Hello,
[tex]if\ n=1\ then\ 1^2=1\ and\ \dfrac{1}{6}*1*2*3=1:\ true\ for\ n=1\\[/tex]
We suppose the property true for n:
1²+2²+...+n²=n(n+1)(2n+1) / 6
and we are going to demonstrate that the property is true for n+1:
1²+2²+..+(n+1)²=(n+1)*(n+2)*(2n+3)/6
[tex]1^2+2^2+...+n^2+(n+1)^2\\\\=n*(n+1)*(2n+1)/6+(n+1)^2\\\\=(n+1)/6*[n(2n+1)+6n+6]\\\\=(n+1)/6*(2n^2+7n+6)\\\\=(n+1)(n+2)(2n+3)/6\\[/tex]
Congruent sides???????????
Answer:
the second option : ST and WX
Step-by-step explanation:
congruent means they would completely cover each other when oriented in the same direction and positioned at the same location.
after dying the two mirroring actions we get
VS correlates to ZW
ST correlates to WX
TU correlates to XY
UV correlates to ZY
The of the matrix whose columns are vectors which define the sides of a parallelogram one another is the area of the parallelogram?
Answer:
absolute value of the determinant, adjacent to, equal to
Step-by-step explanation:
The absolute value of a determinant of the [tex]\text{matrix whose}[/tex] columns are the vectors and they define the [tex]\text{sides}[/tex] of a [tex]\text{parallelogram}[/tex] which is adjacent to one another and is equal to the [tex]\text{area}[/tex] of the [tex]\text{parallelogram}[/tex].
The determinant is a real number. They are like matrices, but we use absolute value bars to show determinants whereas to represent a matric, we use square brackets.
Indicate the method you would use to prove the two 's . If no method applies, enter "none".
Answer:
AAS
Step-by-step explanation:
It will be angle angle side because you are given a side and two angles, and when you put them in the correct order, you will get AAS, or SAA (not the correct way to say it)
Floataway Tours has $420,000 that can be use to purchase new rental boats for hire during the summer. The boats can be purchased from two different manufacturers. Floataway Tours would like to purchase at least 50 boats and would like to purchase the same number from Sleekboat as from Racer to maintain goodwill. At the same time,Floataway Tours wishes to have a total seating capacity of at least 200.
Required:
Formulate this problem as a linear program.
Answer and explanation:
A linear problem is an equation based on known and unknown variables that follow a linear path, usually without exponents and look like this:
y=mx+b. To formulate the linear constraints of the problem above, we look at the unknown variables and known variables and define and equation using this.
From the problem, assume x and y are the prices of the different boat brands:
50x+50y=420000
Assume a and b are number of x brand boats and y brand boats supplied thus:
a+b>=200
13. Given that
[tex] {x}^{2} + {y}^{2} + 10y + 16 = 0[/tex]
and
[tex] {(x - 3)}^{2} + {y}^{2} = 1[/tex] are two circles on the same plane. Find:
a) the coordinates of the center and the radius for each circle.
b) the equation of the straight line joining the center of both circles.
step by step explanation:
[tex]\mathfrak{x}^{2}+{y}^{2}+16=0[/tex]
=[x2+16=0x26]
=[2x{y}^2{16}~0]
=[4×{y}^0{16}]
=[32x{y}^x]
Marla scored 70% on her last unit exam in her statistics class. When Marla took the SAT exam, she scored at the 70th percentile in mathematics. Explain the difference in these two scores.
Answer:
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Step-by-step explanation:
Marla scored 70% on her last unit exam in her statistics class.
This means that in her statistics class, Marla got 70% of her test correct.
When Marla took the SAT exam, she scored at the 70th percentile in mathematics.
This means that on the SAT exam, graded on a curve, Marla scored better than 70% of the students.
Explain the difference in these two scores.
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
what term can you add to
[tex] \frac{5}{6} x - 4[/tex]
to make it equivalent to
[tex] \frac{1}{2} x - 4[/tex]
9514 1404 393
Answer:
-1/3x
Step-by-step explanation:
We want to find the term 'a' such that ...
(5/6x -4) + a = (1/2x -4)
Add 4-1/2x to both sides.
(5/6 -1/2)x -4 +4 +a = 0
(5/6 -3/6)x + a = 0 . . . . . . express the fractions using a common denominator
1/3x + a = 0 . . . . . . . . . . simplify the difference
a = -1/3x . . . . . . . . . . .subtract 1/3x
The term you can add to make the desired equivalent is -1/3x.
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
anyone have sna pc hat ??
mine is rince9253
Answer:
Yeah the answer is n o .
Answer:
yes i do have but i dont use it
The coordinator of the vertices of the triangle are (-8,8),(-8,-4), and
Answer with Step-by-step explanation:
Complete question:
The coordinates of the vertices of the triangle are (-8,8),(-8,-4), and. Consider QR the base of the triangle. The measure of the base is b = 18 units, and the measure of the height is h = units. The area of triangle PQR is square units.
Let
P=(-8,8)
Q=(-8,-4)
QR=b=18 units
Height of triangle, h=Length of PQ
Distance formula
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Using the formula
Height of triangle, h=[tex]\sqrt{(-8+8)^2+(-4-8)^2}=12units[/tex]
Area of triangle PQR=[tex]\frac{1}{2}\times base\times height[/tex]
Area of triangle PQR=[tex]\frac{1}{2}\times 18\times 12[/tex]
Area of triangle PQR=108 square units
Length of QR=18units
Let the coordinates of R(x,y)
[tex]\sqrt{(x+8)^2+(y+4)^2}=18[/tex]
[tex](x+8)^2+(y+4)^2=324[/tex]
[tex]x^2+64+16x+y^2+8y+16=324[/tex]
[tex]x^2+y^2+16x+8y=324-64-16[/tex]
[tex]x^2+y^2+16x+8y=244[/tex] ......(1)
Using Pythagoras theorem
[tex]H=\sqrt{P^2+B^2}[/tex]
[tex]H=\sqrt{(18)^2+(12)^2}[/tex]
[tex]H=6\sqrt{13}[/tex]units
[tex](6\sqrt{13})^2=(x+8)^2+(y-8)^2[/tex]
[tex]x^2+64+16x+y^2+64-16y=468[/tex]
[tex]x^2+y^2+16x-16y=468-64-64=340[/tex]
[tex]x^2+y^2+16x-16y=340[/tex] .....(2)
Subtract equation (2) from (1) we get
[tex]24y=-96[/tex]
[tex]y=-96/24=-4[/tex]
Using the value of y in equation (1)
[tex]x^2+16x+16-32=244[/tex]
[tex]x^2+16x=244-16+32[/tex]
[tex]x^2+16x=260[/tex]
[tex]x^2+16x-260=0[/tex]
[tex]x^2+26x-10x-260=0[/tex]
[tex]x(x+26)-10(x+26)=0[/tex]
[tex](x+26)(x-10)=0[/tex]
[tex]x=-26, x=10[/tex]
Hence, the coordinate of R (10,-4) or (-26,-4).
In one U.S city, the taxi cost is $3 plus $0.80 per mile. If you are traveling from the airport, there is an additional charge of $5.50 for tolls. How far can you travel from the airport by taxi for $56.50?
Answer:
60 miles
Step-by-step explanation:
Create an equation where y is the total cost and x is the number of miles traveled.
0.8x will represent the cost from the miles traveled. 8.5 will be added to this to represent the taxi cost and additional charge from tolls:
y = 0.8x + 8.5
Plug in 56.50 as y and solve for x, the number of miles:
y = 0.8x + 8.5
56.5 = 0.8x + 8.5
48 = 0.8x
60 = x
So, you can travel 60 miles
Samantha acored 15 points in her laat
basketball game. She made 3 free throwa
that are worth 1 point each. The rest of
her pointa came on 2 point field goala,
Write an equation that can be used to find
the number of 2 point field goals that
Samantha made
(uae p as your variable)
Help fasttt
Answer:
15=2p+3
Step-by-step explanation:
What is the value of y?
Enter your answer, as an exact value, in the box.
Answer:
y=4√3 units
Step-by-step explanation:
Hi there!
We are given ΔABC, which is a right triangle (m<C=90°), m<A=60°, AB=8, and BC=y
We need to find the value of y (BC)
The side AB is the hypotenuse of the (the side opposite from the right angle).
BC is a leg, which is a side that makes up the right angle.
Now, if we have a right triangle that has one of the acute angles as 60°, the side OPPOSITE from that 60° angle (in this case, BC) is equal to [tex]\frac{a\sqrt{3}}{2}[/tex], where a is the length of the hypotenuse
Since we have the hypotenuse given as 8, the length of BC (y) is [tex]\frac{8\sqrt{3}}{2}[/tex], or 4√3
so y=4√3 units
Hope this helps!
Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
(a) f (x, y) = x^2 - y^2; x^2 + y^2 = 1
Max of 1 at (plusminus 1, 0), min of - 1 at (0, plusminus l)
(b) f (x, y) = 3x + y; x^2 + y^2 = 10
Max of 10 at (3, 1), min of - 10 at (- 3, - 1)
(c) f (x, y) = xy; 4x^2 + y^2 = 8
Max of 2 at plusminus (1, 2), min of - 2 at plusminus (l, - 2)
Answer:
a) f(x,y) = - 1 minimum at P ( 0 ; -1 )
b) f (x,y) = 10 maximum at P ( 3 , 1 ) and f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) Max f ( x , y ) = 2 for points P ( 1, 2 ) and T ( -1 , -2 )
Min f ( x , y ) = -2 for points Q ( 1 , - 2 ) and R ( -1 , 2 )
Step-by-step explanation:
A) f(x,y) = x² - y² subject to x² + y² = 1 g(x,y) = x² + y²- 1
δf(x,y)/ δx = 2*x δg(x,y)/ δx = 2*x
δf(x,y)/ δy = - 2*y δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ* δg(x,y)/ δx
2*x = λ*2*x
δf(x,y)/ δy = λ* δg(x,y)/ δy
- 2*y = λ*2*y
Then, solving
2*x = λ*2*x x = λ*x λ = 1
- 2*y = λ*2*y y = - 1
x² + y²- 1 = 0 x² + ( -1)² - 1 = 0 x = 0
Point P ( 0 ; -1 ) ; then at that point
f(x,y) = x² - y² f(x,y) = 0 - ( -1)² f(x,y) = - 1 minimum
b) f( x, y ) = 3*x + y g ( x , y ) = x² + y² = 10
δf(x,y)/ δx = 3 δg(x,y)/ δx = 2*x
δf(x,y)/ δy = 1 δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ 3 = 2* λ *x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ 1 = 2*λ * y (2)
x² + y² - 10 = 0 (3)
Solving that system
From ec (1) λ = 3/2*x From ec (2) λ = 1/2*y
Then (3/2*x ) = 1/2*y 3*y = x
x² + y² = 10 ⇒ 9y² + y² = 10 10*y² = 10
y² = 1 y ± 1 and
y = 1 x = 3 P ( 3 , 1 ) y = - 1 x = -3 Q ( - 3 , - 1 )
Value of f( x , y ) at P f (x,y) = 3*x + y f (x,y) = 3*(3) +1
f (x,y) = 10 maximum at P ( 3 , 1 )
Value of f( x , y ) at Q f (x,y) = 3*x + y f (x,y) = 3*(- 3) + ( - 1 )
f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) f( x, y ) = xy g ( x , y ) = 4*x² + y² - 8
δf(x,y)/ δx = y δg(x,y)/ δx = 8*x
δf(x,y)/ δy = x δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ y = λ *8*x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ x = λ *2*y (2)
4*x² + y² - 8 = 0 (3)
Solving the system
From ec (1) λ = y/8*x and From ec (2) λ = x/2*y Then y/8*x = x/2*y
2*y² = 8*x² y² = 4*x²
Plugging that value in ec (3)
4*x² + 4*x² - 8 = 0
8*x² = 8 x² = 1 x ± 1 And y² = 4*x²
Then:
for x = 1 y² = 4 y = ± 2
for x = -1 y² = 4 y = ± 2
Then we get P ( 1 ; 2 ) Q ( 1 ; - 2)
R ( - 1 ; 2 ) T ( -1 ; -2)
Plugging that values in f( x , y ) = xy
P ( 1 ; 2 ) f( x , y ) = 2 R ( - 1 ; 2 ) f( x , y ) = - 2
Q ( 1 ; - 2) f( x , y ) = -2 T ( -1 ; -2 ) f( x , y ) = 2
Max f ( x , y ) = 2 for points P and T
Min f ( x , y ) = -2 for points Q and R
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
An equation, f, has a domain of all whole numbers and has a range of all real numbers. A) Does the equation
represent a function? B) Explain why or why not. C) provide examples in either case, (and include your reasoning why
you chose this equation for your example.)
Answer:
f is not a function
Step-by-step explanation:
Given
Domain: Whole numbers
Range: Real numbers
Required
Is f a function
Base on the given parameters, f is not a function because:
There are more real numbers than whole numbers
And this implies that at least one element in the domain will have more than one corresponding elements in the range. i.e. one-to-many or many-to-many relationship
For a relation to be regarded as a function, the relationship has to be one-to-one or many-to-one
i.e. 1 or many domain elements to 1 element in the range.
An example is:
[tex]\begin{array}{ccccc}x & {1} & {9} & {9} & {0} \ \\ f(x) & {1.5} & {3.2} & {-3.5} & {0.1} \ \end{array}[/tex]
In the above function
The domain (i.e. x values) are whole numbers
The range (i.e. y values) are real numbers
However,
9 points to 3.2 and -3.5
So, the relation is not a function.
what was the original price of the car? MUST SHOW ALL STEPS OF THE PROCESS.
Answer:
19219.48
Step-by-step explanation:
16540x0.162+16540
The original price would be 100%
It was marked down 16.2%
100 % - 16.2% = 83.8%
The price you paid was 83.8% of the original price.
To find the original price divide the amount you paid by the percentage of the original price:
16,540 / 0.838 = 19.737.47
Original price: $19,737.47
I need help, and I can’t figure it out
Step-by-step explanation:
put the value of f(x)
I think that you know
hope it is helpful for you
Answer:
4x + 2h - 1
Step-by-step explanation:
[tex]\frac{f(x+h) - f(x)}{h}[/tex]
[tex]\frac{(2(x+h)^2 - (x + h) + 5) - (2x^2 - x + 5)}{h}[/tex]
[tex]\frac{2x^2 + 4xh + 2h^2 - x - h + 5 - 2x^2 + x - 5}{h}[/tex]
[tex]\frac{4xh + 2h^2 - h}{h}[/tex]
4x + 2h - 1
If 6 playes cost 54$ how much do 30 plates cost
Answer:
270 plates
Step-by-step explanation:
First, you need to find how much one plate costs.
6x = 54
---- ----
6 6
x = 9
Now, multiply 30 plates with x, which is 9.
30(9) = 270
The answer is 270.
Answer:
270
Step-by-step explanation:
54($)÷6= 9 then 9×30=270
What is the m GE bisects Find m
Answer:
DGF = 106
Step-by-step explanation:
Bisects means to divide in half, with two equal parts
DGF = DGE + EGF
DGE = EGF
DGF = DGE + DGE
DGF = 53+53
DGF = 106
GE bisects ∠DGF, so it divides ∠DGF into 2 equal parts.
So, m∠EGF = m∠DGE
=> m∠EGF = 53°
m∠DGF = m∠EGF + m∠DGE
=> m∠DGF = 53° + 53°
=> m∠DGF = 106°
Frans paid R9600 as interest on a loan he took 5 years ago at 16% rate. What's was the amount he took as loan? Yeah
Answer:
5555 Lakh rupoes maybe hope it helps
The amount Frans took as loan = R12000
What is simple interest?"It is the interest that is only calculated on the initial amount of the loan."
Formula for simple interest:[tex]SI=\frac{P\times R\times T}{100}[/tex]
where, P: principal amount
T : period
R: rate of interest
For given question,
SI = 9600
T = 5 years
R = 16%
We need to find the principal amount.
Using simple interest formula,
[tex]\Rightarrow SI=\frac{P\times R\times T}{100}\\\\\Rightarrow P=\frac{SI\times 100}{R\times T}\\\\\Rightarrow P=\frac{9600\times 100}{5\times 16}\\\\\Rightarrow P=12000[/tex]
Therefore, the amount Frans took as loan = R12000
Learn more about the simple interest here:
https://brainly.com/question/22621039
#SPJ3
add 10ft 3in + 3ft 9in + 8ft 10in
f it take 20 minutes to boil 6 crates of eggs, how much time will it take to boil 18 crates of eggs
a hour,.....................
The function f(x)=0.21x + 13.8 can be used to predict diamond production. For this function, x is the number of years after 2000, and f(x) is the value in billions of dollars) of the year's diamond production. Use this function to predict diamond production in 2006. The diamond production in 2006 is predicted to be $billion. (Type an integer or a decimal.) Enter your answer in the answer box ?
Answer:
[tex]\boxed {\boxed {\sf \$15.06 \ billion }}[/tex]
Step-by-step explanation:
We are given the function f(x). This is the value of diamond production for the year in billions.
[tex]f(x)= 0.21x+13.8[/tex]
We want to find the value of the diamond production in 2006.
We know that x is the number of years after 2000. The year 2006 was 6 years after 2000 because 2006 - 2000 = 6. Therefore, x (years after 2000) is equal to 6. We can substitute 6 in for x.
[tex]f(6)= 0.21(6)+ 13.8[/tex]
Solve according to PEMDAS (Parentheses, Exponents, Multiplication, Division, Addition, Subtraction).
Multiply 0.21 and 6.
[tex]f(6)= 1.26+13.8[/tex]
Add 1.26 and 13.8
[tex]f(6)=15.06[/tex]
Remember the answer is in billions of dollars.
[tex]f(6)= \$ 15.06 \ billion[/tex]
Diamond production in 2006 is expected to be worth 15.06 billion dollars.
Select the correct answer.
Which chart best represents the following information about student results from a class assignment?
Answer
a) chart
Step-by-step explanation:
a) chart best represents the following information about student results from a class assignment
amy shoots a 100 arrows at a target each arrow hits with a probability 0.01 what is the probability that one of her first 5 arrows hit the target
Answer:
0.5759
Step-by-step explanation:
48. What is the volume of the cuboid below? 3cm 2cm 2cm
Answer:
Cuboid = width*height*length
Cuboid = 24 cm^2
Stuck on this question
Answer:
9262
Step-by-step explanation:
just plug in 22 for n and calculate
a regular Pentagon with sides 40cm what is the perimeter
Perimeter = namely the length of outside bordering,
well, this is a PENTAgon, or PENTA=5 or namely 5 sides, is regular so each side is the same length, so we have a polygon with 5 sides each measuring 40cm, well, its perimeter is just 40+40+40+40+40 = 200.
nit 4 Topic 3 HW Sets Applications e Sunday by 11:59pm Points 100 Submitting an external tool Question How many subsets and proper subsets does the set M = {1,2,3} have? Select the correct answer below:
Answer:
ghthtf
Step-by-step explanation:
tygtgg