Answer:
Solute
Explanation
A substance that gets dissolved to create a solution is best described as to as
A 125 g sample of strontium was heated from 0°C to 20°C. It absorbed 750 J of energy. What is the specific heat capacity of iron?
Answer:
Specific heat capacity of iron (C) = 0.3 J/GK
Explanation:
Given:
Mass of sample (m) = 125 gram
Change in heat (ΔT) = 20°C - 0°C = 20°C
Absorbed energy (ΔE) = 750 J
Find:
Specific heat capacity of iron (C) = ?
Computation:
⇒ Specific heat capacity of iron (C) = ΔE / [mΔT]
⇒ Specific heat capacity of iron (C) = 750 / [125 × 20]
⇒ Specific heat capacity of iron (C) = 750 / [2,500]
⇒ Specific heat capacity of iron (C) = 0.3 J/GK
Answer:
Specific heat capacity of iron (C) [tex]= 0.3[/tex] J/g°C
Explanation:
As we know that
Specific heat capacity of iron (C) [tex]=\frac{\delta E}{ [m* \delta T]}[/tex]
Where [tex]\delta E[/tex] represents the change in the energy
m represents the mass of the sample and
[tex]\delta T[/tex] represents the change in temperature.
Given:
Mass of sample (m) [tex]= 125[/tex] gram
Change in heat ([tex]\delta T[/tex] ) [tex]20 - 0 = 20[/tex]
Absorbed energy ([tex]\delta E[/tex])[tex]= 750[/tex] J
Substituting the given values in above equation, we get -
Specific heat capacity of iron (C)
[tex]= \frac{750}{125*20}[/tex]
Specific heat capacity of iron (C) [tex]= 0.3[/tex] J/g°C
1. A 99.8 mL sample of a solution that is 12.0% KI by mass (d: 1.093 g/mL) is added to 96.7 mL of another solution that is 14.0% Pb(NO3)2 by mass (d: 1.134 g/mL). How many grams of PbI2 should form?
Pb(NO3)2(aq) + 2 KI(aq) PbI2(s) + 2 KNO3(aq)
Answer:
[tex]m_{PbI_2}=18.2gPbI_2[/tex]
Explanation:
Hello,
In this case, we write the reaction again:
[tex]Pb(NO_3)_2(aq) + 2 KI(aq)\rightarrow PbI_2(s) + 2 KNO_3(aq)[/tex]
In such a way, the first thing we do is to compute the reacting moles of lead (II) nitrate and potassium iodide, by using the concentration, volumes, densities and molar masses, 331.2 g/mol and 166.0 g/mol respectively:
[tex]n_{Pb(NO_3)_2}=\frac{0.14gPb(NO_3)_2}{1g\ sln}*\frac{1molPb(NO_3)_2}{331.2gPb(NO_3)_2} *\frac{1.134g\ sln}{1mL\ sln} *96.7mL\ sln\\\\n_{Pb(NO_3)_2}=0.04635molPb(NO_3)_2\\\\n_{KI}=\frac{0.12gKI}{1g\ sln}*\frac{1molKI}{166.0gKI} *\frac{1.093g\ sln}{1mL\ sln} *99.8mL\ sln\\\\n_{KI}=0.07885molKI[/tex]
Next, as lead (II) nitrate and potassium iodide are in a 1:2 molar ratio, 0.04635 mol of lead (II) nitrate will completely react with the following moles of potassium nitrate:
[tex]0.04635molPb(NO_3)_2*\frac{2molKI}{1molPb(NO_3)_2} =0.0927molKI[/tex]
But we only have 0.07885 moles, for that reason KI is the limiting reactant, so we compute the yielded grams of lead (II) iodide, whose molar mass is 461.01 g/mol, by using their 2:1 molar ratio:
[tex]m_{PbI_2}=0.07885molKI*\frac{1molPbI_2}{2molKI} *\frac{461.01gPbI_2}{1molPbI_2} \\\\m_{PbI_2}=18.2gPbI_2[/tex]
Best regards.
What is the pH of a 1.4 M pyridine solution that has Kb = 1.7 × 10-9? The equation for the dissociation of pyridine is C5H5N(aq) + H2O(l) ⇌ C5H5NH+(aq) + OH-(aq). What is the pH of a 1.4 M pyridine solution that has Kb = 1.7 × 10-9? The equation for the dissociation of pyridine is C5H5N(aq) + H2O(l) ⇌ C5H5NH+(aq) + OH-(aq). 4.31 9.69 8.72 10.69
Answer:
pH = 9.69
Explanation:
When pyridine (C₅H₅N) is added to water, the equilibrium that occurs is:
C₅H₅N(aq) + H₂O(l) ⇌ C₅H₅NH⁺(aq) + OH⁻(aq) Kb = 1.7x10⁻⁹
Where Kb is defined as:
Kb = 1.7x10⁻⁹ = [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]
If you have a solution of 1.4M C₅H₅N, the equilibrium concentration of each specie is:
[C₅H₅N] = 1.4 - X
[C₅H₅NH⁺] = X
[OH⁻] = X
Where X represents the reaction coordinate
Replacing in Kb expression:
1.7x10⁻⁹ = [X] [X] / [1.4 - X]
2.38x10⁻⁹ - 1.7x10⁻⁹X = X²
0 = X² + 1.7x10⁻⁹X - 2.38x10⁻⁹
Solving for X:
X = -0.0000488M → False answer, there is no negative concentrations
X = 0.0000488M → Right answer
Thus, [OH⁻] = 0.0000488M. As pOH = -log [OH⁻]
pOH = 4.31
Knowing pH = 14 - pOH
pH = 9.69
The pH of a 1.4 M pyridine solution is 9.69. When pyridine (C₅H₅N) is added to water, the equilibrium occurs. The rate of forward reaction is equals to the rate of backward reaction.
Equilibrium for pyridine:When pyridine (C₅H₅N) is added to water, the equilibrium that occurs is:
C₅H₅N(aq) + H₂O(l) ⇌ C₅H₅NH⁺(aq) + OH⁻(aq) Kb = 1.7x10⁻⁹
Where Kb is defined as:
Kb = 1.7x10⁻⁹
Kb= [C₅H₅NH⁺] [OH⁻] / [C₅H₅N]
If you have a solution of 1.4M C₅H₅N, the equilibrium concentration of each specie is:
[C₅H₅N] = 1.4 - x
[C₅H₅NH⁺] = x
[OH⁻] = x
Where x represents the reaction coordinate
Replacing in Kb expression:
1.7*10⁻⁹ = [x] [x] / [1.4 -x]
2.38*10⁻⁹ - 1.7x10⁻⁹x = x²
0 = x² + 1.7*10⁻⁹x - 2.38*10⁻⁹
Solving for x:
x = 0.0000488M
Thus, [OH⁻] = 0.0000488M.
As pOH = -log [OH⁻]
pOH = 4.31
Knowing pH = 14 - pOH
pH = 9.69
Find more information about Equilibrium constant here:
brainly.com/question/12858312
Polyatomic ion formula for aluminum hydroxide
Answer:
Al(OH)3 ? i hope this is what you mean.
Answer:
The formula for aluminum hydroxide is Al(OH)3.
Explanation:
Typically, metal hydroxides form strong bases in solution. Aluminum hydroxide is special compound because it is amphoteric. This means it can react as a base or as an acid.
When is the small size of gas particles taken into account?
Answer:
At high pressures and low temperatures.
Explanation:
That's when the volume of the gas is quite small.
The volume of the gas particles can then be a significant proportion of the total volume.
What parts of the body are tested for rigor Mortis
What is the hydronium ion concentration of a 0.100 M acetic acid solution with Ka = 1.8 × 10-5? The equation for the dissociation of acetic acid is: CH3CO2H(aq) + H2O(l) ⇌ H3O+(aq) + CH3CO2-(aq) What is the hydronium ion concentration of a 0.100 M acetic acid solution with Ka = 1.8 × 10-5? The equation for the dissociation of acetic acid is: CH3CO2H(aq) + H2O(l) ⇌ H3O+(aq) + CH3CO2-(aq) 1.3 × 10-2 M 4.2 × 10-2 M 1.3 × 10-3 M 4.2 × 10-3 M
Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:
[tex]CH_3CO_2H(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3CO_2^-(aq)[/tex]
We can write the law of mass action for it:
[tex]Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}[/tex]
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change [tex]x[/tex] due to the dissociation extent, we are able to rewrite it as shown below:
[tex]1.8x10^{-5}=\frac{x*x}{0.100-x}[/tex]
Thus, via the quadratic equation or solve, we obtain the following solutions:
[tex]x_1=-0.00135M\\x_2=0.00133M[/tex]
Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
Answer:
1.3×10^-3 M
Explanation:
Step 1:
Data obtained from the question:
Equilibrium constant (Ka) = 1.8×10^-5
Concentration of acetic acid, [CH3COOH] = 0.100 M
Concentration of hydronium ion, [H3O+] =..?
Step 2:
The balanced equation for the reaction.
CH3CO2H(aq) + H2O(l) ⇌ H3O+(aq) + CH3CO2-(aq)
Step 3:
Determination of concentration of hydronium ion, [H3O+].
This can be obtained as follow:
Ka = [H3O+] [CH3CO2-] / [CH3CO2H]
Initial concentration:
[CH3COOH] = 0.100 M
[H3O+] = 0
[CH3CO2-] = 0
During reaction
[CH3COOH] = – y
[H3O+] = +y
[CH3CO2-] = +y
Equilibrium:
[CH3COOH] = 0.1 – y
[H3O+] = y
[CH3CO2-] = y
Ka = [H3O+] [CH3CO2-] / [CH3CO2H]
1.8×10^-5 = y × y / 0.1
Cross multiply
y^2 = 1.8×10^-5 x 0.1
Take the square root of both side
y = √(1.8×10^-5 x 0.1)
y = 1.3×10^-3 M
[H3O+] = y = 1.3×10^-3 M
Therefore, the concentration of the hydronium ion, [H3O+] is 1.3×10^-3 M
Which characteristic of a substance is considered a chemical property
Answer:
c
Explanation:
2C 2 H 6 +7O 2 ***>4CO 2 +6H 2 O if 7.0 g of C 2 H 6 react with 18 g of O 2 , how many grams of water will be produced
Answer:
grams H₂O produced = 8.7 grams
Explanation:
Given 2C₂H₆(g) + 7O₂(g) => 4CO₂(g) + 6H₂O(l)
7g 18g ?g
Plan => Convert gms to moles => determine Limiting reactant => solve for moles water => convert moles water to grams water
Moles Reactants
moles C₂H₆ = 7g/30g/mol = 0.233mol
moles O₂ = 18g/32g/mol = 0.563mol
Limiting Reactant => (Test for Limiting Reactant) Divide mole value by respective coefficient of balanced equation; the smaller number is the limiting reactant.
moles C₂H₆/2 = 0.233/2 = 0.12
moles O₂/7 = 0.08
Limiting Reactant is O₂
Moles and Grams of H₂O:
Use Limiting Reactant moles (not division value) to calculate moles of H₂O.
moles H₂O = 6/7(moles O₂) = 6/7(0.562) moles H₂O = 0.482 mole H₂O yield
grams H₂O = (0.482mol)(18g·mol⁻¹) = 8.7 grams H₂O
3Fe + 2O2 → Fe3O4 In this reaction, 200 grams of Fe react with 64 grams of O2. How many grams of Fe3O4 will be produced? A 230 grams B 264 grams C 280 grams D 460 grams
Answer:
just did it the answers b
Explanation:
What is the binding energy of a mole of nuclei with a mass defect of 0.00084 kg/mol?
Answer:
The binding energy of a mole of the nuclei is 252KJ
Explanation:
The binding energy is the amount of energy required to separate an atom into its nuclei.
From Einstein's relations,
E = Δm[tex]c^{2}[/tex]
where E is the energy, Δm is the mass defect and c is the speed.
The mole of nuclei moves with the speed of light, so that;
c = 3.0 × [tex]10^{8}[/tex] m/s
Given that Δm = 0.00084Kg/mol, the binding energy is calculated as;
E = 0.00084 × 3.0 × [tex]10^{8}[/tex]
= 252000
= 252KJ
The binding energy of a mole of the nuclei is 252KJ.
Answer:
7.55×10^10 KJmol-1
Explanation:
The actual mass of a nucleus is usually less than the sum of the masses of the constituent neutrons and protons that make up the nucleus. This difference is called the mass defect.
The mass defect is related to the binding energy holding the neutrons and protons together in the nucleus. Since energy and mass are related by Einstein's equation;
E=∆mc^2 where;
E = binding energy of the nucleus
∆m= mass defect of the nucleus
c= speed of light
The larger the mass defect, the larger the binding energy of the nucleus and the more stable the nucleus.
From the data provided;
Mass defect= 0.00084 kg/mol or 0.84g/mol
Since 1 g/mol= 1 amu
0.84g/mol= 0.84 amu
The conversion factor from atomic mass units to MeV is 931
Binding energy = 0.84 × 931= 782.04 MeV
Since 1eV= 96.49KJmol-1
782.04×10^6eV= 7.55×10^10 KJmol-1
Ascorbic acid (H2C6H6O6), also known as Vitamin C, is a polyprotic acid found in fruit, tomatoes, potatoes and leafy vegetables. The pKa's of the ascorbic acid are pKa1 = 4.10 and pKa2 = 11.80 at 25 °C. When ascorbic acid is titrated with NaOH and it takes 60.0 mL to remove all protons possible. In the titration curve, how many mL of NaOH are required to reach the first pKa? Another way of asking this is when presented with a titration curve of ascorbic acid where on the x-axis should one look (which volume of NaOH), if one wants to determine the first pKa?
Answer:
as when we add 60 ml it removes all the protons it means it is 2nd equivalence point of Ascorbic acid
and we know that pH = pKa1 when moles of NaOH is half of the 1st equivalence point
1st equivalence point = 2nd equivalence point / 2 = 60/2 =30ml
1st half equivalence point = 30/2 = 15ml
so when we add 15ml of NaOH
pH = pKa1 =15mL
which would dissolve faster individual salt crystals a big block of salt
Answer:
Table salt (the iodine isn't important) consists of much smaller particles than rock salt and therefore has a much higher ratio of surface area to mass. Since chemical reactions occur at surfaces,the smaller table salt particles will dissolve far more quickly than the larger rock salt.
Explanation:
Answer:
Individual salt crystals
Explanation:
A given quantity of solute dissolves faster when it is ground into small particles than if it is in the form of a large chunk because more surface area is exposed.
Give me a good review if right please.
The periodic table of the elements lists the elements in order of increasing atomic number. Each element has its own unique square in the periodic table. Numbers in an element's square are used to tell how many protons, neutrons and electrons a typical atom of each element has.

Based on the information shown, which of the following is true about magnesium atoms?
A.
They all have 12 protons.
B.
Some have 24 protons and others do not.
C.
They all have 24 protons.
D.
Some have 12 protons and others do not.
Answer:
A) They all have 12 protons.
Explanation:
Magnesium has an atomic number of 12 which means it has 12 protons. All Magnesium atoms have 12 protons, the neutrons however may differ which produces things called isotopes where the atoms have same protons but neutrons change.
Keep in mind the atomic number is unique to each element, so 12 atomic number will always be Magnesium, 1 will always be Hydrogen and so on.....
How many moles of O2 are needed to react completely with 35 moles of FeCl3? 4FeCl3 + 3O2 > 2Fe2O3 + 3Cl2
Answer:
26 mol
Explanation:
Step 1: Write the balanced equation
4 FeCl₃ + 3 O₂ ⇒ 2 Fe₂O₃ + 3 Cl₂
Step 2: Determine the appropriate molar ratio
The molar ratio of FeCl₃ to O₂ is 4:3.
Step 3: Use the determined molar ratio to calculate the moles of oxygen required to completely react with 35 moles of ferric chloride
[tex]35molFeCl_3 \times \frac{3molO_2}{4molFeCl_3} = 26molO_2[/tex]
Answer:
[tex]n_{O_2}=26.25molO_2[/tex]
Explanation:
Hello,
In this case, given the reaction:
[tex]4FeCl_3 + 3O_2 \rightarrow 2Fe_2O_3 + 6Cl_2[/tex]
Since oxygen and iron (III) chloride are in a 4:3 molar ratio, he required moles of oxygen to completely react with 35 moles of iron (III) chloride result:
[tex]n_{O_2}=35molFeCl_3*\frac{3molO_2}{4molFeCl_3} \\\\n_{O_2}=26.25molO_2[/tex]
Best regards.
Plants remove carbon to the atmosphere during
Answer:
respiration
Explanation:
Plants give out carbon dioxide not only at night but during the day too. It happens because of the process of respiration in which plants take in oxygen and give out carbon dioxide. As soon as the sun rises another process called photosynthesis starts, in which carbon dioxide is taken in and oxygen is given out.
Plants use photosynthesis to capture carbon dioxide and then release half of it into the atmosphere through respiration. Plants also release oxygen into the atmosphere through photosynthesis
Living large means we use a lot of energy. What are three ways people use energy in their daily lives?
Answer:
right now we are using energy by online learning on our laptops , air conditioning, and transportation
Explanation:
please help! BRAINLIEST to right answerrrr
Answer: from the hotter surface to the colder one
Explanation:
Answer:d
d
Explanation:
which of the folowing alkanes can exhibit optical acitivity?(A)2-methylbutane,(B)2,3-Dimethylbutane,(C)3-methylpentane,(D)cyclobutane
Answer:
B
Explanation:
hope my answer helps you
CH³C⁴HCOCH³ how many atoms of each element are in one molecule of 2-heptanone
Answer:
- 7 carbon atoms.
- 14 hydrogen atoms.
- 1 oxygen atom.
Explanation:
Hello,
In this case, for the given compound, heptanone, whose chemical formula is:
[tex]CH_3COCH_2CH_2CH_2CH_2CH_3[/tex]
We can write the molecular formula showing the present atoms of each element:
[tex]C_7H_{14}O[/tex]
In such a way we have:
- 7 carbon atoms.
- 14 hydrogen atoms.
- 1 oxygen atom.
Best regards.
What is the total oxidation state of the fluorine atoms
Answer:
-1
Explanation:
Calculate the ATP yield for the complete oxidation of the 20-carbon unsaturated fatty acid gadoleic acid (a 20:1-Δ9 fatty acid). (You should consider the β-oxidation steps, processing of acetyl-CoA through the citric acid cycle, and electron transport. Production of one GTP should be considered the equivalent of production of one ATP. Enter your answer to three significant figures.) ATPs are gained for each gadoleic acid oxidized
Answer:
132.5 ATPs
Explanation:
We are Given, gadoleic acid has 20 carbons with one unsaturation at carbon number 9.
And we know that For a saturated fatty acid, one beta oxidation cycle results in 1 acetyl CoA molecule, 1 NADH + H+ and 1FADH2. this cycle occurs in 4 steps:
1. Fatty acyl CoA to trans-enoyl CoA: This step produces 1 FADH2
2. trans-enoyl CoA to beta-hydroxyacyl CoA: No reducing power or ATP is produced, Only hydrolysis of trans alkene takes place.
3. beta-hydroxyacyl CoA to beta-ketoacylCoA: This step produces 1 NADH+ H+
4. Release of one Acetyl CoA and fatty acyl CoA chain short of two carbon atoms.
Now, the cycle of gadoleic acid runs in same way till three acetyl CoA molecules are lost forming three FADH2 and three NADH + H+.
After loss of 3 acetyl CoA molecules, carbon number 7 (of actual chain) becomes acyl CoA and so, isomerase comes into action which converts cis double bond between carbon number 9 and Carbon number 10 to trans bond between Carbon number 8 and Carbon number 9. This isomerization then undergoes hydrolysis (as in step 2 of beta oxidation cycle) and step 3 and 4 take place as usual.
The above changes result in release in one acetyl CoA molecule and 1 NADH + H+ but FADH2 is not formed (because step 1 did not occur)
Remaining fatty acyl CoA containing 12 carbons undergoes 5 cycles of beta oxidation to form 6 acetyl CoA, 5 FADH2 and 5 NADH +H+.
So, a total of 10 acetyl CoA, 8 FADH2 and 9 NADH +H+ are formed in beta oxidation of gadoleic acid.
Now, each acetyl CoA on entering citric acid cycle forms 3 NADH + H+, 1 FADH2 and 1 GTP ( = 1ATP)
So, total 10 acetyl CoA from citric acid cycle will form 30 NADH + H+, 10 FADH2 and 10 GTP ( = 10 ATP)
Overall, complete oxidation of gadoleic acid will form, 39 NADH + H+, 18 FADH2 and 10 GTP ( = 10 ATP)
On ETC, assuming 1NADH + H+ to form 2.5 ATP and 1 FADH2 to form 1.5 ATP,
total ATPs formed will be 97.5 ATP (39 NADH + H+), 27 ATP (18 FADH2) and 10 ATP (10 GTP) = 134.5 ATPs
On the beginning of first cycle of beta oxidation, 2 ATPs are used for activation of fatty acid molecule. (these have to be subtracted)
So, net ATP yield = 134.5 - 2 = 132.5 ATPs
The ATP yield of complete oxidation of Gadoleic acid has been 132.5 ATP.
Beta oxidation of fatty acid has been a catalytic process for breaking of fatty acid molecules into acetyl Co A and NADH and FADH that enters the citric acid cycle for the generation of ATP.
The overall reaction for beta-oxidation can be stated as:
[tex]\rm C_n-acyl\;CoA\;+\;FAD\;+\;NAD^+\;+\;H_2O\;+\;CoA\;\rightarrow\;C_n_-_2acyl\;CoA\;+\;FADH_2\;+\;NADH\;+\;H^+\;+\;acetyl-CoA[/tex]
The complete oxidation of saturated even carbon fatty acid will result in :
ATP yield = 7n -6
Where n is the number of carbon
The complete oxidation of saturated odd carbon fatty acid will result in :
ATP yield = 7n - 19
The unsaturated fatty acid having a double bond at odd carbon results in a less [tex]\rm FADH_2[/tex] molecule production, resulting in the formation of 1.5 ATP less than the saturated fatty acid.
The ATP yield of 20 carbon chain Gadoleic acid :
n = 20
ATP yield = 7n - 6
ATP yield = 7 (20) - 6
ATP yield = 140 - 6
ATP yield = 134
Due to unsaturation at C9, there has been a reduction of 1.5 ATP.
ATP yield = 134 - 1.5
ATP yield = 132.5.
The ATP yield of complete oxidation of Gadoleic acid has been 132.5 ATP.
For more information about beta-oxidation, refer to the link:
https://brainly.com/question/9399547
What is the poH of a
6.5 x 10-12 M OH solution?
pOH = [?]
Answer:
[tex]pOH=11.2[/tex]
Explanation:
Hello,
In this case, by knowing that the pOH is defined in terms of the concentration of OH⁻ as shown below:
[tex]pOH=-log([OH^-])[/tex]
We directly compute with the given concentration:
[tex]pOH=-log(6.5x10^{-12})\\\\pOH=11.2[/tex]
Moreover, fur such pOH, the pH will be:
[tex]pH=14-11.2=2.8[/tex]
Which means that such solution is an acid solution.
Best regards.
Answer:
11.2
Explanation:
.The pH is 3. What is [H+]? *
1 point
0.001
0.01
100
1000
Answer:
0.001 M
Explanation:
The pH scale is used to determine the acidity or basicity of a solution.
If pH < 7, the solution is acid.If pH = 7, the solution is neutral.If pH > 7, the solution is basic.The pH is related to the concentration of hydrogen ions through the following expression.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog - 3 = 0.001 M
Which of the following 0.5 M aqueous salt solutions will have a pH of 7.0 at
LiF RbBr NaClO4 NH4Cl
A) LiF only B) NaClO4 only C) LiF and RbBr D) RbBr and NaClO4
Answer:
LiF and RbBr
Explanation:
Salt is an ionic compound that is made from the reaction of an acid and a base solution. Salts dissolve in water to give solutions that are acidic, basic, or neutral.
Salt formed from a strong acid and a weak base will make an acidic solution when added to water. The reason this occurs is because when the salt dissociates, the conjugate acid of the weak base will donate a proton, or one hydrogen ion, to water and form hydronium ion.
If a salt is formed from a weak acid and a strong base, it dissolves in water and the conjugate base of the weak acid will accept a proton from water and yield the hydroxide ion. Hence the solution of the salt will be basic.
If the salt is formed from a strong acid and a strong base, the salt is neutral when dissolved in water. Both LiF and RbBr are formed from strong acids and strong bases hence they will have a pH of 7.0 in solution.
LiF RbBr NaClO4 NH4Cl is = LiF and RbBr The correction is 'C'.
What are the Salt solutions?
Salt is an ionic mixture that is made from the reaction of an acid and a base resolution. Salts liquefy in water to give solutions that are acidic, basic, or neutral.
Salt constructed from a strong acid and a breakable base will make an acidic solution when added to water. The reason this occurs is that when the salt dissociates, the conjugate acid of the weak base will donate a proton, or one hydrogen ion, to water and form a hydronium ion.
If a grain of salt is formed from a weak acid and a powerful ground, it liquefies in water and the conjugate bottom of the weak acid will accept a proton from water and yield the hydroxide ion. Therefore, the solution of the salt will be basic.
If the salt is formed from a strong acid and a strong bottom, the salt is neutral when liquefied in water. Both LiF and also RbBr are formed from strong acids and powerful bases hence they will have a pH of 7.0 in resolution.
Therefore, the Correct option is 'C'
Find more information about Salt solutions here:
https://brainly.com/question/24856349
How are plastic containers different from paper containers? How are they the same?
Answer:
Paper is Not Reuseable like plastic.
Explanation:
After 56.0 min, 40.0% of a compound has decomposed. What is the half‑life of this reaction assuming first‑order kinetics?
Answer:
Go ahead and plug in the percentages and time to find the answer.
Explanation:
The amount of a substance with half-life h, that remains after time t is 0.5t/h
Since 26% has decomposed, 74% remains.
So .74 = 0.580/h
ln .74 = (80/h) ln 0.5
h/80 = ln 0.5 / ln .74
h = 80 ln 0.5 / ln .74
h = 184.16 minutes
Sometimes in lab we collect the gas formed by a chemical reaction over water (see sketch at right). This makes it easy to isolate and measure the amount of gas produced.
Suppose the CO gas evolved by a certain chemical reaction taking place at 55 degree C is collected over water, using an apparatus something like that in the sketch, and the final volume of gas in the collection tube is measured to be 117 ml.
Calculate the mass of CO that is in the collection tube. Round your answer to 2 significant digits. You can make any normal and reasonable assumption about the reaction conditions and the nature of the gases.
Answer:
The correct answer is 0.12 grams.
Explanation:
The mass of carbon monoxide or CO collected in the tube can be determined by using the ideal gas equation, that is, PV = nRT.
Based on the given question, P or the pressure of the gas is given as 1 atm, volume of the gas collected in the tube is 117 ml or 0.117 L.
The number of moles or n can be determined by using the equation, mass/molar mass.
R is the universal gas constant, whose value is 0.0821 L atmK^-1mol^-1, and temperature is 55 degree C or 328 K (55+273).
On putting the values we get:
n = PV/RT
= (1 atm*0.117 L) / (0.0821 L atmK^-1mol^-1 * 328 K)
= 0.0043447 mol
Therefore, mass of CO will be moles * molar mass of CO
= 0.0043447 mol * 28 g/mol
= 0.12 g
How many grams of californium-254 will remain after 363 days if we
start with 64.0 grams of this substance? The half-life of californium-254
is 60.5 days.
Answer:
1.02 g OF CALIFORNIUM-254 WILL REMAIN AFTER 363 DAYS IF 64 g REACTS WITH HALF LIFE OF 60.5 DAYS.
Explanation:
Half life of a chemical reaction is the time required for a radioactive element to decay to half its original mass.
We will use the formula:
Nt = No (1/2)^t/t1/2 where;
Nt = quantity of substance remaining = unknown
No = original mass of the substance = 64 g
t = time elapsed = 363 days
t1/2 = half life of the substance = 60.5 days
Putting the values into the equation, we have:
Nt = 64 * (1/2)^(363/60.5)
Nt = 64 * (1/2) ^6
Nt = 64 * 0.015625
Nt = 1.0156
The amount of californium-254 remaining after 363 days is approximately 1.02 g
Helium occupies a volume of 3.8 L at –45°C. What was its initial temperature when it occupied 8.3 L?
Answer:
98.3 gradius Celsius
Explanation:
This problem is solved using the Ideal Gas Equation
pV = nRT
...
Please see the step-by-step solution in the picture attached below.
Hope this answer can help you. Have a nice day!