21)
22)
Assume that when adults with smartphones are randomly selected, 46% use them in meetings or classes. If 12 adult smartphone users are randomly selected, find the probability that fewer than 5 of them

Answers

Answer 1

The probability that fewer than 5 of them use the smartphone in meetings or classes is given as follows:

P(X < 5) = 0.2802 = 28.02%.

How to obtain the probability with the binomial distribution?

The mass probability formula is defined by the equation presented as follows:

[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]

[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]

The parameters, along with their meaning, are presented as follows:

n is the fixed number of independent trials.p is the constant probability of a success on a single independent trial of the experiment.

The parameter values for this problem are given as follows:

p = 0.46, n = 12.

The probability that less than 5 of them use the phone is given as follows:

P(X < 5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4).

Using a calculator with the parameters above, the probability is:

P(X < 5) = 0.2802 = 28.02%.

More can be learned about the binomial distribution at https://brainly.com/question/24756209

#SPJ4


Related Questions

Suppose that the cumulative distribution function of the random variable X is 0 x < -2 F(x)=0.25x +0.5 -2

Answers

Answer:

I apologize for the confusion, but the given cumulative distribution function (CDF) is not properly defined. The CDF should satisfy certain properties, including being non-decreasing and having a limit of 0 as x approaches negative infinity and a limit of 1 as x approaches positive infinity. The expression 0.25x + 0.5 - 2 does not meet these requirements.

If you have any additional information or if there is a mistake in the provided CDF, please let me know so that I can assist you further.

Consider the following. 1 3 1 1 8 38 1 V = Max. 15 = {[33][35)(-+ 1}::] [3} ] = M22 B 1 1 1 8 1 8 Complete the following statements. The elements of set B ---Select--- V linearly independent. The set B has elements and dim(M22) = Therefore, the set B -Select--- a basis for V.

Answers

The elements of set B are linearly independent. The set B has 6 elements. dim(M22) = 4. Therefore, the set B forms a basis for V.

From the given notation, it seems that we are dealing with a vector space V and a set B containing certain elements. We are asked to analyze the linear independence of the elements in set B, determine the number of elements in set B, and evaluate whether set B forms a basis for V.

Linear Independence:

To determine if the elements in set B are linearly independent, we need to check if any element in set B can be written as a linear combination of the other elements in set B. If no such combination exists, then the elements are linearly independent.

Number of Elements in Set B:

We need to count the number of elements in set B based on the given notation. From the provided information, it seems that there are 6 elements in set B.

Dimension of V:

The notation M22 suggests that the vector space V has a dimension of 4. This means that any basis for V should contain 4 linearly independent vectors.

Basis for V:

If the set B is found to be linearly independent and contains the same number of elements as the dimension of V, then it forms a basis for V. A basis is a set of vectors that is linearly independent and spans the entire vector space V.

To know more about linearly independent,

https://brainly.com/question/16466163

#SPJ11

Consider a lottery with three possible outcomes: a payoff of -20, a payoff of 0, and a payoff of 20. The probability of each outcome is 0.2, 0.5, and 0.3, respectively. Compute the expected value of the lottery, variance and the standard deviation of the lottery. (10 marks) b) Given the start-up job offer lottery, one payoff (I1) is RM110,000, the other payoff (I2) is RM5,000. The probability of each payoff is 0.50, and the expected value is RM55,000. Utility function is given by U(I) = √I Equation: pU(I1) + (1-p)U(I2) = U(EV – RP) Compute the risk premium by solving for RP.

Answers

A lottery has 3 possible outcomes, they are -20, 0, and 20. The probability of each outcome is 0.2, 0.5, and 0.3, respectively. Compute the expected value of the lottery, variance, and the standard deviation of the lotteryExpected Value:

The expected value of the lottery is:

E(x) = ∑[x*P(x)]Where x is each possible outcome, and P(x) is the probability of that outcome.

E(x) = -20(0.2) + 0(0.5) + 20(0.3) E(x) = -4 + 0 + 6 E(x) = 2So, the expected value of the lottery is 2. Variance:The variance of a lottery is:

σ² = ∑[x - E(x)]²P(x)Where x is each possible outcome, P(x) is the probability of that outcome, and E(x) is the expected value of the lottery.

σ² = (-20 - 2)²(0.2) + (0 - 2)²(0.5) + (20 - 2)²(0.3) σ² = 22.4

So, the variance of the lottery is 22.4.

Standard Deviation:

The standard deviation of a lottery is the square root of the variance. σ = √22.4 σ ≈ 4.73So, the standard deviation of the lottery is approximately 4.73.

b) Given the start-up job offer lottery, one payoff (I1) is RM110,000, the other payoff (I2) is RM5,000. The probability of each payoff is 0.50, and the expected value is RM55,000. The utility function is given by U(I) = √I. The equation is:pU(I1) + (1-p)U(I2) = U(EV - RP)

Where U(I) is the utility of income I, p is the probability of the high payoff, I1 is the high payoff, I2 is the low payoff, EV is the expected value of the lottery, and RP is the risk premium.

Substituting the given values, we have:0.5√110000 + 0.5√5000 = √(55000 - RP)Simplifying, we get:

550√2 ≈ √(55000 - RP)Squaring both sides, we get:302500 = 55000 - RPRP ≈ RM29500So, the risk premium is approximately RM29500.

To know more about probability visit:

https://brainly.com/question/31828911

#SPJ11

Question 8 6 pts In roulette, there is a 1/38 chance of having a ball land on the number 7. If you bet $5 on 7 and a 7 comes up, you win $175. Otherwise you lose the $5 bet. a. The probability of losing the $5 is b. The expected value for the casino is to (type "win" or "lose") $ (2 decimal places) per $5 bet.

Answers

a. The probability of losing the $5 is 37/38. b. The expected value for the casino is to lose $0.13 per $5 bet. (Rounded to 2 decimal places)

Probability of landing the ball on number 7 is 1/38.

The probability of not landing the ball on number 7 is 1 - 1/38 = 37/38.

The probability of losing the $5 is 37/38.

Expected value for the player = probability of winning × win amount + probability of losing × loss amount.

Here,

probability of winning = 1/38

win amount = $175

probability of losing = 37/38

loss amount = $5

Therefore,

Expected value for the player = 1/38 × 175 + 37/38 × (-5)= -1.32/38= -0.0347 ≈ -$0.13

The expected value for the casino is the negative of the expected value for the player.

Therefore, the expected value for the casino is to lose $0.13 per $5 bet. 37/38 is the probability of losing $5.

To learn more about Expected value refer here

https://brainly.com/question/28197299#

#SPJ11

A giraffe's neck is longer than a deer's neck. This an example of a species changing over time.
Is this statement true or false?
true
false

Answers

The statement "A giraffe's neck is longer than a deer's neck" is true. However, the second part of the statement, "This is an example of a species changing over time," is not necessarily true. The length difference between a giraffe's neck and a deer's neck is a characteristic of their respective species, but it does not necessarily imply evolutionary change over time.

Evolutionary change occurs through genetic variation, natural selection, and genetic drift acting on populations over generations, resulting in heritable changes in species traits. Therefore, the statement is only partially true, as it accurately describes the difference in neck length between giraffes and deer but does not necessarily imply species changing over time.

To know more about populations visit-

brainly.com/question/29964245

#SPJ11

Find the exact value of cos A in simplest radical form.

Answers

The exact value of cos A in simplest radical form is [tex]\sqrt{3}[/tex]/2.

find the exact value of cos A in simplest radical form. Here's how you can solve this problem:

We know that cos A is adjacent over hypotenuse. We also know that we have a 30-60-90 triangle with a hypotenuse of 8. [tex]\angle[/tex]A is the 60-degree angle.

Let's label the side opposite the 60-degree angle as x. Since this is a 30-60-90 triangle, we know that the side opposite the 30-degree angle is half of the hypotenuse.

Therefore, the side opposite the 30-degree angle is 4.Let's apply the Pythagorean theorem to find the value of the other side (adjacent to 60-degree angle):

x² + 4² = 8²x² + 16 = 64x² = 48x = [tex]\sqrt{48}[/tex]x = 4[tex]\sqrt{3}[/tex]

Now that we know the value of the adjacent side to the 60-degree angle,

we can use it to find cos A:cos A = adjacent/hypotenuse = (4[tex]\sqrt{3}[/tex])/8 = [tex]\sqrt{3}[/tex]/2

To learn more about : cos

https://brainly.com/question/30629234

#SPJ8

Question 6 Find the value of x to the nearest degree. √√58 O 67 O 23 O 83 O 53 70 3

Answers

To the nearest degree, the value of x is 2 degrees.

So, the correct option is (B) 67.

Given equation is: √√58 = x

To find the value of x, we will proceed as follows:

We can also write the equation as follows:

x = (58)^(1/4)^(1/2)

x = (2*29)^(1/4)^(1/2)

x = (2)^(1/2) * (29)^(1/4)^(1/2)

x = √2 * √√29

So, we need to calculate the value of x in degrees.

Since, √2 = 1.4142 (approximately) and √√29 = 1.5555 (approximately)

So, the value of x is:

x = 1.4142 * 1.5555

= 2.203 (approximately)

To the nearest degree, the value of x is 2 degrees.

So, the correct option is (B) 67.

To know more about degree visit:

https://brainly.com/question/364572

#SPJ11

give an example of poor study design due to selection bias

Answers

One example of a poor study design due to selection bias is a study on the effectiveness of a new drug for a certain medical condition that only includes patients who self-select to participate in the study.

In this case, if patients are not randomly assigned to treatment and control groups, there is a high likelihood of selection bias. Participants who choose to participate in the study may have different characteristics, motivations, or health conditions compared to the general population. As a result, the study's findings may not be representative or applicable to the broader population.

For example, if the study only includes patients who are highly motivated or have more severe symptoms, the results may overestimate the drug's effectiveness. Conversely, if only patients with mild symptoms or a specific demographic group are included, the findings may underestimate the drug's effectiveness.

To avoid selection bias, it is crucial to use randomization techniques or representative sampling methods that ensure participants are selected without any predetermined biases.

For such more question on medical condition

https://brainly.com/question/31864596

#SPJ11

Find the points on the given curve where the tangent line is horizontal or vertical. (Assume s 0 st. Enter your answers as a comma-separated list of ordered pairs.) r cos 0 horizontal tangent (r, 0) (r, 6) vertical tangent

Answers

The points on the curve where the tangent line is horizontal or vertical for the equation r = cos(θ) are (1, 0) and (-1, 0) for horizontal tangents and (0, 6) and (0, -6) for vertical tangents.

To find the points on the curve where the tangent line is horizontal or vertical, we need to determine the values of θ that correspond to those points. For a horizontal tangent, the slope of the tangent line is zero. In the equation r = cos(θ), the value of r is constant, so the slope of the tangent line is determined by the derivative of cos(θ) with respect to θ. Taking the derivative, we get -sin(θ). Setting this equal to zero, we find that sin(θ) = 0, which occurs when θ is an integer multiple of π. Plugging these values back into the equation r = cos(θ), we get (1, 0) and (-1, 0) as the points on the curve with horizontal tangents.

For a vertical tangent, the slope of the tangent line is undefined, which occurs when the derivative of r with respect to θ is infinite. Taking the derivative of cos(θ) with respect to θ, we get -sin(θ). Setting this equal to infinity, we find that sin(θ) = ±1, which occurs when θ is an odd multiple of π/2. Plugging these values back into the equation r = cos(θ), we get (0, 6) and (0, -6) as the points on the curve with vertical tangents.

Learn more about tangent line here:

https://brainly.com/question/23416900

#SPJ11

find the average value have of the function h on the given interval. h(u) = (18 − 9u)−1, [−1, 1]

Answers

Answer:

17

Step-by-step explanation:

Assuming the -1 is not a typo, we can see that the function h is a linear function. Thus we can simply plug in -1 and 1 for h, then take the average of the 2 values we get.

h(-1) = 26, and h(1) = 8.

Average = (26 + 8)/ 2 = 17

The problem asks to find the average value of h on the interval [-1,1]. To do this, use the formula avg = 1/(b-a)∫[a,b] h(x)dx, where a and b are the endpoints of the interval. The integral can be evaluated from -1 to 1, resulting in an average value of approximately 0.0611.

The problem is asking us to find the average value of the function h on the given interval. The function is h(u) = (18 − 9u)−1 and the interval is [−1, 1].

To find the average value of the function h on the given interval, we can use the following formula: avg = 1/(b-a)∫[a,b] h(x)dx where a and b are the endpoints of the interval. In this case, a = -1 and b = 1, so we have:

avg =[tex]1/(1-(-1)) ∫[-1,1] (18 - 9u)^-1 du[/tex]

Now we need to evaluate the integral. We can use u-substitution with u = 18 - 9u and du = -1/9 du:∫(18 - 9u)^-1 du= -1/9 ln|18 - 9u|We evaluate this from -1 to 1:

avg = [tex]1/2 ∫[-1,1] (18 - 9u)^-1 du[/tex]

= [tex]1/2 (-1/9 ln|18 - 9u|)|-1^1[/tex]

= 1/2 ((-1/9 ln|9|) - (-1/9 ln|27|))

= 1/2 ((-1/9 ln(9)) - (-1/9 ln(27)))

= 1/2 ((-1/9 * 2.1972) - (-1/9 * 3.2958))

= 1/2 ((-0.2441) - (-0.3662))

= 1/2 (0.1221)

= 0.0611

Therefore, the average value of the function h on the interval [-1,1] is approximately 0.0611.

To know more about average value Visit:

https://brainly.com/question/28123159

#SPJ11

which equation can be used to find the measure of angle lkj? cos-1 (8.9/10.9) = x
cos-1( 10.9/8.9) = x
sin-1(10.9/8.9) = x
sin-1(8.9/10.9) = x

Answers

The equation that can be used to find the measure of angle LKJ is sin-1(8.9/10.9) = x.

Trigonometry is a branch of mathematics that studies the relationship between the sides and angles of triangles, especially right triangles.

An angle is a measure of the amount of rotation or inclination of two lines or planes about their intersection.  Angles can be measured in degrees, radians, or grads.

An equation is a mathematical statement that demonstrates that two things are equal. An equation consists of two sides, a left-hand side (LHS) and a right-hand side (RHS), separated by an equal sign.

Cosine is a trigonometric function that relates the ratio of the adjacent side of a right-angled triangle to the hypotenuse.

The sine function is a trigonometric function that is used to calculate the ratio of the length of the side opposite an acute angle in a right-angled triangle to the hypotenuse.

To know more about trigonometry function visit:

https://brainly.com/question/29286780

#SPJ11

If a bag contains 8 red pens, 5 blue pens, and 10 black pens, what is the probability of drawing two pens of the same color blue, one at a time, as followed: (10 points) a. With replacement. b. Withou

Answers

The probability of drawing two pens of the same color (blue) with replacement is approximately 0.0472, while the probability of drawing two pens of the same color without replacement is approximately 0.0405.

a. Drawing with replacement:

When drawing with replacement, it means that after each draw, the pen is placed back into the bag, and the total number of pens remains the same.

The probability of drawing a blue pen on the first draw is given by the ratio of the number of blue pens to the total number of pens:

P(Blue on first draw) = Number of blue pens / Total number of pens

P(Blue on first draw) = 5 / (8 + 5 + 10) = 5 / 23

Since we are drawing with replacement, the probability of drawing a blue pen on the second draw is also 5/23.

The probability of drawing two pens of the same color (both blue) with replacement is the product of the probabilities of each individual draw:

P(Two blue pens with replacement) = P(Blue on first draw) * P(Blue on second draw)

P(Two blue pens with replacement) = (5/23) * (5/23)

P(Two blue pens with replacement) = 25/529 ≈ 0.0472 (approximately)

b. Drawing without replacement:

When drawing without replacement, it means that after each draw, the pen is not placed back into the bag, and the total number of pens decreases.

The probability of drawing a blue pen on the first draw is the same as before:

P(Blue on first draw) = Number of blue pens / Total number of pens

P(Blue on first draw) = 5 / (8 + 5 + 10) = 5 / 23

After drawing a blue pen on the first draw, there are now 4 blue pens remaining out of a total of 22 pens left in the bag.

The probability of drawing a blue pen on the second draw, without replacement, is:

P(Blue on second draw) = Number of remaining blue pens / Total number of remaining pens

P(Blue on second draw) = 4 / 22 = 2 / 11

The probability of drawing two pens of the same color (both blue) without replacement is the product of the probabilities of each individual draw:

P(Two blue pens without replacement) = P(Blue on first draw) * P(Blue on second draw)

P(Two blue pens without replacement) = (5/23) * (2/11)

P(Two blue pens without replacement) ≈ 0.0405 (approximately)

Therefore, the probability of drawing two pens of the same color (blue) with replacement is approximately 0.0472, while the probability of drawing two pens of the same color without replacement is approximately 0.0405.

Learn more about probability here

https://brainly.com/question/29610001

#SPJ11

what is the volume of a right circular cylinder with a base diameter of 18 yd and a height of 3 yd? enter your answer in the box. express your answer using π. yd³ $\text{basic}$

Answers

The volume (V) of a right circular cylinder can be calculated using the formula:

V = πr²h

where r is the radius of the base and h is the height of the cylinder.

Given that the base diameter is 18 yd, we can find the radius (r) by dividing the diameter by 2:

r = 18 yd / 2 = 9 yd

Plugging in the values of r = 9 yd and h = 3 yd into the volume formula:

V = π(9 yd)²(3 yd)

V = π(81 yd²)(3 yd)

V = 243π yd³

Therefore, the volume of the right circular cylinder is 243π yd³.

the volume of a right circular cylinder with a base diameter of 18 yd and a height of 3 yd is 243π cubic yards By using formula of V = πr²h

The formula to calculate the volume of a right circular cylinder is:V = πr²hWhere r is the radius of the circular base and h is the height of the cylinder. Given that the base diameter of the cylinder is 18 yd, the radius, r can be calculated as:r = d/2where d is the diameter of the base of the cylinder.r = 18/2 = 9 ydThe height of the cylinder is given as 3 yd.So, substituting the values in the formula for the volume of a right circular cylinder:V = πr²hV = π(9)²(3)V = 243πTherefore, the volume of a right circular cylinder with a base diameter of 18 yd and a height of 3 yd is 243π cubic yards.

To know more about Volume of right Cylinder Visit:

https://brainly.com/question/30517598

#SPJ11

what are all the roots for the function? f(x)= x^3+3x^2+x-5

Answers

The roots of the function f(x) =[tex]x^3 + 3x^2 + x - 5[/tex] are approximately x ≈ -2.27 (real root) and x ≈ -0.36 + 1.56i, x ≈ -0.36 - 1.56i,   [tex](x-1)(x^3+3x^2+x-5)[/tex].

To find the roots of the function f(x) = x^3 + 3x^2 + x - 5, we need to solve for values of x that make the function equal to zero.

One approach to finding the roots is by using factoring or synthetic division, but in this case, the function does not have any obvious rational roots. Therefore, we can use numerical methods such as the Newton-Raphson method or graphing techniques to approximate the roots.

Using a graphing calculator or software, we can plot the function f(x) = x^3 + 3x^2 + x - 5. By analyzing the graph, we can estimate the x-values where the function intersects the x-axis, indicating the roots.

Upon analyzing the graph or using numerical methods, we find that the function has one real root approximately equal to x ≈ -2.27.

The other two roots are complex conjugates, which means they come in pairs of the form a + bi and a - bi. For this particular function, the complex roots are approximately x ≈ -0.36 + 1.56i and x ≈ -0.36 - 1.56i.

For more such questions on roots

https://brainly.com/question/428672

#SPJ8

help please. does anyone know how to solve this

Answers

Applying De Moivre's theorem, the result can be written as:

[tex]10^7[/tex](cos(7π/3) + isin(7π/3)).

To evaluate (5 + 5√3i)^7 using De Moivre's theorem,

we can express the complex number in polar form and apply the theorem.

First, let's convert the complex number to polar form:

r = √(5^2 + (5√3)^2) = √(25 + 75) = √100 = 10

θ = arctan(5√3/5) = arctan(√3) = π/3

The complex number (5 + 5√3i) can be written as 10(cos(π/3) + isin(π/3)) in polar form.

Now, using De Moivre's theorem, we raise the complex number to the power of 7:

(10(cos(π/3) + isin(π/3)))^7

Applying De Moivre's theorem, the result can be written as:

10^7(cos(7π/3) + isin(7π/3))

for similar questions on  De Moivre's theorem.

https://brainly.com/question/17120893

#SPJ8

Find the length of the third side. If necessary. Write in simplest radical form

Answers

Answer:

Hi

Please mark brainliest

Step-by-step explanation:

Using Pythagorean theorem

hyp² = opp² + adj²

= 8² +5³

= 64 + 25

= 89

x= 89

x= 9.43

4. Times of taxi trips to the airport terminal on Friday mornings from a certain location are exponentially distributed with mean 25 minutes. a. What is the probability that a random Friday morning ta

Answers

It is a given that the times of taxi trips to the airport terminal on Friday mornings from a certain location are exponentially distributed with a mean of 25 minutes.

We need to find the probability that a random morning taxi trip on Friday takes more than 40 minutes. We know that the exponential distribution function is given by:

$$f(x) = frac{1}{mu}e^{frac{x}{mu}}

Where μ is the mean of the distribution. Here, μ = 25 minutes. The probability that a random morning taxi trip on Friday takes more than 40 minutes is given by:

P(X > 40) = int_{40}^{infty} f(x)= int_{40}^{\infty} frac{1}{25} e^{frac{x}{25}} dx= e^{frac{40}{25}}= e^{frac{8}{5}}= 0.3012.

Hence, the probability that a random morning taxi trip on Friday takes more than 40 minutes is 0.3012.

Therefore, the probability that a random Friday morning taxi trip takes more than 40 minutes is 0.3012.

To know more about exponential distribution function visit:

brainly.com/question/30503086

#SPJ11

find the absolute maximum and minimum, if either exists, for f(x)=x^2-2x 5

Answers

Given that f(x) = x² - 2x + 5. We need to find the absolute maximum and minimum of the function.Let us differentiate the function to find critical points, that is, f '(x) = 2x - 2.We know that f(x) is maximum or minimum at critical points. So, f '(x) = 0 or f '(x) does not exist.

Let's solve for x.2x - 2 = 0⇒ 2x = 2⇒ x = 1Therefore, f '(1) = 2(1) - 2 = 0The critical point is x = 1.Now, we need to test if this critical point gives an absolute maximum or minimum.To do this, we can check the value of f(x) at this point as well as the values of f(x) at the endpoints of the domain of x. Here, the domain is -∞ < x < ∞.Let's begin by calculating f(x) at the critical point.x = 1⇒ f(1) = (1)² - 2(1) + 5= 4Therefore, the function has a maximum at x = 1.

Now, let's check the values of f(x) at the endpoints of the domain.x → -∞⇒ f(x) → ∞x → ∞⇒ f(x) → ∞Therefore, there are no minimum values of the function.To summarize, the absolute maximum of the function f(x) = x² - 2x + 5 is 4 and there is no absolute minimum value of the function as f(x) approaches infinity for both positive and negative values of x.

To know more about domain visit :

brainly.com/question/30133157

#SPJ11

A piggy bank contains the same amount of quarters, nickels and dimes. The coins total $4. 40. How many of each type of coin does the piggy bank contain.

Answers

The solution is valid, and the piggy bank contains 11 quarters, 11 nickels, and 11 dimes.

Let's solve this problem step by step to determine the number of each type of coin in the piggy bank.

Let's assume the number of quarters, nickels, and dimes in the piggy bank is "x".

Quarters: The value of each quarter is $0.25. So, the total value of the quarters would be 0.25x.

Nickels: The value of each nickel is $0.05. So, the total value of the nickels would be 0.05x.

Dimes: The value of each dime is $0.10. So, the total value of the dimes would be 0.10x.

According to the problem, the total value of all the coins in the piggy bank is $4.40. Therefore, we can set up the equation:

0.25x + 0.05x + 0.10x = 4.40

Simplifying the equation:

0.40x = 4.40

Dividing both sides by 0.40:

x = 11

So, there are 11 quarters, 11 nickels, and 11 dimes in the piggy bank.

To verify this solution, let's calculate the total value of all the coins:

(11 quarters * $0.25) + (11 nickels * $0.05) + (11 dimes * $0.10) = $2.75 + $0.55 + $1.10 = $4.40

Therefore, the solution is valid, and the piggy bank contains 11 quarters, 11 nickels, and 11 dimes.

For more questions on solution

https://brainly.com/question/17145398

#SPJ8

Consider the following vectors.
u = i + 4 j − 2 k, v = 4 i − j, w = 6 i + 7 j − 4 k
Find the scalar triple product u · (v ⨯ w).
u · (v ⨯ w) =
Are the given vectors coplanar?
Yes, they are coplanar.
No, they are not coplanar.
Need Help? Read It

Answers

The answer is: Yes, they are coplanar. Scalar triple product is defined as the product of a vector with the cross product of the other two vectors. Consider the vectorsu= i + 4 j − 2 k, v = 4 i − j, w = 6 i + 7 j − 4 k. Using the formula of scalar triple product, we can write the scalar triple product u · (v ⨯ w) asu · (v ⨯ w) = u · v × w= i + 4 j − 2 k· (4 i − j) × (6 i + 7 j − 4 k).

Now, calculating the cross product of v and w, we get:v × w = \[\begin{vmatrix} i&j&k\\4&-1&0\\6&7&-4 \end{vmatrix}\] = i(7) - j(-24) + k(-31) = 7 i + 24 j - 31 kNow, substituting this value of v × w in the equation of scalar triple product, we get:u · (v ⨯ w) = u · v × w= (i + 4 j − 2 k)· (7 i + 24 j - 31 k)= 7 i · i + 24 j · i - 31 k · i + 7 i · 4 j + 24 j · 4 j - 31 k · 4 j + 7 i · (-2 k) + 24 j · (-2 k) - 31 k · (-2 k)= 0 + 0 + 0 + 28 + 96 + 62 - 14 - 48 - 124= 0Therefore, the scalar triple product u · (v ⨯ w) is 0. This means that the vectors are coplanar.

To know more about product visit :-

https://brainly.com/question/31815585

#SPJ11

Given: ABCD - rectangle
Area of ABCD = 458m2
m∠AOB = 80°
Find: AB, BC

Answers

The lengths AB and BC cannot be determined without additional information or equations.

In a rectangle ABCD with an area of 458m² and m∠AOB = 80°, what are the lengths AB and BC?

In a rectangle ABCD, where the area of ABCD is 458m² and m∠AOB is 80°, we need to find the lengths AB and BC.

Since ABCD is a rectangle, opposite sides are equal in length. Let's assume AB represents the length and BC represents the width.

We know that the area of a rectangle is given by the formula:

Area = Length × Width

So we have:

458m² = AB × BC

Now, we need to find the values of AB and BC. However, without any additional information or equations, we cannot determine their exact values.

learn more about determined

brainly.com/question/29898039

#SPJ11

In a study of facial behavior, people in a control group are timed for eye contact in a 5-minute period. Their times are normally distributed with a mean of 182.0 seconds and a standard deviation of 530 seconds. Use the 68-95-99.7 rule to find the indicated quantity a. Find the percentage of times within 53.0 seconds of the mean of 182.0 seconds % (Round to one decimal place as needed.)

Answers

To find the percentage of times within 53.0 seconds of the mean of 182.0 seconds, we can use the 68-95-99.7 rule, also known as the empirical rule or the three-sigma rule.

According to the rule, for a normally distributed data set:

Approximately 68% of the data falls within one standard deviation of the mean.

Approximately 95% of the data falls within two standard deviations of the mean.

Approximately 99.7% of the data falls within three standard deviations of the mean.

In this case, the mean is 182.0 seconds, and the standard deviation is 530 seconds.

To find the percentage of times within 53.0 seconds of the mean (182.0 seconds), we need to consider one standard deviation. Since the standard deviation is 530 seconds, within one standard deviation of the mean, we have a range of:

182.0 seconds ± 530 seconds = (182.0 - 530) to (182.0 + 530) = -348.0 to 712.0 seconds.

To find the percentage within 53.0 seconds, we need to determine how much of this range falls within the interval (182.0 - 53.0) to (182.0 + 53.0) = 129.0 to 235.0 seconds.

To calculate the percentage, we can determine the proportion of the total range:

Proportion = (235.0 - 129.0) / (712.0 - (-348.0))

Calculating the proportion:

Proportion = 106.0 / 1060.0

Proportion ≈ 0.1

To express this as a percentage, we multiply the proportion by 100:

Percentage = 0.1 * 100

Percentage = 10.0%

Therefore, approximately 10.0% of the times are within 53.0 seconds of the mean of 182.0 seconds.

To know more about mean visit-

brainly.com/question/20692954

#SPJ11

17. Let Y(t) = X² (t) where X(t) is the Wiener process. (a) Find the pdf of y(t). (b) Find the conditional pdf of Y(t2) and Y(t₁).

Answers

A. the pdf of Y(t) is given by fY(t) = 1/(2√(πt)Y(t)) e^(-(1/2t)(Y(t))).

B.  the conditional pdf of Y(t₂) given Y(t₁) is given by fY(t₂|t₁) = (1/√(2π(t₂-t₁))) y(t₂)/y(t₁) e^(-(y(t₂)+y(t₁))/(2(t₂-t₁))).

(a) The Wiener process X(t) is a continuous random variable. So, to find the pdf of Y(t) = X²(t), we need to use the transformation method. Let's use the change of variables method, which states that if Y = g(X), then the pdf of Y is given by fY(y) = fX(g^(-1)(y))|d/dy(g^(-1)(y))|.

We have Y(t) = X²(t) ⇒ X(t) = ±(Y(t))^(1/2).

Using g(x) = x², we have g^(-1)(y) = ±y^(1/2).

Differentiating g^(-1)(y) with respect to y, we have d/dy(g^(-1)(y)) = ±1/(2√y).

We consider X(t) = (Y(t))^(1/2). Therefore, the pdf of Y(t) is given by:

fY(t) = fX(t)|dX(t)/dY(t)|.

Since X(t) is a Wiener process, its pdf fX(t) is given by the normal distribution function N(0, t) with mean 0 and variance t. Therefore, we have:

fY(t) = 1/(√(2πt)) |1/(2√Y(t))| e^(-(1/2t)(Y(t))).

Simplifying the above expression, we get:

fY(t) = 1/(2√(πt)Y(t)) e^(-(1/2t)(Y(t))).

Hence, the pdf of Y(t) is given by fY(t) = 1/(2√(πt)Y(t)) e^(-(1/2t)(Y(t))).

(b) The conditional pdf of Y(t₂) and Y(t₁) is given by:

fY(t₂|t₁) = f(t₁,t₂)/fY(t₁),

where f(t₁,t₂) is the joint pdf of Y(t₁) and Y(t₂), which is given by:

f(t₁,t₂) = fX(x₁) fX(x₂),

where x₁ and x₂ are the values taken by X(t₁) and X(t₂) respectively.

Substituting fX(x) = 1/(√(2πt)) e^(-(x²/2t)) and X(t₁) = x₁ and X(t₂) = x₂, we have:

f(t₁,t₂) = 1/(2πt₁t₂) e^(-(x₁²/2t₁ + x₂²/2t₂)).

Now, substituting Y(t₁) = X²(t₁) = x₁² and Y(t₂) = X²(t₂) = x₂² in f(t₁,t₂), we have:

f(t₁,t₂) = 1/(2πt₁t₂) e^(-(y(t₁)/2t₁ + y(t₂)/2t₂)).

Therefore, the conditional pdf of Y(t₂) given Y(t₁) is given by:

fY(t₂|t₁) = f(t₁,t₂)/fY(t₁).

Substituting the values of f(t₁,t₂) and fY(t₁) from above, we have:

fY(t₂|t₁) = (1/√(2π(t₂-t₁))) y(t₂)/y(t₁) e^(-(y(t₂)+y(t₁))/(2(t₂-t₁)).

Hence, the conditional pdf of Y(t₂) given Y(t₁) is given by fY(t₂|t₁) = (1/√(2π(t₂-t₁))) y(t₂)/y(t₁) e^(-(y(t₂)+y(t₁))/(2(t₂-t₁))).

To learn more about conditional, refer below:

https://brainly.com/question/19258518

#SPJ11

you are st anding 100 feet from the base of a platform from which people are bungee jumping. The angle of elevation from your position to the top of the platform from which they jump is 51°. From what heigh are the people jumping?

Answers

To determine the height from which people are jumping, we can use trigonometry. Given that you are standing 100 feet away from the base of the platform and the angle of elevation to the top of the platform is 51°.

We can calculate the height using the tangent function. Let h be the height from which people are jumping. The tangent of the angle of elevation is equal to the ratio of the height to the distance from your position to the base of the platform:

tan(51°) = h / 100

To solve for h, we can multiply both sides of the equation by 100:

h = 100 * tan(51°)

Using a calculator, we find that h ≈ 112.72 feet.

Therefore, people are jumping from a height of approximately 112.72 feet.

To know more about feet click here: brainly.com/question/15658113

#SPJ11

Based upon the central limit theorem, what is the standard deviation of a sample distribution? The sample distribution standard deviation is the population standard deviation divided by the square roo

Answers

The standard deviation of a sample distribution, according to the central limit theorem, is equal to the population standard deviation divided by the square root of the sample size.

The central limit theorem states that when independent random variables are added, their sum tends toward a normal distribution, regardless of the shape of the original variables' distribution. This holds true under certain conditions, such as a sufficiently large sample size.

To calculate the standard deviation of a sample distribution, we divide the population standard deviation by the square root of the sample size. This adjustment accounts for the fact that as the sample size increases, the variability of the sample means decreases.

In summary, the standard deviation of a sample distribution is obtained by dividing the population standard deviation by the square root of the sample size. This relationship is based on the central limit theorem, which allows us to make inferences about a population based on a sample.

to know more about standard deviation of a sample distribution visit:

https://brainly.com/question/14467769

#SPJ11

#4
and #5
4. Find the value (score) that separates the top 15% of the data from the bottom 85% of the data for a normal distribution with a mean of 56 min and a standard deviation of 9 min. Express your answer

Answers

The normal distribution is approximately 65.328 minutes.

To find the value that separates the top 15% of the data from the bottom 85% in a normal distribution with a mean of 56 minutes and a standard deviation of 9 minutes, we can use the Z-score.

The Z-score represents the number of standard deviations a data point is from the mean. In a normal distribution, approximately 68% of the data falls within one standard deviation of the mean, 95% falls within two standard deviations, and 99.7% falls within three standard deviations.

To find the Z-score corresponding to the top 15% of the data, we need to find the Z-score that corresponds to the area of 0.15 in the tail of the distribution (above the mean).

Using a Z-table or a statistical calculator, we can find that the Z-score corresponding to the top 15% (above the mean) is approximately 1.0364.

To find the value that corresponds to this Z-score, we can use the formula:

Value = Mean + (Z-score * Standard Deviation)

Plugging in the values:

Mean = 56 minutes

Standard Deviation = 9 minutes

Z-score = 1.0364

Value = 56 + (1.0364 * 9)

Value = 56 + 9.328

Value ≈ 65.328

Therefore, the value (score) that separates the top 15% of the data from the bottom 85% for the given normal distribution is approximately 65.328 minutes.

To know more about normal distribution refer here:

https://brainly.com/question/15103234?#

#SPJ11

8. If X-Poisson(a) such that P(X= 3) = 2P(X=4) find P(X= 5). A 0.023 B 0.028 C 0.035 D 0.036

Answers

For the Poisson relation given, the value of P(X=5) is 0.028

Poisson distribution

In a Poisson distribution, the probability mass function (PMF) is given by:

[tex]P(X = k) = ( {e}^{ - a} \times {a}^{k} ) / k![/tex]

Given that P(X = 3) = 2P(X = 4), we can set up the following equation:

P(X = 3) = 2 * P(X = 4)

Using the PMF formula, we can substitute the values:

(e^(-a) * a^3) / 3! = 2 * (e^(-a) * a^4) / 4!

[tex]( {e}^{ - a} \times {a}^{3} ) / 3! = 2 \times ( {e}^{ - a} \times {a}^{4} ) / 4![/tex]

Canceling out the common terms, we get:

a³ / 3 = 2 × a⁴ / 4!

Simplifying further:

a³ / 3 = 2 * a⁴ / 24

Multiplying both sides by 24:

8 × a³ = a⁴

Dividing both sides by a³:

8 = a

Now that we know the value of 'a' is 8, we can calculate P(X = 5) using the PMF formula:

P(X = 5) = (e⁸ * 8⁵) / 5!

Calculating this expression:

P(X = 5) = (e⁸ * 32768) / 120

P(X = 5) ≈ 0.028

Therefore, for the Poisson relation , P(X = 5) = 0.028

Learn more on Poisson relation: https://brainly.com/question/30388228

#SPJ1

The support allows us to look at categorical data as a quantitative value.
2. In order for a distribution to be valid, the product of all of the probabilities from the support must equal 1.
3. When performing an experiment, the outcome will always equal the expected value.
4. The standard deviation is equal to the positive square root of the variance.

Answers

The standard deviation is used to describe the degree of variation or dispersion in a set of data values.

1. Categorical data is used to represent variables that cannot be measured numerically. The support, which allows us to interpret categorical data as quantitative data, provides a framework for working with such data. When analyzing categorical data, the support is the set of all possible values that the data can take on.
2. The sum of the probabilities of all possible outcomes in a probability distribution must be equal to 1. This means that in order for a distribution to be valid, the product of all of the probabilities from the support must equal 1. This is known as the law of total probability.
3. The outcome of an experiment is the result of the experiment. It is not always equal to the expected value. The expected value is the long-term average of a random variable's outcomes over many trials. It is the weighted sum of the possible outcomes of a random variable, where the weights are the probabilities of each outcome.
4. The standard deviation is a measure of the spread or dispersion of a set of data values. It is equal to the positive square root of the variance, which is the average of the squared differences from the mean. The standard deviation is used to describe the degree of variation or dispersion in a set of data values.

To know more about standard deviation, visit:

https://brainly.com/question/29115611

#SPJ11

find a power series for the function, centered at c. h(x) = 1 1 − 2x , c = 0 h(x) = [infinity] n = 0 determine the interval of convergence. (enter your answer using interval notation.)

Answers

the power series for the function, centered at c is given by h(x) = 1/1-2x and the interval of convergence is (-1/2, 1/2).

The power series for the function, centered at c is given by h(x) = 1/1-2x.

To determine the interval of convergence we have to use the ratio test.

r = lim n→∞|an+1/an|  

For the given function,  an

= 2^n for all n ≥ 0an+1

= 2^n+1 for all n ≥ 0r

= lim n→∞|an+1/an|

= lim n→∞|2^n+1/2^n|

= lim n→∞|2(1/2)^n + 1/2^n|

= 2lim n→∞[(1/2)^n(1+1/2^n)]

= 2 × 1

= 2

As the value of r is greater than 1, the given series is divergent at x = 1/2. So, the interval of convergence is (-1/2, 1/2) which can be represented using interval notation as (-1/2, 1/2).

Therefore, the power series for the function, centered at c is given by h(x) = 1/1-2x and the interval of convergence is (-1/2, 1/2).

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Suppose that the sitting back-to-knee length for a group of adults has a normal distribution with a mean of μ = 22.7 in. and a standard deviation of o=1.2 in. These data are often used in the design of different seats, including aircraft seats, train seats, theater seats, and classroom seats. Instead of using 0.05 for identifying significant values, use the criteria that a value x is significantly high if P(x or greater) ≤ 0.01 and a value is significantly low if P(x or less) ≤0.01. Find the back-to-knee lengths separating significant values from those that are not significant. Using these criteria, is a back-to-knee length of 24.9 in. significantly high? Find the back-to-knee lengths separating significant values from those that are not significant. in. are not significant, and values outside that range are considered significant. Back-to-knee lengths greater than in. and less than (Round to one decimal place as needed.) Using these criteria, is a back-to-knee length of 24.9 in. significantly high? A back-to-knee length of 24.9 in. significantly high because it is the range of values that are not considered significant.

Answers

The bounds of significant values are given as follows:

Low: 19.9 in.High: 25.5 in.

As 24.9 inches is less than 25.5 inches, it is not a significant high value.

How to obtain the measures with the normal distribution?

We first must use the z-score formula, as follows:

[tex]Z = \frac{X - \mu}{\sigma}[/tex]

In which:

X is the measure.[tex]\mu[/tex] is the population mean.[tex]\sigma[/tex] is the population standard deviation.

The z-score represents how many standard deviations the measure X is above or below the mean of the distribution, and can be positive(above the mean) or negative(below the mean).

The z-score table is used to obtain the p-value of the z-score, and it represents the percentile of the measure represented by X in the distribution.

The mean and the standard deviation for this problem are given as follows:

[tex]\mu = 22.7, \sigma = 1.2[/tex]

The 1st percentile is X when Z = -2.327, hence:

-2.327 = (X - 22.7)/1.2

X - 22.7 = -2.327 x 1.2

X = 19.9.

The 99th percentile is X when Z = 2.327, hence:

2.327 = (X - 22.7)/1.2

X - 22.7 = 2.327 x 1.2

X = 25.5.

More can be learned about the normal distribution at https://brainly.com/question/25800303

#SPJ4

Other Questions
i want a full resarch on Descriptive Analysis on social mediafor customer engagement The average price of a gallon of gas in 2018 increased $0.30 (12.4 percent) from $242 in 2017 to $2.72 in 2018. Let's see whether these changes are reflected in the income statement of Mango Corporation for the year ended December 31, 2018 (amounts in billions). 2018 $ 274 157 Revenues Costs of Purchased Crude Oil and Products Other Operating costs Income before Income Tax Expense Income Tax Expense Net Income 2017 $ 232 124 93 15 83 34 10 $ 24 $ 15 Required: 1. Compute the gross profit percentage for each year. Assuming that the change from 2017 to 2018 is the beginning of a sustained trend, is Mango likely to earn more or less gross profit from each dollar of sales in 2019? 2. Compute the net profit margin for each year. Did Mango do a better or worse Job of controlling expenses other than the costs of crude oil and products In 2018 relative to 2017. 3. Mango reported average net fixed assets of $374 billion in 2018 and $372 billion in 2017. Compute the fixed asset turnover ratios for both years. Did the company better utilize its Investment in fixed assets to generate revenues in 2018 or 2017? 4. Mango reported average stockholders' equity of $184 billion in 2018 and $180 billion in 2017. The company has not Issued preferred stock. Compute the return on equity ratios for both years. Did the company generate greater returns for stockholders in 2018 or 2017? Work of 790 J is done by stirring an insulated beaker containing120g of water.1. What is the change in the internal energy?2. What is the change in the temperature of the water? (InC) Barium has a work function of 2.48 eV.what is the maximum kinetic energy of electrons if the metal is illuminated by uv light of wavelength 325 nm ? suppose you were hired to design an automatic irrigation system for a wealthy homeowners garden. you determine that the flower beds should be kept at a water potential above -60 kpa The market equilibrium price will be _____ when there are external benefits associated with the production or consumption of some good, and it will be ______ when there are external costs present. Question 37 options: too high; too high too low; too low too low; too high WILL GIVE BRAINLIEST (PLEASE SHOW WORK)Evaluate sec (11pi/6) without using technology For the curve (x^2+y^2)^38x^2y^2=0 find an equation of the tangent line at (1,1) all of the following are examples of warranties, except:select the correct answer below:a drill company advertises that it will repair any drill if a fault arises within the first three years of purchase.a handyman who is remodeling a bathroom writes in his contract that he will repair any tiles that come loose within two years of the completion of the remodel. a car dealership outlines what the car manufacturer will do if there are certain problems with the vehicle within a five-year period.a clothing company encourages customers to return items purchased for a full refund within 90 days if they are unsatisfied with their purchase for any reason. What are the ""new"" and ""old"" rules for advantage competitive? (moat and turnstile analogy) what is a storyboard? What is the daughter nucleus (nuclide) produced when^213 Bi undergoes alpha decay? Replace the question marks with the proper integers or symbols. PMTS relies on a data base of basic motion elements. a True b. False 20. For highly repetitive jobs with short cycle times performed by one worker, the work sampling is preferred over the direct time study. a. True b. False B- What are the prerequisites for valid time standards? 1- 2- 3- 4- Question2: A total of 8 cycles have been observed during a direct time study. The mean for the largest element time = 1.42 min, and the corresponding sample standard deviations = 0.30 min. a- what is the 95% confidence interval on the 1.42 min element time? (-2.365) b- If the analyst wants to be 98% confident that the mean of the sample was within 10% of the true mean, how many more observations should be taken?(t-2.998) Whirly Corporation's contribution format income statement for the most recent month is shown below: Total Per Unit $ 30.00 $ 267,000 Sales (8,900 units) Variable expenses Contribution margin 169,100 19.00 $11.00 97,900 Fixed expenses 54,500 Net operating income $ 43,400 Required: (Consider each case independently): 1. What would be the revised net operating income per month if the sales volume increases by 90 units? 2. What would be the revised net operating income per month if the sales volume decreases by 90 units? 3. What would be the revised net operating income per month if the sales volume is 7,900 units? 1. Revised net operating income 2. Revised net operating income 3. Revised net operating income A. What type of the market research Ben & Jerry would have designed before launching the Doggie Desert and why?B. Using terms discussed in class and in the textbook, what type of data Ben & Jerry would have collected and why?C. Describe how would they have collected these data suppose that p is the proposition ""it is not snowing."" which of the following propositions would be equivalent to not-p? if volcanism was to increase over thousands of years, how would atmospheric co2 concentrations change? why? what are some abiotic factors for great barrier reef? 1. Discuss why it is not always desirable, or even possible, to use output-based pay. 2. Discuss why organizations might prefer job evaluation to market pricing. 3. Discuss the key steps in designing Exercise #2. Suppose a single-product monopoly incurring a marginal cost of production equal to 2. Q11) Determine the profit maximizing price when the elasticity of demand is equal to -2. .