1. A gas is at 200 K. (a) If we wish to double the rms speed of the molecules of the gas, to what value must we raise its temperature? (b) Calculate the increase in pressure during this increase in temperature (assume P_i =6×10^4 Pa and a constant volume). (c) At the final temperature, what is the typical ("average") force transferred to the walls of a 1 m^2 container by a single molecule colliding with the wall. The container is cubic.

Answers

Answer 1

The temperature needs to be raised to approximately 282.8 K to double the rms speed of the gas molecules.

The increase in pressure during this temperature increase cannot be determined with the given information.

The root mean square (rms) speed of gas molecules is directly proportional to the square root of the temperature in Kelvin. Therefore, to double the rms speed, we need to raise the temperature by a factor of √2, resulting in a temperature of approximately 282.8 K.

To calculate the increase in pressure, we would need to know the initial pressure of the gas. However, the given information only provides the value of P_i (initial pressure) as 6 × 10^4 Pa. Without knowing the final pressure or any other relevant information, we cannot determine the increase in pressure during the temperature increase.

The typical force transferred to the walls of the container by a single molecule colliding with the wall can be calculated using the ideal gas law and kinetic theory. The force exerted by a single molecule is equal to the change in momentum of the molecule per unit time. This can be related to the pressure of the gas using the ideal gas law. However, without knowing the pressure or any other specific information, we cannot determine the exact value of the force transferred to the walls of the container.

Learn more about Temperature

brainly.com/question/7510619?

#SPJ11


Related Questions


For tapping frequency (Hz), as numbers approach 0, it means
people are going slower.
Group of answer choices
True
False

Answers

The statement "For tapping frequency (Hz), as numbers approach 0, it means that people are going slower" is True.

The tapping frequency or rate is the number of times that one taps their finger in one second. It is measured in Hertz (Hz), which is the number of taps per second.According to the question, when tapping frequency (Hz) approach 0, it means that people are going slower. As the frequency of tapping approaches zero, the person is tapping less frequently and thus slowing down.Frequency is defined as the number of cycles completed per unit time. It also tells about how many crests go through a fixed point per unit time.

To learn more about frequency visit: https://brainly.com/question/254161

#SPJ11

determine whether or not the vector field is conservative.

Answers

In order to determine whether or not a vector field is conservative, we need to apply the curl test and the potential function test. A vector field is conservative if and only if the curl is equal to zero. Hence, the curl test is the simplest way to test if a vector field is conservative. The potential function test can also be used to check whether a vector field is conservative or not. A vector field is conservative if and only if it is the gradient of a scalar function known as a potential function.

What is a conservative vector field? A vector field is called conservative if and only if the work done by the force field in moving an object between two points is independent of the path taken by the object. A conservative force field is the gradient of a scalar field, also known as the potential energy function. This scalar function is referred to as the potential energy function. If the vector field has a curl of zero, it's a conservative field. This means that the path taken by an object between two points in the field does not influence the amount of work done on the object by the field.  In general, if a vector field F is defined on a simply connected and smoothly bounded domain D, then F is a conservative vector field if and only if F is the gradient of a scalar function on D. This function is known as the potential function of F

Learn more about conservative vector fields: https://brainly.com/question/17154073

#SPJ11

Q.5. (6 Marks ) a-Calculate the built-in potential barrier in a silicon pn junction at T =300 K with doping concentrations of Na=2 x10^17 cm3 and Nd =10x15 cm3. b- how would this potential change if we apply a forward bias = 0.6 Volts C-how would this potential change if we apply a reverse bias = 3 Volts d- Comment on the results

Answers

a) Built-in potential barrier is Vbi = 0.724 eV

b) New potential barrier is [tex]V_{new} = 0.124 eV\\[/tex]

c) New potential barrier is [tex]V_{new} = 3.724 eV\\[/tex]

d) These results demonstrate the characteristic behavior of a pn junction diode

How to calculate the built-in potential barrier in a silicon pn junction?

To calculate the built-in potential barrier in a silicon pn junction, we can use the equation:

[tex]Vbi = (k * T / q) * ln(Na * Nd / ni^2)[/tex]

a) Calculating the built-in potential barrier:

Using the given values:

[tex]Vbi = (8.617333262145 \times 10^{-5} eV/K * 300 K / 1.602176634 \times 10^{-19} C) * ln((2 \times 10^{17 }cm^{-3}) * (10 \times 10^{15} cm^{-3}) / (1.5 \times 10^{10} cm^{-3})^2)[/tex]

Vbi = 0.724 eV

How to calculate a new potential barrier, when a forward bias of 0.6 Volts is applied?

b) When a forward bias of 0.6 Volts is applied to the pn junction, the potential barrier reduces. The new potential barrier can be calculated as:

[tex]V_{new} = Vbi - V_{forward}\\V_{new }= 0.724 eV - 0.6 eV\\V_{new} = 0.124 eV\\[/tex]

How to calculate a new potential barrier, when a reverse bias of 3 Volts is applied?

c) When a reverse bias of 3 Volts is applied to the pn junction, the potential barrier increases. The new potential barrier can be calculated as:

[tex]V_{new} = Vbi + V_{reverse}\\V_{new }= 0.724 eV + 3 eV\\V_{new} = 3.724 eV\\[/tex]

Write comment on the results.

d) Comment on the results:

The built-in potential barrier of 0.724 eV is the potential difference that exists across the pn junction due to the difference in doping concentrations.When a forward bias of 0.6 Volts is applied, the potential barrier reduces to 0.124 eV. This reduction allows current to flow more easily across the junction.When a reverse bias of 3 Volts is applied, the potential barrier increases These results demonstrate the characteristic behavior of a pn junction diode, where forward bias allows current flow and reverse bias blocks current flow.

What makes up an atom and where are they located?

Answers

An atom is the smallest unit of matter that has the properties of a particular chemical element. Atoms are made up of three types of particles: protons, neutrons, and electrons.

Protons and neutrons are located in the nucleus, while electrons are found in orbitals surrounding the nucleus.

The positively charged protons and the uncharged neutrons are located in the centre of the atom, which is the nucleus. The negatively charged electrons are located in shells surrounding the nucleus.

The nucleus makes up the vast majority of an atom's mass.

Learn more about charged here ;

https://brainly.com/question/32449686

#SPJ11

If there's a crescent moon observed in Texas, what will an observer at the North Pole see?
A full moon, third quarter moon, first quarter moon, or crescent moon?

Answers

If there is a crescent moon observed in Texas, an observer at the North Pole would see a full moon.

The reason for this is that the Earth's rotation causes the appearance of the moon to change depending on the observer's location. When the moon is in a crescent phase, it means that only a small portion of the illuminated side of the moon is visible from the Earth.

However, since the North Pole is located at a high latitude, it is in a position where it can see a larger portion of the moon's surface. In this case, the observer at the North Pole would have a different line of sight compared to someone in Texas and would see the entire illuminated side of the moon, resulting in a full moon.

To learn more about crescent moon follow:

https://brainly.com/question/33441687

#SPJ11

Q1. A high speed race track has a banked turn of radius 230 metres. The road surface is angled towards the inside of the curve at 20° above the horizontal. A 1500 kg car fitted with racing tires experiences a coefficient of friction of 0.8 on such a turn. a) Calculate the maximum speed the car can drive around the turn without the tires losing their grip and causing the car to slide. Give your answer in km/h, rounded to the nearest whole number. (7) b) If the car was driving at 300 km/h on the straight road before the turn and applied the brakes for only three seconds, determine the deceleration and braking distance. Give your answers in Sl units. (3)

Answers

a) The maximum speed the car can drive around the turn without losing grip is approximately 97 km/h.

b) The deceleration is approximately -27.78 m/s² (negative sign indicates deceleration), and the braking distance is approximately 125 meters.

a) To calculate the maximum speed the car can drive around the turn without losing grip, we need to consider the forces acting on the car. The two main forces involved are the gravitational force (mg) and the frictional force (μN), where μ is the coefficient of friction and N is the normal force.

The normal force can be resolved into two components: the vertical component (N⊥) and the horizontal component (N∥). The vertical component counters the gravitational force, and the horizontal component provides the necessary centripetal force for the car to move in a curved path.

Given:

Radius of the turn (r) = 230 m

Angle of the banked turn (θ) = 20°

Mass of the car (m) = 1500 kg

Coefficient of friction (μ) = 0.8

First, let's calculate the normal force (N). The vertical component of the normal force (N⊥) is equal to the weight of the car (mg), which is:

N⊥ = mg = 1500 kg × 9.8 m/s²

Next, we need to calculate the horizontal component of the normal force (N∥) using trigonometry:

N∥ = N⊥ × sin(θ)

Now, we can calculate the maximum frictional force (Ffriction) that can be exerted on the car:

Ffriction = μN∥

The maximum frictional force (Ffriction) should provide the necessary centripetal force for the car to move in a curved path:

Ffriction = m × (v² / r)

Here, v is the maximum speed of the car.

We can set up an equation by equating the two expressions for Ffriction:

μN∥ = m × (v² / r)

Plugging in the known values:

0.8 × N∥ = 1500 kg × (v² / 230 m)

Now, let's solve for v:

v² = (0.8 × N∥ × 230 m) / 1500 kg

v = √((0.8 × N∥ × 230 m) / 1500 kg)

Calculating this value:

v ≈ 27.02 m/s

Converting the speed to km/h:

v ≈ 27.02 m/s × (3600 s/1 h) × (1 km/1000 m)

v ≈ 97.27 km/h

Therefore, the maximum speed the car can drive around the turn without losing grip is approximately 97 km/h (rounded to the nearest whole number).

b) To determine the deceleration and braking distance, we'll assume that the car decelerates uniformly during the braking period.

Given:

Initial speed of the car (vi) = 300 km/h = 83.33 m/s

Braking time (t) = 3 seconds

To calculate the deceleration (a), we'll use the following equation:

a = (vf - vi) / t

Here, vf is the final velocity, which is 0 m/s since the car comes to a stop.

Substituting the known values:

a = (0 m/s - 83.33 m/s) / 3 s

Calculating this value:

a ≈ -27.78 m/s²

The negative sign indicates deceleration.

To determine the braking distance (d), we can use the equation:

d = vi * t + (1/2) * a * t²

Substituting the known values:

d = 83.33 m/s * 3 s + (1/2)

* (-27.78 m/s²) * (3 s)²

Calculating this value:

d ≈ 125 m

Therefore, the deceleration is approximately -27.78 m/s² (negative sign indicates deceleration), and the braking distance is approximately 125 meters.

To know more about deceleration click here: https://brainly.com/question/18417367

#SPJ11

Suppose that two electrons are transferred from a neutral atom A to another neutral atom B to create a positive ion A+ and a negative ion B−. If the magnitude of the electrostatic force between two ions is 5.67E-12 N, what is the separation distance between the ions?

Answers

Given that two electrons are transferred from a neutral atom A to another neutral atom B to create a positive ion A+ and a negative ion B−. If the magnitude of the electrostatic force between two ions is 5.67E-12 N, we need to find the separation distance between the ions. We can solve this problem using Coulomb's law.Coulomb's law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them. Mathematically,F = kq1q2 / r²Here, F is the force of attraction or repulsion between two point chargesq1 and q2 are the magnitudes of the chargesk is Coulomb's constantr is the distance between two chargesLet's substitute the given values in the formula and solve for r.F = 5.67E-12 Nk = 9 x 10^9 Nm²/C²q1 = q2 = e (charge on one electron) = 1.6 x 10⁻¹⁹ C Rearranging the formula to solve for r,r = sqrt(kq1q2/F) Substituting the given values in the above equation, r = sqrt((9 x 10^9 Nm²/C²) x (1.6 x 10⁻¹⁹ C)² / (5.67 x 10⁻¹² N))r = 2.04 x 10⁻¹⁰ mThe separation distance between the ions is 2.04 x 10⁻¹⁰ m. Therefore, option D is the correct answer.

About Atom

Atom is taken from the Greek word 'atomos' which means indivisible. Atom is a basic unit of matter, which consists of an atomic nucleus and a cloud of negatively charged electrons that surround it. The atomic nucleus consists of positively charged protons and neutral charged neutrons. The electrons in an atom are bound to the nucleus by electromagnetic forces.

Learn More About Atom at https://brainly.com/question/17545314

#SPJ11

Two point charges of equal magnitude are 7.0 cm apart. At the midpoint of the line connecting them, their combined electric field has a magnitude of 48 Part A N/C. Find the magnitude of the charges. Express your answer using two significant figures.

Answers

The answer to this question is that the magnitude of the charges is 1.3 μC.

To find the magnitude of the charges, we can use the formula for the electric field due to a point charge:

E = k * (|q1| / r1^2) + k * (|q2| / r2^2)

where E is the combined electric field at the midpoint, k is the electrostatic constant (8.99 x 10^9 N m^2/C^2), q1 and q2 are the magnitudes of the charges, and r1 and r2 are the distances from the charges to the midpoint.

Given that the charges are of equal magnitude and the electric field at the midpoint has a magnitude of 48 N/C, we can set up the equation as follows:

48 N/C = k * (|q| / (0.035 m)^2) + k * (|q| / (0.035 m)^2)

Simplifying the equation, we get:

48 N/C = 2 * k * (|q| / (0.035 m)^2)

Dividing both sides of the equation by 2k and rearranging, we have:

(|q| / (0.035 m)^2) = 48 N/C / (2 * k)

Solving for |q|, we find:

|q| = (48 N/C / (2 * k)) * (0.035 m)^2

Plugging in the values for k (8.99 x 10^9 N m^2/C^2) and the distance (0.035 m), we can calculate:

|q| = (48 N/C / (2 * (8.99 x 10^9 N m^2/C^2))) * (0.035 m)^2

Simplifying the equation, we get:

|q| ≈ 1.3 μC

Therefore, the magnitude of the charges is approximately 1.3 μC.

Learn more about Magnitude

brainly.com/question/31022175

#SPJ11

Our eyes are able to see waves in this part of the electromagnetic spectrum
a, ultraviolet
b. radio
C. visible
d. infrared​

Answers

The correct answer is Option C. Our eyes are able to see waves in the visible part of the electromagnetic spectrum.

The visible spectrum is the portion of the electromagnetic spectrum that human eyes are sensitive to and perceive as different colors.

It ranges from approximately 400 to 700 nanometers in wavelength.

The visible spectrum consists of various colors, including red, orange, yellow, green, blue, indigo, and violet.

Each color corresponds to a specific wavelength within the visible range.

When light of different wavelengths enters our eyes, it interacts with specialized cells called cones, which are sensitive to different wavelengths of light.

These cones send signals to our brain, allowing us to perceive the different colors.

While there are other parts of the electromagnetic spectrum, such as ultraviolet, radio, and infrared, our eyes do not have the ability to directly detect or perceive these waves.

Ultraviolet and infrared waves, for example, have wavelengths that are outside the range of what our eyes can detect.

However, we can indirectly observe and study these waves using specialized equipment and technology.

Therefore, The correct answer is Option C.

For more questions on electromagnetic spectrum.

https://brainly.com/question/13646601

#SPJ8

why and how does atomic nuclear decay take place explain

Answers

Atomic nuclear decay takes place as a result of an unstable nucleus that releases energy to gain a stable configuration. It happens spontaneously, and it leads to the release of energy and the formation of new elements.

The term nuclear decay refers to the process by which unstable atomic nuclei release energy or particles. Nuclear decay, also known as radioactive decay, can be defined as the process of a particle undergoing the transformation into one or more different particles.

Here are some reasons why and how atomic nuclear decay takes place:

To achieve a more stable state: An atomic nucleus that is unstable will emit particles or energy until it reaches a stable configuration. This is the most important reason why nuclear decay occurs. To achieve a more balanced state: When an atomic nucleus has an uneven number of protons and neutrons, it can become unstable. Nuclear decay helps to balance the number of protons and neutrons in the nucleus, leading to a more stable configuration. To increase the binding energy of the nucleus: Nuclear decay can occur when the binding energy of an atomic nucleus is increased.

How atomic nuclear decay takes place?

Nuclear decay occurs in three forms: alpha decay, beta decay, and gamma decay.

Alpha decay occurs when an atomic nucleus emits an alpha particle, which is a helium nucleus made up of two protons and two neutrons. Beta decay occurs when an atomic nucleus emits an electron or positron. Gamma decay occurs when an atomic nucleus emits gamma radiation.

Each decay process releases energy as the nucleus transitions to a more stable state.

#SPJ11

learn more about "atomic nuclear decay" https://brainly.com/question/9932896

Monochromatic light of wavelength 500 nm is incident normally on a diffraction grating If the third-order maximum of the diffraction pattern is observed at 32" from the centerline, what is the distance between the slits of the grating? O 28 um 0 0.93 m olum Oum 0.1

Answers

The distance between the slits of a diffraction grating, the formula d * sin(θ) = m * λ is used. By applying this formula, the distance can be calculated based on the observed angle and the wavelength of light.

The distance between the slits of the diffraction grating can be calculated using the formula for the diffraction of light:

d * sin(θ) = m * λ

where:

d is the distance between the slits,

θ is the angle of the diffraction maximum,

m is the order of the diffraction maximum, and

λ is the wavelength of light.

The distance between the slits of a diffraction grating, the formula d * sin(θ) = m * λ is used. By applying this formula, the distance can be calculated based on the observed angle and the wavelength of light.

In this case, the third-order maximum is observed at an angle of 32" (32 degrees) from the centerline, and the wavelength of light is 500 nm (or 500 x 10^(-9) m).

Plugging these values into the formula, we have:

d * sin(32°) = 3 * 500 x 10^(-9) m

To find the value of d, we can rearrange the equation:

d = (3 * 500 x 10^(-9) m) / sin(32°)

Calculating this expression gives us the distance between the slits of the grating.

To learn more about diffraction, click here: https://brainly.com/question/12290582

#SPJ11

The force experienced by an a particle placed in the axial line at a distance of 10cm from the centre of a short dipole of moment 0.2 x 10-20 cm is; 1) 5.75 x 10-27 N 211.5 x 10-27 N 3) 23 x 10-27 N 4) 34.5 x 10-27 N

Answers

The axial line refers to an imaginary line or axis that runs through the center of an object and is used to describe its geometry and rotational motion.

In the context of a short dipole, the axial line represents the line passing through the dipole's positive and negative charges.

When considering the force on a short dipole along the axial line, we can use the formula F = p(2a) / r³, where F represents the force, p is the dipole moment, a is the length of the dipole, and r is the distance between the dipole and the point where the force is measured.

In this specific case, since the length of the dipole (a) is given as zero, the formula simplifies to F = p / r³. By substituting the provided values, such as the dipole moment of 0.2 × 10^-20 cm and the distance of 10 cm, we can calculate the force:

F = 0.2 × 10^-20 / (0.1)^3

F = 5.75 × 10^-27 N

Therefore, the force experienced by the particle placed along the axial line, at a distance of 10 cm from the center of the short dipole with a moment of 0.2 × 10^-20 cm, is determined to be 5.75 × 10^-27 N. Thus, the correct option is 1) 5.75 × 10^-27 N.

Read more about  axial line

https://brainly.com/question/31930679

#SPJ11

Suppose you throw a ball with a mass of 0.40 kg against a brick wall. It hits the wall moving horizontally to the left at 30 m/s and rebounds horizontally to the right at 20 m/s. (a) Find the impulse of the net force on the ball during its collision with the wall. (b) If the ball is in contact with the wall for 0.010 s, find the average horizontal force that the wall exerts on the ball during the impact.

Answers

The impulse of the net force on the ball during its collision with the wall is -12 N·s.

The average horizontal force that the wall exerts on the ball during the impact is -1200 N.

Impulse is defined as the change in momentum of an object, and it can be calculated by multiplying the average force exerted on the object during a collision by the duration of the collision. Since the ball rebounds in the opposite direction, we consider the negative sign in the calculation. The initial momentum of the ball is given by the product of its mass and velocity, which is (0.40 kg) × (30 m/s) = 12 kg·m/s. The final momentum is (0.40 kg) × (-20 m/s) = -8 kg·m/s.

The change in momentum is the difference between the final and initial momenta, which gives us -8 kg·m/s - 12 kg·m/s = -20 kg·m/s. Finally, dividing the change in momentum by the duration of the collision, which is 0.010 s, we find the impulse to be -20 kg·m/s ÷ 0.010 s = -2000 N·s. Thus, the impulse of the net force on the ball during its collision with the wall is -12 N·s.

To find the average force exerted by the wall during the impact, we use the formula for impulse, which states that impulse is equal to the average force multiplied by the duration of the collision. We know the impulse from part (a) to be -12 N·s, and the duration of the collision is given as 0.010 s. Therefore, we divide the impulse by the duration to obtain the average force: -12 N·s ÷ 0.010 s = -1200 N.

Since the force is negative, it indicates that the wall exerts a force in the opposite direction to the motion of the ball. Hence, the average horizontal force that the wall exerts on the ball during the impact is -1200 N.

Learn more about Collision

brainly.com/question/13138178?

#SPJ11

An aircraft is moving away from you at 205m/s. The jet engines make a sound that is primarily about 300Hz. What is the apparent frequency of the jet engines? Assume that the speed of sound at that temperature and time is 345m/s. O a. 188Hz O b. 739Hz O c. 122Hz O d. 478Hz

Answers

The apparent frequency of the jet engines can be calculated using the formula for the Doppler effect.  The apparent frequency of the jet engines is approximately 739 Hz (option b).

The formula for the Doppler effect when the source of sound is moving away from the observer is given by:

f' = f * (v + v_obs) / (v + v_source)

Where:

f' is the apparent frequency

f is the actual frequency

v is the speed of sound

v_obs is the velocity of the observer relative to the medium (in this case, 0 since the observer is stationary)

v_source is the velocity of the source relative to the medium (in this case, -205 m/s since the aircraft is moving away)

Plugging in the given values:

f' = 300 Hz * (345 m/s + 0 m/s) / (345 m/s - 205 m/s) = 300 Hz * 345 / 140 = 739 Hz

Therefore, the apparent frequency of the jet engines is approximately 739 Hz (option b).

Learn more about apparent frequency here:

https://brainly.com/question/31323735

#SPJ11

A ball thrown vertically upward is caught by the thrower after 3.2 seconds. Find: a) The initial velocity of the ball. b) The maximum height it reaches.

Answers

The initial velocity of the ball is 31.36 m/s. The maximum height reached by the ball is approximately 50.176 meters. We can use the equations of motion for free fall.

To find the initial velocity and maximum height of a ball thrown vertically upward and caught after a certain time, we can use the equations of motion for free fall.

Given:

Total time of flight (t) = 3.2 seconds

a) Finding the initial velocity (u):

Using the equation for the vertical motion of the ball:

v = u + gt

At the maximum height, the final velocity (v) will be zero. Therefore:

0 = u + (-9.8 m/s^2) * 3.2 s

Solving for u:

u = 9.8 m/s * 3.2 s

u = 31.36 m/s

Therefore, the initial velocity of the ball is 31.36 m/s.

b) Finding the maximum height (h):

Using the equation for the vertical displacement of the ball:

h = ut + (1/2)gt^2

Substituting the values:

h = (31.36 m/s) * (3.2 s) + (1/2) * (-9.8 m/s^2) * (3.2 s)^2

Calculating:

h = 100.352 m - 50.176 m

h ≈ 50.176 m

Therefore, the maximum height reached by the ball is approximately 50.176 meters.

To learn more about velocity click here

https://brainly.com/question/28395671

#SPJ11

A child throws a tennis ball straight down with a speed of 14.6 m/s. It takes 1.5 seconds to reach the ground. What is its velocity when it reaches the ground? Answer:

Answers

The velocity on reaching the ground is -0.1 m/s according to given data.

The formula to be used for calculation of final velocity is -

v = u - gt, where v and u are final and initial velocity, g is acceleration due to time and t is the time taken in reaching the ground. We will take universal value of g, which is 9.8 m/s². Keeping the values in formula for calculation -

v = 14.6 - 9.8 × 1.5

Performing multiplication on Right Hand Side of the equation

v = 14.6 - 14.7

Performing subtraction on Right Hand Side of the equation

v = -0.1 m/s

Hence, the velocity on reaching the ground will be -0.1 m/s.

Learn more about velocity -

https://brainly.com/question/80295

#SPJ4

how does metallic bonding result in useful properties of metals

Answers

Metallic bonding contributes to characteristic properties such as conductivity, malleability, ductility and others of metal due to their presence.

Metallic bonding is characteristic of metals where electrons and postive charges in metal participate in bonding. It has multiple significance such as it provides electrically conductive nature to the metal. The free delocalized electrons move under the influence of applied voltage giving the property of conductivity.

They are also responsible for thermal conductivity. The metallic bonding can also be attributed to malleability, ductility, strength, toughness and metallic luster.

Learn more about metals -

https://brainly.com/question/4701542

#SPJ4

Consider a particle with mass m moving in a potential U=
2
1

kx
2
, as in a mass-spring system. The total energy of the particle is E=
2m
p
2


+
2
1

kx
2
. Assume that p and x are approximately related by the Heisenberg uncertainty principle, so px≈h. (a) Calculate the minimum possible value of the energy E, and the value of x that gives this minimum E. This lowest possible energy, which is not zero, is called the zero-point energy. (b) For the x calculated in part (a), what is the ratio of the kinetic to the potential energy of the particle?

Answers

(a) Calculation of the minimum possible value of energy E and the value of x that gives this minimum E

When a particle with mass m moves in the potential U = 21kx2,

the total energy of the particle is given by

E = 2mp2 + 21kx2px ≈ h

We know that p and x are approximately related by the Heisenberg uncertainty principle.

px ≈ h ⇒ p = h/x

E = 2m(h/x) 2 + 21kx2

Differentiating the above expression with respect to x,

we obtaind

E/dx = (4m/k)(h/x3) + 2kx

= 2k(x + 2m/kh2x-3)

At the minimum possible value of E, dE/dx = 0

2k(x + 2m/kh2x-3) = 0⇒ x = (2m/kh2)1/4

The minimum possible value of E is E = 2m(h/x)2 + 21kx2

= 2h2(2m/kh2) + 21k(2m/kh2)1/2

= h(4m/kh2 + 2m/kh2)1/2

= h(6m/kh2)1/2= (6hm2k)1/2

(b) Calculation of the ratio of the kinetic to the potential energy of the particle For the x calculated in part (a),

the kinetic energy is given by

K = p2/2m

= h2/2mx2k

The potential energy is given byU = 21kx2

The ratio of kinetic to potential energy of the particle is

K/U = h2/2mx2k / 21kx2

= h2/2mx2k×2/2

= h2/4m(2m/kh2)1/2×k(2m/kh2)1/2

= h2/4mk= 1/2

The ratio of kinetic to potential energy of the particle is 1:2.

To know more about Calculation visit :

https://brainly.com/question/30781060

#SPJ11

If a GPS satellite was directly overhead, how long would it take the signal to propagate to the ground in a vacuum? How much propagation delay does a 40 TECu ionosphere add?

Answers

If a GPS satellite was directly overhead, the signal would take 67 milliseconds (ms) to propagate to the ground in a vacuum.

The propagation delay added by a 40 TECu ionosphere is 16.8 ms.GPS (Global Positioning System) is a satellite-based navigation system that uses radio signals to transmit position data to a GPS receiver. GPS was created and developed by the United States Department of Defense (DoD) and has been operational since the early 1990s. Total Electron Content Unit (TECu) is a measure of the amount of electrons present in a column of the ionosphere above a 1 square meter area. It is commonly used to quantify the amount of ionospheric delay experienced by Global Navigation Satellite System (GNSS) signals/. In a vacuum, the signal from a GPS satellite would take 67 milliseconds (ms) to propagate to the ground. This time includes the distance that the signal must travel from the satellite to the ground (approximately 20,200 km) as well as the speed of light propagation (299,792,458 meters per second). TECu is proportional to the amount of ionospheric delay experienced by GNSS signals. The ionospheric delay is proportional to the square of the frequency and the TEC along the path. A 40 TECu ionosphere adds a delay of approximately 16.8 ms.

Learn more about GPS satellite at

brainly.com/question/28275639

#SPJ11

A long steel I-beam used in bridge construction has a length of 16.0 m. The beam may be exposed to temperatures as low as -17°C in the winter and as high as 35°C in the summer. What is the difference in length of the beam between these two temperature extremes? (Give the absolute value of the difference. Enter your answer in mm.) 16.96 What is the difference in temperature? Be careful with signs. How is the change in length related to the change in temperature and initial length? mm Need Help? Read It 14 Points] DETAILS PREVIOUS ANSWERS MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A container made of steel, which has a coefficient of linear expansion 11 x 10-6 (°C)-4, has a volume of 58.0 gallons. The container is filled to the top with turpentine, which has a coefficient of volume expansion of 9.0 x 10-4 (°C) -7, when the temperature is 10.0°C. If the temperature rises to 26.5°C, how much turpentine (in gal) will spill over the edge of the container? 0.75

Answers

The difference in length of the steel I-beam between the temperature extremes of -17°C and 35°C is approximately 16.96 mm. The change in length of the beam is directly related to the change in temperature and the initial length of the beam.

To calculate the difference in length, we can use the formula ΔL = α * L * ΔT, where ΔL is the change in length, α is the coefficient of linear expansion, L is the initial length, and ΔT is the change in temperature.

Substituting the given values, we have ΔL =  [tex](11 * 10^{-6} C^{-1} ) * (16.0 m) * (35C - (-17C))[/tex] . Simplifying the calculation, we get ΔL ≈ 16.96 mm.

A higher coefficient of linear expansion would result in a greater change in length for the same change in temperature. Similarly, a longer initial length of the beam would result in a larger absolute difference in length.

Therefore, the difference in length of the steel I-beam between the temperature extremes is approximately 16.96 mm, and this change in length is related to the change in temperature and the initial length of the beam.

Learn more about temperature here:
https://brainly.com/question/12869377

#SPJ11

An Olympic long jumper leaves the ground at an angle of 21.7

and travels through the air for a horizontal distance of 6.94 m before landing. What is the takeoff speed of the jumper? Number Units Attempts: 0 of 1 used

Answers

By applying the principles of projectile motion, we can determine the takeoff speed of the long jumper.

To find the takeoff speed of the long jumper, we can analyze the projectile motion of the jump. We can break down the motion into horizontal and vertical components.

Given that the jumper travels a horizontal distance of 6.94 m, we can focus on the horizontal component of the motion. The horizontal velocity remains constant throughout the jump, as there are no horizontal forces acting on the jumper once in the air. Therefore, the horizontal component of the velocity is given by:

Vx = d / t,

where Vx is the horizontal velocity, d is the horizontal distance, and t is the time of flight.

Since we are not given the time of flight directly, we need to find it using the vertical component of the motion. The vertical displacement can be determined using the equation:

dy = Vyi * t + (1/2) * g * t^2,

where dy is the vertical displacement, Vyi is the initial vertical component of the velocity, g is the acceleration due to gravity, and t is the time of flight.

The vertical velocity at takeoff can be found using trigonometry:

Vyi = V * sin(θ),

where V is the takeoff speed and θ is the takeoff angle.

Using the known values, we can solve for the time of flight:

dy = 0 (since the jumper lands at the same height as takeoff)

0 = V * sin(θ) * t - (1/2) * g * t^2.

Since sin(θ) is known and g is known, we can solve for t.

Once we have the time of flight, we can substitute it back into the horizontal component equation to find Vx.

Therefore, by applying the principles of projectile motion, we can determine the takeoff speed of the long jumper.

Learn more about horizontal distance  here:

https://brainly.com/question/8496665

#SPJ11

Final answer:

To find the takeoff speed of the long jumper, we can use the horizontal distance traveled and the launch angle. We solve for the initial horizontal velocity using equations for horizontal and vertical motion.

Explanation:

To find the takeoff speed of the long jumper, we can use the horizontal distance traveled and the launch angle. Since the jumper lands at the same height as they took off, we can use the horizontal distance as the displacement in the horizontal direction. We can solve for the initial horizontal velocity using the equation:

horizontal velocity = horizontal distance / time

Assuming the time of flight is the same as the time of fall, we can use the equation for vertical motion:

time = √(2 * height / g)

Substituting the values and solving for the horizontal velocity will give us the takeoff speed of the jumper.

Learn more about Takeoff speed of a long jumper here:

https://brainly.com/question/35276969

#SPJ12

The J/ψ particle is a meson made up of cc quark-antiquark pair. This particle is discovered in proton-proton and electron-positron collisions.

i) A proton collides with a proton at rest. Calculate the threshold energy for the incoming proton for this reaction to occur. p + p → p + p + J/ψ

ii) An electron collides with a positron, each of which has the same energy and opposite momenta. Calculate the threshold energy for either of the particles. e + + e- → J/ψ

mJ/ψ = 3 GeV, τJ/ψ = 10-20s

Answers

In the given scenario, we are asked to calculate the threshold energy for two different collision processes involving the J/ψ particle The threshold energy represents the minimum energy required for the reaction to occur is comes out to be same in both case 2.7x[tex]10^-^1^0[/tex] J.

i) To calculate the threshold energy for the proton-proton collision, we need to consider the conservation of energy and momentum. Since one of the protons is at rest, the total momentum before the collision is zero. Therefore, the threshold energy is equal to the rest energy of the J/ψ particle:

Threshold energy = [tex]mJ/ψc^2[/tex] = (3 GeV)(3x[tex]10^8 m/s)^2[/tex] = 2.7x[tex]10^-^1^0[/tex] J

ii) For the electron-positron collision, we assume that both particles have the same energy and opposite momenta. Again, using conservation of energy and momentum, the threshold energy is equal to the rest energy of the J/ψ particle:

Threshold energy =[tex]mJ/ψc^2[/tex] = (3 GeV)(3x[tex]10^8 m/s)^2[/tex] = 2.7x[tex]10^-^1^0 J[/tex]

Both threshold energies calculated in the two scenarios are the same, as they correspond to the rest energy of the J/ψ particle.

Learn more about collision here:

brainly.com/question/25945297

#SPJ11

Other solids, such as wood, have tighter electrons and are not as voeful for heat conduition. Which statement from the passage contradicts the daim that solids are useful for the transer of heut? "These heated vibrating molecules collide with other molecules, spreading the heat." "Other solids, such as wood, have tighter electroes and are not as weeful for heat conduction." "These solids have loosely bound electrons that allow heat to trancfor freely." "Metal solids in particular, such as copper or pold, are effective at condiding hest."

Answers

The statement that contradicts the claim that solids are useful for the transfer of heat is:   Other solids, such as wood, have tighter electrons and are not as useful for heat conduction.

This statement says that wood is not as useful for heat conduction as other solids. However, the passage also says that metals, such as copper and gold, are effective at conducting heat. This means that solids are still useful for the transfer of heat, even if some solids are not as good at it as others.

The other statements do not contradict the claim that solids are useful for the transfer of heat. They all describe how heat is transferred through solids.

   "These heated vibrating molecules collide with other molecules, spreading the heat." This statement describes how heat is transferred through conduction.

   "These solids have loosely bound electrons that allow heat to transfer freely." This statement describes how heat is transferred through conduction in solids.

   "Metal solids in particular, such as copper or gold, are effective at conducting heat." This statement confirms that metals are good conductors of heat.

To learn more about conduction  visit: https://brainly.com/question/12767362

#SPJ11

What is an advantage of using a parallel backbone over a collapsed backbone?

a. A collapsed backbone requires too many connecting devices.
b. A parallel backbone uses redundant connections and is more reliable.
c. A collapsed backbone uses redundant connections, which costs more money.
d. A parallel backbone uses fewer redundant connections, which costs less money.

Answers

The advantage of using a parallel backbone over a collapsed backbone is A parallel backbone uses redundant connections and is more reliable.

Hence, the correct option is A.

In a parallel backbone network design, multiple backbone paths or links are established between network devices. This redundancy provides several benefits:

1. Fault Tolerance: With redundant connections, if one link or path fails, traffic can be automatically rerouted through alternative paths. This enhances network resilience and minimizes downtime. In contrast, a collapsed backbone may rely on a single link, making the network more vulnerable to failures.

2. Load Balancing: A parallel backbone allows for load distribution across multiple links, reducing congestion and improving network performance. Traffic can be spread across the available paths, optimizing resource utilization.

3. Scalability: A parallel backbone provides scalability as additional links can be added to accommodate increased network traffic or growth. This flexibility allows for easier expansion without disrupting the overall network architecture.

While the other options mention cost-related aspects, it's important to note that the advantages of reliability, fault tolerance, and performance offered by a parallel backbone often outweigh the associated costs. Redundancy in the form of parallel links helps ensure network availability and smooth operations, which are crucial for many organizations.

Therefore, The advantage of using a parallel backbone over a collapsed backbone is A parallel backbone uses redundant connections and is more reliable.

Hence, the correct option is A.

To know more about parallel backbone here

https://brainly.com/question/10537869

#SPJ4

Observing that the ball rolls down the inclined plane, determine what the acceleration of the ball is as it rolls (assuming no friction) down the ramp. Note, you may be tempted to answer, "the acceleration of the ball is caused by the acceleration due to gravity which is 9.8 m/s?, however notice the ball does not fall vertically downward. Using the inclined plane as a right triangle, use trig to determine what the acceleration of the ball is. You will need to know the angle of inclination of the plane, which you can find using the images above.

Answers

To determine the acceleration of a ball as it rolls down an inclined plane (assuming no friction), we need to use trigonometry. We need to find the component of the force due to gravity that pulls the ball down the ramp. The acceleration of the ball is equal to this component divided by the mass of the ball.The angle of inclination of the plane is given as 30°.From the image, we see that the force due to gravity can be split into two components:

one parallel to the ramp (Fp) and one perpendicular to the ramp (Fn).The force parallel to the ramp (Fp) is given by Fp = mgsinθ, where m is the mass of the ball, g is the acceleration due to gravity, and θ is the angle of inclination of the plane.

The force perpendicular to the ramp (Fn) is given by Fn = mgcosθ, where m is the mass of the ball, g is the acceleration due to gravity, and θ is the angle of inclination of the plane.The acceleration of the ball down the ramp is given by a = Fp/m. We can substitute Fp into this equation, giving us a = mgsinθ/m = gsinθ.Using the given angle of inclination of the plane (θ = 30°) and the acceleration due to gravity (g = 9.8 m/s²), we can calculate the acceleration of the ball as it rolls down the ramp:

a = gsinθ = 9.8 m/s² × sin(30°) ≈ 4.9 m/s²Therefore, the acceleration of the ball as it rolls down the inclined plane is approximately 4.9 m/s².

About Gravity

Gravity is a natural phenomenon whereby everything that has mass or energy in the universe—including planets, stars, galaxies, and even light—attracts one another. Gravity is useful for holding objects on the surface of the earth. If there is no gravitational force, objects will scatter and collide with each other. Objects on earth can also be thrown into space. The force of gravity keeps the atmosphere on the earth's surface.

Learn More About Gravity at https://brainly.com/question/940770

#SPJ11


Two charges are placed on the x-axis: +3.0μC at x= 0 and -5.0μC
at x= 40cm. Where must a third charge q be placed if the force it
experiences is to be zero?

Answers

The third charge q would have to be placed at d = 1.3745

How to solve for the charge

Given the values

+3.0μC at x= 0 and -5.0μC at x= 40cm.

we have

f₁ = f₂ for the force to be equal to zero

Then

[tex]\frac{k*3*q}{d^2} =\frac{4*5*q}{(d+0.4)^2}[/tex]

we cross multiply and we wiill have

[tex]\frac{(d + 0.4)^2}{d^2}= \frac{5}{3}[/tex]

we factorize and solve for the value of d

d = 1.3745

Hence the third charge would have to be placed at d = 1.3745 for the force it experiences is to be zero

Read more on charges here

https://brainly.com/question/30352947

#SPJ4

the work function of a metal is 1.96 ev. find the kinetic energy of the photoelectrons emitted when light of 320 nm falls on the metal. a. 5.83 ev c. 1.96 ev b. 1.91 ev d. 3.87 ev

Answers

The kinetic energy of the photoelectrons emitted when light of 320 nm falls on the metal is approximately 1.91 eV.

Hence, the correct option is B.

To calculate the kinetic energy of the photoelectrons emitted when light of a specific wavelength falls on a metal, we can use the equation:

Kinetic energy of photoelectrons = Energy of incident photons - Work function of the metal

First, we need to convert the given wavelength from nanometers (nm) to electron volts (eV) using the relationship:

Energy (in eV) = 1240 / Wavelength (in nm)

Given that the wavelength of the light is 320 nm, we can calculate the energy of the incident photons as follows:

Energy of incident photons = 1240 / 320

= 3.875 eV

Next, we can subtract the work function of the metal (1.96 eV) from the energy of the incident photons to find the kinetic energy of the photoelectrons:

Kinetic energy of photoelectrons = 3.875 eV - 1.96 eV

= 1.91 eV

Therefore, the kinetic energy of the photoelectrons emitted when light of 320 nm falls on the metal is approximately 1.91 eV.

Hence, the correct option is B.

To know more about kinetic energy here

https://brainly.com/question/999862

#SPJ4

a test charge determines charge on insulating and conducting balls

Answers

When a test charge is brought near an insulating or conducting ball, it will experience attraction or repulsion depending on the charge of the ball. By measuring the force experienced by the test charge, it is possible to determine the charge on the insulating or conducting ball.

In the case of insulating balls, the charge is determined by rubbing the balls with a material that can transfer charge. This process is called charging by friction. The insulating balls will acquire a static charge, which can be positive or negative. By bringing a test charge near the insulating ball, it is possible to determine the sign of the charge.

In the case of conducting balls, the charge is determined by using a device called an electroscope. The electroscope can detect the presence of charge on the conducting ball by measuring the flow of charge through a metal leaf in response to the presence of the ball. By measuring the direction of flow of charge, it is possible to determine the sign of the charge on the ball.

Learn more about insulating materials in the field of electricity: https://brainly.com/question/23734778

#SPJ11

7. [Challenge] A car, traveling along a flat straight road with speed v c,​ sees a truck, traveling in the same direction with speed vT , a distance d directly in front. The car begins to slow with an acceleration of magnitude a while the truck does not alter its driving. Assume that v c ≥v T

. a. Under what conditions will the car collide with the truck? b. How much time would the driver of the car have before the collision? c. What would be the speed of the car in the instant before the collision?

Answers

If the stopping distance (d_stop) is less than or equal to the initial distance (d) between the car and the truck, then the car will collide with the truck. The time required for the car to come to a complete stop with the given acceleration (a). The speed of the car in the instant before the collision is the square root of twice the product of acceleration (a) and the initial distance (d) between the car and the truck.

a. The car will collide with the truck if the distance it takes for the car to come to a stop is less than or equal to the distance between them initially.

The stopping distance for the car can be calculated using the equation:

d_stop = (v_c^2) / (2a)

If the stopping distance (d_stop) is less than or equal to the initial distance (d) between the car and the truck, then the car will collide with the truck.

b. The time the driver of the car would have before the collision can be calculated using the equation:

t = v_c / a

This gives the time required for the car to come to a complete stop with the given acceleration (a). The driver of the car would have this amount of time before the collision occurs.

c. The speed of the car in the instant before the collision can be found using the equation of motion:

v_final^2 = v_initial^2 + 2ad

Since the car is coming to a stop, the final velocity (v_final) would be zero. Rearranging the equation:

0 = v_initial^2 + 2ad

Solving for v_initial, the speed of the car in the instant before the collision, gives:

v_initial = √(2ad)

Therefore, the speed of the car in the instant before the collision is the square root of twice the product of acceleration (a) and the initial distance (d) between the car and the truck.

To know more about stopping distance, refer here:

https://brainly.com/question/28542251#

#SPJ11

If you approach a light beacon while traveling at one-half the speed of light (0.5 c), you will measure the speed of light from the beacon to be...?

Answers

The speed of light from the beacon to be approximately 299,792,458 m/s.

According to the principles of special relativity, the speed of light in a vacuum, denoted by "c," is constant and is the same for all observers, regardless of their relative velocities.

This fundamental postulate of special relativity states that the speed of light is always measured to be approximately 299,792,458 meters per second (m/s) by all observers.

Therefore, if you approach a light beacon while traveling at one-half the speed of light (0.5c), you will still measure the speed of light from the beacon to be approximately 299,792,458 m/s.

The speed of light is invariant and does not change based on the observer's relative motion.

Learn more about beacon from the given link

https://brainly.com/question/30301489

#SPJ11

Other Questions
Dr. Jones conducted a study examining the relationship between the quality of breakfast and academic performance for a sample of n=20 first grade students. The students were divided into two equivalent groups. One group was given a nutritious breakfast each morning for 6 weeks and the other group was given a non-nutritious breakfast each day during the same period. Academic performance was measured by each child's grades at the end of the 6-week period to determine whether there was any difference between the two groups. Is this an example of a correlational or an experimental study? Explain your answer A person with strong critical thinking skills and habits of mind is more likely to___________________ who is the end lender in a mortgage broker transaction Which of the following items should be capitalised within the initial carrying amount of an item of plant?I A deduction to reflect the estimated residual valueII Cost of a three-year maintenance agreementIII Cost of transporting the plant to the factoryIV Cost of installing a new power supply required to operate the plantV Cost of a three-week training course for staff to operate the plant A fan is rotating at a constant 362rev/min. What is the magnitude of the acceleration of a point on one of its blades 10 cm from the axis of rotation? a=m/s^2 A particle travels in a circle of radius 14.9 m at a constant speed of 20 m/s. What is the magnitude of the acceleration? a_c=m/s^2 Which of the following is not a supercontinent that Ontario wasa part of at some point in it's history?Group of answer choicesNenaRodiniaIapetusNone of these answers are correctArctica A crate with a mass of 82kg sits on a tilted rampand experiences friction so that it remains motionless. The ramp is tilted at an angle of 22 degrees relative to the ground. What is the magnitude of the normal force in newtons exerted on the crate from the ramp? The non-parametric test for determining the difference between two populations based on paired samples is Kruskal Wallis test Test for randomness None of these Mann-Whitney U test Median test for randomness For the functiony=x+x^2/x+10at(3,1), find the following:(a) the slope of the tangent line x (b) the instantaneous rate of change of the function A single conservative force F(x) acts on a 1.0 kg particle that moves along an x axis. The potential energy U(x) associated with F(x) is given by U(x)=4xex/4J, where x is in meters. At x = 5.0 m the particle has a kinetic energy of 2.0 J. Determine (a) the least value of x the particle can reach and (b) the greatest value of x the particle can reach. (c) the maximum kinetic energy of the particle and (d) the value of x at which it occurs. (e) Determine an expression in newtons and meters for F(x) as a function of x. (f) For what (finite) value of x does F(x) = 0? A diffraction grating with 230 lines per mm is used in an experiment to study the visible spectrum of a gas discharge tube. At what angle from the beam axis will the first order peak occur if the tube emits light with wavelength of 590.8 nm ? (in deg) Tries 0/12 At what angle will the second order peak occur? (in deg) Tries 0/12 Venice is not the only city struggling to balance commercial interests with the concerns of conservationists and preservationists. In the United States, the proposed development of a new $35 million cruise ship terminal in Charleston, South Carolina, has many locals up in arms. Opponents are concerned about the new facility's impact on the historic district where the port is located. The mayor of Charleston thinks the plan's critics have it all wrong. He points out that some 1,700 vessels use the port each year but only 85 of them 5 percent - are cruise ships. "This is not a theme park," he said. "One of the authentic parts of Charleston is that we are an international port." Discussion Questions 4-5. What critical-thinking issues are raised in the case? 4-6. The case presents various points of view on the issue of tourism in Venice. Whose perspective(s), if any, do you agree with? 4-7. Should companies that contribute to historic renovation projects be allowed to place advertising on the buildings? 4-8. In June 2011, city officials in Venice approved a tax on tourists staying in the city. Do you think this is a fair and effective way to generate revenue and limit the number of tourists? 4-9. Do you think that Venice's tourist officials should use marketing communications to provide information that would direct visitors to areas of the city that are "less touristy"? what was a common belief among historians in the early 20th century You are estimating the cost of equity for the companys common stock using both CAPM and the constant dividend growth model. Calculate the average of the two estimates based on the following information: Your company just paid a $0.94 cash dividend for the year. There has been a steady growth in dividends of 4.5% per year which analysts expect to continue. The current stock price is $19. You estimate the beta for the company stock at 1.38.The market has a 10.6 percent rate of return and a risk premium of 7.5 percent.Calculate the following returns: (1/100 of one percent without % sign, e.g. 12.671, if a negative percentage, -9.56):1) Cost of capital constant dividend growth model:2) Cost of capital CAPM:3) Estimated cost of equity: in general, funding for recovery programs is given to species that are In 2010. many unskilled workers in the United States eamed the Federal minimum wage of $7.25 per hour. By contrast, average earnings in 2010 were about $22 per hour, and centain highly skilled professionats, such as doctors and lawyers, eamed $100 or more per houk. a. If we assume that wage differences are caused solely by differences in productivity, how many times more prociuctive was the average worker than a worker being pald the Federai minimum wage? Instructions: Round your answer to two decimal places. times more productive than a minimum wage worker How many times more productive wos a $100-per-hour lawyer compated to a worker eaming minimum wage? Instructions: Round your answer to two decimal places. times more productive than a minimum wage worker b. Assume that there are 20 minimum wage workers in the economy for each $100 per-hour liwyer. Nsp assume that both lawyers and minimum-wage workers work the same number of hours per week. If everyone works 40 hours per woek, how much does a $100. per-hour lawyer eaen a week? c. Suppose that the government pairs each $100-per-hour lawyer with 20 nearby minimum-wage workers. If the government taxes 25 percent of each lawyer's income cach week. and distributes it equally among the 20 minimum wage workers with whom each lawyer is paired, how much will each of those minimum-wage workers recelve each week? $ per week If we divide by the number of hours worked each week, how much does each minimum-wage worker's weekly transfer amount to on an hourly basis? Instructions: Round your answer to two decimal pleces. $ perhour. d. What if instead the government taxed each lawyer 100 percent before dividing the money equally among the 20 minimum-wage workers with whom each lawyer is pasted. How much per weck will each minimum-wage worker receive? $ (B) per week How much is that on an hourly basis? 5 Bper hour Which of the following can be considered a disruptive product?a.Digital camerab.iPodc.Printing pressd.All of the above b) Stakeholder analysis can be a useful tool for determining which types and forms of attractors to develop. Adapting the notion that a firm should sell to the most favourable buyers, an organisation should concentrate on using its Web site to attract the most influential stakeholders. For example, it might use an attractor to communicate with employees or it may want to attract and inform investors and potential suppliers. After selecting the targeted stakeholder group, the organisation needs to decide the degree of focus of its attraction. First, identify the target stakeholder groups and make the site more attractive to these groups--the influence filter. Second, decide the degree of customisation--the target refractor. For example, Kellogg's Web site, designed to appeal to all young children, filters but is not customised. American Airlines' Web site is an implementation of filtering and customisation. The site is designed to attract prospective flyers (filtering). Frequent flyers, an important stakeholder group, have access to their mileage numbers by entering their frequent flyer number and a personal code (customisation).Write an introduction on the above Martin Company purchases a machine at the beginning of the year at a cost of $78,000. The machine is depreciated using the straight-line method. The machine's useful life is estimated to be 5 years with a $4,000 salvage value. The book value of the machine at the end of year 5 is: Multiple Choice So. $31,200 $74,000. $0. $31,200. $74,000 $4,000. $14,800. Which of the following causes supply chain risk; A) Lean manufiacturing. B) Global optimisation. C) Product design. D) Smart pricing. E.) All of the above. Coca cola co-produces in advance based on the demand forecast. Coca cola co follows; A) Backorder fluctuation. B) Make to order. C) Make to stock. D) Forecast is not the only source of variation E) None of the above. When the level of commitment is high and the option level is low, then which one of the following is correct; A) The supplier will hold the inventory risk. B) The buyer will hold the inventory risk. C) The buyer will hold price and shortage risk. D) The supplier will hold price and shortage risk. E) None of the above. Which contract requires the manufacturer to share its production cost information; A) Buyback contract. B) Bay back contact. C) Revenue sharing contract. D) Flexible contract. E) None of the above. The contract(s) when the supplier is make to stock and buyer is make to order is/are; A) Buyback contract. B) Bay back contact. C) Revenue sharing contract. D) Flexible contract. E) None of the above. A researcher is interested in examining factors associated with job satisfaction. Using a human resources database from a large technology company, she examines the relationship between gender, tenure in the organization (less than 2 years vs. 5+ years) and self-reported job satisfaction measured on a 10-point scale. Identify the appropriate statistical test.one-way independent groups ANOVA two-way independent groups ANOVA 2 goodness of fit test bivariate correlation