential for patient exposure to potentially dangerous bacteria. they sampled neckties worn by physicians, physician assistants, and medical students at a teaching hospital in new york. nearly half (47.6%) of the neckties tested harbored microorganisms that can cause illness. by comparison, only one of the 10 ties worn by security guards tested positive for a disease-carrying microorganism. the researchers want to determine if the difference is statistically significant. which of the following is an appropriate statement of the null hypothesis?
the findings of the study highlight the importance of maintaining a sterile environment in medical facilities and the need to take measures to prevent the spread of bacteria and other microorganisms.
It is important for medical personnel to maintain a sterile environment to prevent the spread of bacteria and other microorganisms. The findings of the research suggest that neckties worn by physicians, physician assistants, and medical students may harbor microorganisms that can cause illness.
The fact that 47.6% of the neckties tested positive for microorganisms is concerning, as it suggests that there is a significant risk of contamination. However, it is important to note that the study only sampled neckties at one hospital, so it is unclear if the findings can be generalized to other hospitals or medical facilities.
It is also worth noting that only one of the 10 ties worn by security guards tested positive for microorganisms. This suggests that there may be differences in the level of contamination between different types of clothing or between different groups of people.
Overall, the findings of the study highlight the importance of maintaining a sterile environment in medical facilities and the need to take measures to prevent the spread of bacteria and other microorganisms. This may include implementing dress codes that require medical personnel to avoid wearing neckties or other clothing items that cancan harbor bacteria, as well as ensuring that proper sterilization procedures are followed.
Visit to know more about Measure:-
brainly.com/question/28293784
#SPJ11
The double dot plot shows the values in two data sets.
Double dot plot shows the values of two data sets. It shows the number line ranges from 10 to 70 showing the following values that appear as dots above the line. For data set A. Two dots above 10. Three dots above 20. Four dots above 30. Two dots above 40. One dot above 50. For data set B. One dot above 30. Three dots above 40. Four dots above 50. Two dots above 60. Two dots above 70.
Compare the data sets using measures of center and variation.
Data set A Data set B
Median $=$
Median $=$
IQR $=$
IQR $=$
The median for Data Set A is 30, and
median for Data Set B is 50.
The IQR for Data Set A is 20 (from 20 to 40), also the IQR for Data Set B is also 20 (from 40 to 60).
What is the explanation for the above ?To find the median we say ......
For data set A, the median is:
The 6th value is the middle value, since there are 12 total values.
The 6th value = 30 on the number line,
since there are 2 dots above 10, 3 above 20, and 4 above 30.
Therefore, the median of data set A is 30.
For data set B, the median is:
The 7th and 8th values are the middle values, since there are 14 total values.
The 7th and 8th values = 50 on the number line,
since there are 4 dots above 50 and 2 dots above 60.
Hence, the median of data set B is 50.
To find the IQR, we need to find the range of the middle 50% of each data set.
For data set A, the IQR is:
The lower quartile is the 3rd value, which = 20 on the number line.
The upper quartile is the 9th value, = 40 on the number line.
The IQR is the difference between the upper and lower quartiles: 40 - 20 = 20.
For data set B, the IQR is:
The lower quartile is the 4th value, = 40 on the number line.
The upper quartile is the 11th value, = 70 on the number line.
Thus,
The IQR = 70 - 40 = 30.
Thus, data set B has a higher median than data set A,
And see that data set B has a larger IQR than data set A.
Learn more about double dot plot:
https://brainly.com/question/15660308
#SPJ1
The graph shows the location of point P and point R. Point R is on the y-axis and has the same y-coordinate as point P. Point Q is graphed at ( n , ¯ 2 ) . The distance from point P to point Q is equal to the distance from point P to point R. What is the distance from point P to point Q? What is the value of n? Explain how you determined the distance from point P to point Q, and the value of n. Enter your answers and your explanations in the space provided.The graph shows the location of point P and point R. Point R is on the y-axis and has the same y-coordinate as point P. Point Q is graphed at ( n , ¯ 2 ) . The distance from point P to point Q is equal to the distance from point P to point R. What is the distance from point P to point Q? What is the value of n? Explain how you determined the distance from point P to point Q, and the value of n. Enter your answers and your explanations in the space provided.
The value of n is 5.
Given that, the Coordinate of P = (n,3)
R is on y-axis & the y-coordinate of P & R are equal.
So coordinate of R = (3,0)
Coordinate of Q = (n,-2)
Using distance formula,
Distance between P & Q =
[tex]=\sqrt{(n-n)^2+(-3-(-2)^2} \\\\=\sqrt{(3+2)^2} \\\\= \sqrt{25} = 5[/tex]
Distance between P & R =
[tex]\sqrt{(n-0)^2+(3-3)^2}[/tex]
= n
According to the question it is given that distance between P & Q is equal to the distance between P & R. So, n = 5.
Learn more about distance between points, click;
https://brainly.com/question/15958176
#SPJ1
Find f(g(x)) if
f(x) = x² + 2x
g(x) = x - 9
Answer: f(g(x)) = (x - 9)² + 2(x - 9)
= x² - 18x + 81 + 2x - 18
= x² - 16x + 81
Step-by-step explanation:
What is the ratio of the area of the triangle to the area of the rectangle?
Answer:
The area of the triangle is one-half the area of the rectangle. So the correct answer is C.
a program exists to encourage more middle school students to major in math and science when they go to college. the organizers of the program want to estimate the proportion of students who, after completing the program, go on to major in math or science in college. the organizers will select a sample of students from a list of all students who completed the program. which of the following sampling methods describes a stratified random sample?
The sampling method that describes a stratified random sample is (D) Randomly select 25 names from the female students on the list and randomly select 25 names from the male students on the list. The correct option is D.
Stratified random sampling involves dividing the population into strata or subgroups based on some characteristics, such as gender in this case, and then randomly selecting a sample from each stratum to ensure representation from all groups in the population.
Option (A) only selects one subgroup, while option (B) and (E) are simple random samples that do not involve dividing the population into strata.
Option (C) is systematic sampling, which involves selecting every nth individual from the population after randomizing the order of the list.
Option D is the correct option.
To learn more about stratified random sample refer here
https://brainly.com/question/31051644#
#SPJ11
Complete question:
A program exists to encourage more middle school students to major in math and science when they go to college. The organizers of the program want to estimate the proportion of students who, after completing the program, go on to major in math or science in college. The organizers will select a sample of students from a list of all students who completed the program. Which of the following sampling methods describes a stratified random sample? (A) Select all female students on the list. (B) Randomly select 50 students on the list. (C) Randomize the names on the list and then select every tenth student on the randomized list. (D) Randomly select 25 names from the female students on the list and randomly select 25 names from the male students on the list. (E) Randomly select 50 students on the list who are attending college.
Use an Addition or Subtraction Formula to write the expression as a trigonometric function of one number. sin(11) cos(190) + cos(11°) sin(19) Find its exact value.
The exact value of the expression is: sin(182°) ≈ -0.1492 (rounded to four decimal places)
To write this expression as a trigonometric function of a single number:
We can use the addition formula for sine and cosine:
sin(a + b) = sin(a) cos(b) + cos(a) sin(b)
cos(a + b) = cos(a) cos(b) - sin(a) sin(b)
Using these expressions, we can rewrite the expression as follows:
sin(11° + 190°) + sin(19°)
Simplifying the first term using the identity sin(a + 180°) = -sin(a),
we get:
sin(201°) - sin(19°)
Now, using the subtraction formula for sine, we can write:
sin(a - b) = sin(a) cos(b) - cos(a) sin(b)
Therefore,
sin(201° - 19°) = sin(182°)
So the exact value of the formula:
sin(182°) ≈ -0.1492 (rounded to four decimal places)
To know more about sine:
https://brainly.com/question/19213118
#SPJ11
please someone help me out on this question quickly!!
it’s ratios and similar shapes
8th grade math by the way
The value of w in the similar rectangle is 27 units.
How to find the side of similar rectangles?For two rectangles to be similar, their sides have to be proportional (form equal ratios).
Therefore, let's use the proportional relationship of the rectangle to find the value of w in the rectangle as follows:
9 / w = 16 / 48
cross multiply
9 × 48 = 16w
16w = 432
divide both sides by 16
w = 432 / 16
w = 27 units
Hence, the value of w is 27 units
learn more on similar rectangle here: https://brainly.com/question/10075733
#SPJ1
HELP PLEASE I NEED THE ANSWER ASAP
It says that the landscaping company uses 3 1/2 tons the first month and then it says the next month uses the same amount on each of the five prodjects so for every one project in the second month they use 3 1/2 tons.
Solve the system below by substitution.
y = 2x + 4
y = 3x - 8
Answer:
(12, 28 )
Step-by-step explanation:
y = 2x + 4 → (1)
y = 3x - 8 → (2)
substitute y = 3x - 8 into (1)
3x - 8 = 2x + 4 ( subtract 2x from both sides )
x - 8 = 4 ( add 8 to both sides )
x = 12
substitute x = 12 into either of the 2 equations
substituting into (1)
y = 2(12) + 4 = 24 + 4 = 28
solution is (12, 28 )
Monthly sales of a particular personal computer are expected to
decline at the following rate of S'(t) computers per month, where t is
time in months and S(t) is the number of computers sold each month.
2
3
S'(t)= - 10t
The company plans to stop manufacturing this computer when monthly
sales reach 1,000 computers. If monthly sales now (t = 0) are 1,480
computers, find S(t). How long will the company continue to
manufacture this computer?
The amount of time this company would continue to manufacture this computer is equal to 14 months.
How to determine the amount of time this company would continue to manufacture this computer?In order to calculate the amount of time this company continue to manufacture this computer, we would have to determine an equation for S(t) by integrating the function S'(t) with respect to t as follows;
[tex]S'(t)= -10t^{\frac{2}{3} } \\\\S(t)= \int S'(t) \, dt\\\\S(t)= \frac{-10}{\frac{2}{3} +1}t^{\frac{2}{3}+1} +C\\\\S(t)= -6t^{\frac{5}{3}} +C\\\\S(t)= -6t^{\frac{5}{3}} +1480[/tex]
Note: The y-intercept or initial value is 1,480 (t = 0).
At 1,000 computers, we have:
[tex]1000= -6t^{\frac{5}{3}} +1480\\\\6t^{\frac{5}{3}}= 1480-1000\\6t^{\frac{5}{3}}=480\\\\t^{\frac{5}{3}}=80\\\\t=\sqrt[\frac{5}{3} ]{80}[/tex]
Time, t = 13.86 ≈ 14 months.
Read more on integrating and function here: https://brainly.com/question/14051832
#SPJ1
Help me please asap
Answer:
75
Step-by-step explanation:
300/4 = 75
Change of y/ change of x = gradient
If rectangle STUV is translated using the rule (x, y) → (x − 2, y − 4) and then rotated 90° counterclockwise, what is the location of S″?
The location of S" after translating and rotating the rectangle is (-3, -4).
To find the location of S" after translating and rotating the rectangle, we need to follow the two steps in order:
Translation: Apply the rule (x, y) → (x − 2, y − 4) to each vertex of the rectangle to get its new location. The new vertices are:
S'(-4, -3), T'(-4, -1), U'(-2, -1), V'(-2, -3)
Rotation: Rotate the translated rectangle 90° counterclockwise. This means that each vertex will swap its x and y coordinates and the new x-coordinate will be negated. The new vertices after rotation are:
S"(-3, -4), T"(-1, -4), U"( -1, -2), V"(-3, -2)
Therefore, the location of S" is (-3, -4).
To learn more about rectangle follow the link:
https://brainly.com/question/28993977
#SPJ1
A certain region of a country is, on average, hit by 8.5 hurricanes a year. (a) What is the probability that the region will be hit by fewer than 7 hurricanes in a given year? (b) What is the probability that the region will be hit by anywhere from 6 to 8 hurricanes in a given year? Click here to view the table of Poisson probability sums. (a) The probability that the region will be hit by fewer than 7 hurricanes in a given year is ____
(Round to four decimal places as needed.) (b) The probability that the region will be hit by anywhere from 6 to 8 hurricanes in a given year is _____
(Round to four decimal places as needed.)
The probability that the region will be hit by fewer than 7 hurricanes in a given year is 0.2506. The probability that the region will be hit by anywhere from 6 to 8 hurricanes in a given year is 0.7327.
(a) Using the Poisson distribution with λ = 8.5, we can use the cumulative probability function to find the probability of getting fewer than 7 hurricanes in a given year. P(X < 7) = 0.2506 (rounded to four decimal places).
(b) To find the probability of the region being hit by anywhere from 6 to 8 hurricanes in a given year, we can use the Poisson distribution to find the probabilities of getting 6, 7, and 8 hurricanes and add them together.
[tex]P(6\leq X \leq 8)[/tex] = P(X = 6) + P(X = 7) + P(X = 8) = 0.1901 + 0.3116 + 0.2310 = 0.7327 (rounded to four decimal places).
To know more about the Poisson distribution visit:
https://brainly.com/question/28044733
#SPJ11
The probability of spinning a 3 and flipping heads is..
The probability of spinning a 3 and flipping heads is 1/8.
Given that, sample space of spinner is {1, 2, 3, 4}
Sample space of flipping the coin {Heads, Tails}
We know that, probability of an event = Number of favourable outcomes/Total number of outcomes.
Probability of spinning a 3 = 1/4
Probability of flipping heads = 1/2
Probability of an event = 1/4 × 1/2
= 1/8
Therefore, the probability of spinning a 3 and flipping heads is 1/8.
To learn more about the probability visit:
https://brainly.com/question/11234923.
#SPJ1
Kelly says that he can't put a right triangle in either of the groups. Do you
agree? Explain your answer.
Yes, I do agree that Kelly can't put a right triangle in either of the groups because it does not have two pairs of parallel sides.
What is a right angle?In Mathematics and Geometry, a right angle can be defined as a type of angle that is formed in a triangle by the intersection of two (2) straight lines at 90 degrees. This ultimately implies that, a right angled triangle has a measure of 90 degrees.
Based on the Venn diagram shown in the image attached below, we can reasonably infer and logically deduce that Kelly was correct by saying can't put a right triangle or right angled triangle in either of the groups because it does not have two pairs of parallel sides.
However, Kelly can put a square or rectangle in either of the groups because they have two pairs of parallel sides.
Read more on right triangle here: https://brainly.com/question/1248322
#SPJ1
Missing information:
The question is incomplete and the complete question is shown in the attached picture.
P=800 , r=6% , t=9 years compounded monthly
The final amount after 9 years on a sum of $800 at 6% per annum compounded monthly is $1370.
The "Compound-Interest" refers to the interest earned on both the principal amount and the accumulated interest from previous periods, resulting in exponential growth over time.
To calculate the compound interest earned for a principal amount "P", an annual interest rate "r", and a time period of "t" years compounded n times per year, we use the following formula: [tex]A = P(1 + \frac{r}{n} )^{nt}[/tex],
where A is "final-amount" after "t" years,
In this case, the principal amount "P" is $800,
The "annual-interest-rate" (r) is = 6%, and the time period "t" is 9 years.
The interest is compounded monthly, which means n = 12 (12 months in a year).
Substituting the values,
We get,
⇒ A = 800(1 + 0.06/12)¹²ˣ⁹,
⇒ A = 800(1 + 0.005)¹⁰⁸,
⇒ A = 800 × (1.005)¹⁰⁸,
⇒ A ≈ 1370,
Therefore, the total amount after 9 years is approximately $1370.
Learn more about Compound Interest here
https://brainly.com/question/29335425
#SPJ1
The given question is incomplete, the complete question is
Find the final amount after 9 years for P=800 , r=6%, compounded monthly.
Length of Growing Seasons The growing seasons for a random sample of 32 U.S. cities were recorded, yielding a sample mean of 194.6 days and the population standard deviation of 55,6 days. Estimate the true population mean of the growing season with 95% confidence. Round your answers to at least one decimal place,
We can say with 95% confidence that the true population mean of the growing season is between 176.3 and 212.9 days.
We can use a t-distribution since the population standard deviation is unknown and the sample size is small (n < 30).
The formula for a confidence interval with a t-distribution is:
CI = x ± tα/2 * (s/√n)
Where:
x = sample mean
s = sample standard deviation
n = sample size
tα/2 = t-value with degrees of freedom (df = n-1) and α/2 level of significance
Using the given information, we have:
x = 194.6
s = 55.6
n = 32
df = n-1 = 31
α/2 = 0.05/2 = 0.025 (since it's a 95% confidence interval)
We can find the t-value using a t-distribution table or a calculator. For df = 31 and α/2 = 0.025, we get:
tα/2 = 2.0395
Substituting the values into the formula, we get:
CI = 194.6 ± 2.0395 * (55.6/√32)
CI = (176.3, 212.9)
Therefore, we can say with 95% confidence that the true population mean of the growing season is between 176.3 and 212.9 days.
To learn more about confidence visit:
https://brainly.com/question/28969535
#SPJ11
Find parametric equations for the line through the point (0,1,2) that is perpendicular to the line x=1+t, y=1-t, z=2t and intersects this line.
Answer:
x = 4/3 + t
y = -1/3 - 2t
z = 4/3 - t
Step-by-step explanation:
The given line can be represented by the vector equation:
r = <1, 1, 0> + t<1, -1, 2>
We can find a vector that is perpendicular to this line by taking the cross product of the direction vector <1, -1, 2> with any other vector. Let's choose the vector <1, 0, 0> for this purpose:
n = <1, -1, 2> x <1, 0, 0> = <-2, -1, -1>
Now we have a normal vector n = <-2, -1, -1> to the line we want to find. We can use this vector and the given point (0, 1, 2) to find the equation of the plane that contains the line we want to find:
-2(x-0) - (y-1) - (z-2) = 0
-2x - y - z + 3 = 0
This plane intersects the given line when they have a point in common. To find this point, we can solve the system of equations:
-2x - y - z + 3 = 0
x - y = 1
z = 2t
From the second equation, we get x = t+1 and y = t. Substituting these into the first equation, we get:
-2(t+1) - t - 2t + 3 = 0
t = -1/3
Therefore, the point of intersection is (4/3, -1/3, 4/3). This point lies on both the line and the plane, so it is the point we need to use to find the parametric equations of the line we want to find.
Let's call the point we just found P. We can find the direction vector of the line we want to find by taking the cross product of the normal vector n with the vector from P to the point on the given line:
d = <-2, -1, -1> x <4/3-1, -1/3-1, 4/3-2> = <1, -2, -1>
Therefore, the parametric equations of the line we want to find are:
x = 4/3 + t
y = -1/3 - 2t
z = 4/3 - t