Answer:
The car travels the distance of 225m before coming to rest.
Explanation:
Here,
v = 45m/s
t = 5s
d = v × t
Therefore,
d = 45 × 5
= 225m
Which number has four significant figures?
A. 4000
B. 3.008
C. 86.012
D. 0.0001
a. 4000
This has 4-digits.
Answer:
in my opinion letter d.
Explanation:
Sana pi tama
When an object is in free fall, ____________________.
Answer:
Objects that are said to be undergoing free fall, are not encountering a significant force of air resistance; they are falling under the sole influence of gravity.
Explanation:
Under such conditions, all objects will fall with the same rate of acceleration, regardless of their mass.
Question 2 of 10
Which of the following statements is true of an isolated system?
A.The system has energy but no matter.
B.Energy separates the matter in the system from outside matter.
C.The matter within the system does not interact with matter outside the system
D.The matter within the system does not interact with other matter in the system
Answer:
D
Explanation:
because it is system removed from system and it dosent interact with them
A block of mass 10kg is suspendet at a diameter of 20cm from the centre of a uniform bar im long, what force is required to balance it at its centre of gravity by applying the fore at the other end of the bar?
Answer:
4 kg of force
Explanation:
Force = (mass x distance to fulcrum) / length of fulcrum to end
Subsitute values
F = (10 x 20)/50
F =4
g As they reach higher temperatures, most semiconductors... Selected Answer: have an increased resistance. Answers: have a constant resistance. have an increased resistance. have a decreased resistance.
Answer:
have an increased resistance
When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not noticeable?
Answer:
because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.
A Catapult throws a payload in a circle with an arm that is 65.0 cm long. At a certain instant, the arm is rotating at 8.0 rad/s and the angular speed is increasing at 40.0 rad/s2. For this instant, find the magnitude of the acceleration of the payload.
Answer:
The acceleration of the payload is 26 m/s2.
Explanation:
length, L = 65 cm = 0.65 m
angular acceleration = 40 rad/s^2
The acceleration is given by
a = angular acceleration x length
a = 40 x 0.65
a = 26 m/s^2
A 6.0-cm-diameter horizontal pipe gradually narrows to 4.0 cm. When water flows through this pipe at a certain rate, the gauge pressure in these two sections is 32.0 kPa and 24.0 kPa, respectively. What is the volume rate of flow?
Answer:
a n c
Explanation:
An elevator with its occupants weighs 2400 N and is supported by a vertical cable. What is the tension in the cable if the elevator is moving up with its speed decreasing at a rate of 1.7
Answer:
Hope you find it useful. please correct me if I am wrong
The tension in the cable if the elevator is moving upward with its speed decreasing at a rate of 1.7 m/s² is equal to 1983.67 N.
What is tension?Tension can be described as a force acting along the length of a medium such as a rope, mainly a force carried by a flexible medium.
Tension can be defined as an action-reaction pair of forces acting at each end of the elements. The tension force is in every section of the rope in both directions, apart from the endpoints. Each endpoint of the rope experience tension and force from the weight attached.
Given the force due to the weight of the elevator = mg = 2400N
m = 2400/9.8 Kg
The elevator deaccelerating while moving upward, a = -1.7 m/s²
According to Newton's 3rd law: T - mg = ma
T - 2400 = (2400/9.8) × (-1.7)
T = 2400 - 416.32
T = 1983.67 N
Learn more about tension, here:
brainly.com/question/28965515
#SPJ5
Explain what a circuit breaker is and how it helps protect your house?
Explanation:
A circuit breaker is an electrical switch designed to protect an electrical circuit from damage caused by overcurrent/overload or short circuit. Its basic function is to interrupt current flow after protective relays detect a fault.
Circuit breakers have been designed to detect when there is a fault in the electricity, so it will “trip” and shut down electrical flow. ... This detection is key to preventing surges of electricity that travel to appliances or other outlets, which can cause them to break down
A pump lifts 400 kg of water per hour a height of 4.5 m .
Part A
What is the minimum necessary power output rating of the water pump in watts?
Express your answer using two significant figures.
Part B
What is the minimum necessary power output rating of the water pump in horsepower?
Express your answer using two significant figures.
Answer:
Power = Work / Time
P = 400 kg * 9.8 m/s * 4.5 m / 3600 sec = 4.9 J/s = 4.9 Watts
Also, 4.9 Watts / (746 Watts / Horsepower) = .0066 Hp
1. On each of your equipotential maps, draw some electric field lines with arrow heads indicating the direction of the field. (Hint: At what angle do field lines intersect equipotential lines?) Draw sufficient field lines that you can "see" the electric field.
Answer:
The angle between the electric field lines and the equipotential surface is 90 degree.
Explanation:
The equipotential surfaces are the surface on which the electric potential is same. The work done in moving a charge from one point to another on an equipotential surface is always zero.
The electric field lines are always perpendicular to the equipotential surface.
As
[tex]dV = \overrightarrow{E} . d\overrightarrow{r}\\\\[/tex]
For equipotential surface, dV = 0 so
[tex]0 = \overrightarrow{E} . d\overrightarrow{r}\\\\[/tex]
The dot product of two non zero vectors is zero, if they are perpendicular to each other.
An automobile engine has an efficiency of 22.0% and produces 2510 J of work. How much heat is rejected by the engine
Answer:
If efficiency is .22 then W = .22 * Q where Q is the heat input
Heat Input Q = 2510 / .22 = 11,400 J
Heat rejected = 11.400 - 2510 = 8900 J of heat wasted
Also, 8900 J / (4.19 J / cal) = 2120 cal
An efficiency is the measure of productivity of an engine. The heat rejected by the engine is 8900 Joules.
What is efficiency?An efficiency of a heat engine is the ratio of the work done and heat supplied.
Given is the automobile engine has the efficiency 22% and Work done is 2510 Joules.
The efficiency is written as,
η= W / Qs.
The work done is W= Qs - Qr, where Qr is the rejected heat.
The heat rejected can be represented as
Qr = W ( 1/η -1)
Substituting the value into the equation, we get the rejected heat.
Qr = 2510 (1/0.22 -1)
Qr = 8900 Joules.
Thus, the heat rejected by the engine is 8900 Joules.
Learn more about efficiency.
#SPJ2
A copper wire 1.0 meter long and with a mass of .0014 kilograms per meter vibrates in two segments when under a tension of 27 Newtons. What is the frequency of this mode of vibration
Answer:
the frequency of this mode of vibration is 138.87 Hz
Explanation:
Given;
length of the copper wire, L = 1 m
mass per unit length of the copper wire, μ = 0.0014 kg/m
tension on the wire, T = 27 N
number of segments, n = 2
The frequency of this mode of vibration is calculated as;
[tex]F_n = \frac{n}{2L} \sqrt{\frac{T}{\mu} } \\\\F_2 = \frac{2}{2\times 1} \sqrt{\frac{27}{0.0014} }\\\\F_2 = 138.87 \ Hz[/tex]
Therefore, the frequency of this mode of vibration is 138.87 Hz
Differences between angle of twist and angle of shear
Answer:
idek
Explanation:
12) If, after viewing a specimen at low power, you switch to high-dry power and, after using fine focus, cannot find the specimen, what things could you do to help yourself (before calling me over to assist you?)
Answer:
See the answer below
Explanation:
After seeing an object on a slide at the low-power objective of the microscope and it disappears on changing to high power, the following can be done to resolve the problem
1. Drop a few drops of immersion oil on the slide and view again under high the power objective.
2. If the object is still not visible after the action above, return the microscope to the low-power objective and make sure the object is refocused and centered. Then carefully change back to the high power objective and use the fine adjustment to bring it into focus.
Which parts of The Action Potential Are Represented On The ECG?
Answer:
The phases of the cardiac action potential correspond to the surface ECG (ECG) (Figure). The P wave reflects atrial depolarization (phase 0), the PR interval reflects the conduction velocity through the AV node, the QRS complex the ventricular depolarization and QT interval the duration potential ventricular action.
A mass attached to the end of a spring is oscillating with a period of 2.25 s on a horizontal frictionless surface. The mass was released from rest at
t = 0
from the position
x = 0.0480 m.
Determine the location of the mass at
t = 5.85 s?
Answer:
[tex]X=0.0389m[/tex]
Explanation:
From the question we are told that:
Period of spring [tex]T_s=2.25s[/tex]
Initial Position of Mass [tex]x=0.0480m[/tex]
Final Mass period [tex]T_f=5.85s[/tex]
Generally the equation for the Mass location is mathematically given by
[tex]X=xcos*\frac{2\pi T_s}{T_f}[/tex]
[tex]X=0.048*cos*\frac{2\pi 5.85}{2.25}[/tex]
[tex]X=0.0389m[/tex]
What are the differences among elements, compounds, and mixtures?
Answer:
Elements have a characteristic number of electrons and protons.Both Hydrogen(H) and oxygen(O) are two different elements.
••••••••••••••••
Compounds are chemical substances where the atoms atoms of two different elements are combined together. It is made of .Hydrogen(H) and Oxygen(O) both qr4 naturally gases,but they react to form water(H2O),which is liquid compound.
•••••••••••••••
A mixture is made of atleast two parts》 solid,liquid or gas.The difference is that it's not a chemical substance that's bonded by other elements.
------------------------------
Hope it helps...
Have a great day!!!
Answer: Elements have a characteristic number of electrons and protons. Both Hydrogen(H) and oxygen(O) are two different elements. Compounds are chemical substances where the atoms atoms of two different elements are combined together. It is made of.Hydrogen(H) and Oxygen(O) both qr4 naturally gases, but they react to form water(H2O), which is liquid compound. A mixture is made of at least two parts solid, liquid, or gas. The difference is that it's not a chemical substance that's bonded by other elements.
A boy is playing with a water hose, which has an exit area of
10 cm2 and has water flowing at a rate of 2 m/s. If he covers
the opening of the hose with his thumb so that it now has an
open area of 2 cm2, what will be the new exit velocity of the
water?
Answer:
The exit velocity of water is B. 15 m/s.
Explanation:
According to equation of continuity, for a steady flow of water, the volume of liquid entering a pipe in 1 second is equal to the volume that leaves per second.
If the initial exit area of the pipe is A₁ and the speed of exit is v₁ and the final exit area is A₂ and its corresponding exit velocity is v₂, then,
Rewrite the expression for v₂.
Substitute 10 cm² for A₁, 2 cm² for A₂ and 3 m/s for v₁.
The exit speed of water from the hose is 15 m/s.
in what part of the plant is glucose suger made?
[tex]\large \mid \underline {\bf {{{\color{navy}{Leaf \: \: \: Chloroplast \: ...}}}}} \mid[/tex]
☛ More Information :Green plants manufacture glucose through a process that requires light, known as photosynthesis. Glucose is stored in the form of starch in plants.
If an electrical component with a resistance of 53 Q is connected to a 128-V source, how much current flows through the component?
Answer:
the current that flows through the component is 2.42 A
Explanation:
Given;
resistance of the electrical component, r = 53 Ω
the voltage of the source, V = 128 V
The current that flows through the component is calculated using Ohm's Law as demonstrated below;
[tex]V = IR\\\\I = \frac{V}{R} = \frac{128 \ V}{53 \ ohms} = 2.42 \ A[/tex]
Therefore, the current that flows through the component is 2.42 A
A cable is lifting a construction worker and a crate, as the drawing shows. The weights of the worker and crate are 965 and 1510 N, respectively. The acceleration of the cable is 0.620 m s 2 , upward. What is the tension in the cable (a) below the worker and ( b) above the worker
Answer:
Explanation:
a)
Below the worker , the tension in cable is pulling the crate . Let the tension be T₁ .
weight of crate is acting downwards .
Total weight 1510 N.
Net force acting on both = T₁ - 1510
Applying second law of Newton ,
T₁ - 1510 = 1510 / 9.8 x 0.62 [ 1510 / 9.8 = mass of crate ]
T₁ - 1510 = 95.5
T₁ = 1605.5 N.
b )
Above the worker , the tension in cable is pulling both the worker and the crate . Let the tension be T₂ .
weight of both worker and crate is acting downwards .
Total weight = 965 + 1510 = 2475 N.
Net force acting on both = T₂ - 2475
Applying second law of Newton ,
T₂ - 2475 = 2475 / 9.8 x 0.62 [ 2475 / 9.8 = mass of both worker and crate ]
T₂ - 2475 = 156.6
T₂ = 2631.6 N.
A 31 kg block is initially at rest on a horizontal surface. A horizontal force of 83 N is required to set the block in motion. After it is in motion, a horizontal force of 55 N i required to keep it moving with constant speed. From this information, find the coefficients of static and kinetic friction
Answer:
The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.
Explanation:
By Newton's Laws of Motion and definition of maximum friction force, we derive the following two formulas for the static and kinetic coefficients of friction:
[tex]\mu_{s} = \frac{f_{s}}{m\cdot g}[/tex] (1)
[tex]\mu_{k} = \frac{f_{k}}{m\cdot g}[/tex] (2)
Where:
[tex]\mu_{s}[/tex] - Static coefficient of friction, no unit.
[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, no unit.
[tex]f_{s}[/tex] - Static friction force, in newtons.
[tex]f_{k}[/tex] - Kinetic friction force, in newtons.
[tex]m[/tex] - Mass, in kilograms.
[tex]g[/tex] - Gravitational constant, in meters per square second.
If we know that [tex]f_{s} = 83\,N[/tex], [tex]f_{k} = 55\,N[/tex], [tex]m = 31\,kg[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then the coefficients of friction are, respectively:
[tex]\mu_{s} = \frac{83\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\mu_{s} = 0.273[/tex]
[tex]\mu_{k} = \frac{55\,N}{(31\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)}[/tex]
[tex]\mu_{k} = 0.181[/tex]
The static and kinetic coefficients of friction are 0.273 and 0.181, respectively.
A planet of mass m moves around the Sun of mass M in an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r1 and r2, respectively. Find the relation between the time period of the planet in terms of r1 and r2.
Answer:
the relation between the time period of the planet is
T = 2π √[( r1 + r2 )³ / 8GM ]
Explanation:
Given the data i the question;
mass of sun = M
minimum and maximum distance = r1 and r2 respectively
Now, using Kepler's third law,
" the square of period T of any planet is proportional to the cube of average distance "
T² ∝ R³
average distance a = ( r1 + r2 ) / 2
we know that
T² = 4π²a³ / GM
T² = 4π² [( ( r1 + r2 ) / 2 )³ / GM ]
T² = 4π² [( ( r1 + r2 )³ / 8 ) / GM ]
T² = 4π² [( r1 + r2 )³ / 8GM ]
T = √[ 4π² [( r1 + r2 )³ / 8GM ] ]
T = 2π √[( r1 + r2 )³ / 8GM ]
Therefore, the relation between the time period of the planet is
T = 2π √[( r1 + r2 )³ / 8GM ]
A piston-cylinder device contains 5 kg of refrigerant-134a at 0.7 MPa and 60°C. The refrigerant is now cooled at constant pressure until it exists as a liquid at 24°C. If the surroundings are at 100 kPa and-24°C, determine:
(a) the exergy of the refrigerant at the initial and the final states and
(b) the exergy destroyed during this process.
Answer:
Yes sure, keep it going, and never give up because your dreams are so important
A) The exergy of the refrigerant at the initial and final states are :
Initial state = - 135.5285 kJ Final state = -51.96 kJB) The exergy destroyed during this process is : - 1048.4397 kJ
Given data :
Mass ( M ) = 5 kg
P1 = 0.7 Mpa = P2
T1 = 60°C = 333 k
To = 24°C = 297 k
P2 = 100 kPa
A) Determine the exergy at initial and final states
At initial state :
U = 274.01 kJ/Kg , V = 0.034875 m³/kg , S = 1.0256 KJ/kg.k
exergy ( Ф ) at initial state = M ( U + P₂V - T₀S )
= 5 ( 274.01 + 100* 10³ * 0.034875 - 297 * 1.0256)
≈ - 135.5285 kJ
At final state :
U = 84.44 kJ / kg , V = 0.0008261 m³/kg, S = 0.31958 kJ/kg.k
exergy ( ( Ф ) at final state = M ( U + P₂V - T₀S )
= -51.96 kJ
B) Determine the exergy destroyed
exergy destroyed = To * M ( S2 - S1 )
= 297 * 5 ( 0.31958 - 1.0256 )
= - 1048.4397 KJ
Hence we can conclude that A) The exergy of the refrigerant at the initial and final states are : Initial state = - 135.5285 kJ, Final state = -51.96 kJ and The exergy destroyed during this process is : - 1048.4397 kJ
Learn more about exergy : https://brainly.com/question/25534266
what is the force of a body which have mass of 7 kg
Answer:
Force acting on a body of mass 7 kg which produces an accceleration of 10 m/s2 is 70 N
Answer:
10 m/s2 or 70 newtons.
Explanation:
............................
............
What would the radius (in mm) of the Earth have to be in order for the escape speed of the Earth to equal (1/21) times the speed of light (300000000 m/s)? You may ignore all other gravitational interactions for the rocket and assume that the Earth-rocket system is isolated. Hint: the mass of the Earth is 5.94 x 1024kg and G=6.67×10−11Jmkg2G=6.67\times10^{-11}\frac{Jm}{kg^2}G=6.67×10−11kg2Jm
Answer:
The expected radius of the Earth is 3.883 meters.
Explanation:
The formula for the escape speed is derived from Principle of Energy Conservation and knowing that rocket is initially at rest on the surface of the Earth and final energy is entirely translational kinetic, that is:
[tex]U = K[/tex] (1)
Where:
[tex]U[/tex] - Gravitational potential energy, in joules.
[tex]K[/tex] - Translational kinetic energy, in joules.
Then, we expand the formula by definitions of potential and kinetic energy:
[tex]\frac{G\cdot M\cdot m}{r} = \frac{1}{2}\cdot m \cdot v^{2}[/tex] (2)
Where:
[tex]G[/tex] - Gravitational constant, in cubic meters per kilogram-square second.
[tex]M[/tex] - Mass of the Earth. in kilograms.
[tex]m[/tex] - Mass of the rocket, in kilograms.
[tex]r[/tex] - Radius of the Earth, in meters.
[tex]v[/tex] - Escape velocity, in meters per second.
Then, we derive an expression for the escape velocity by clearing it within (2):
[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]
[tex]v = \sqrt{\frac{2\cdot G \cdot M}{r} }[/tex] (3)
If we know that [tex]v = \frac{1}{21}\cdot c[/tex], [tex]c = 3\times 10^{8}\,\frac{m}{s}[/tex], [tex]M = 5.94\times 10^{24}\,kg[/tex], [tex]G = 6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}}[/tex] and [tex]M = 5.94\times 10^{24}\,kg[/tex], then the expected radius of the Earth is:
[tex]\frac{GM}{r} = \frac{1}{2}\cdot v^{2}[/tex]
[tex]r = \frac{2\cdot G \cdot M}{v^{2}}[/tex]
[tex]r = \frac{2\cdot \left(6.67\times 10^{-11}\,\frac{m^{3}}{kg\cdot s^{2}} \right)\cdot (5.94\times 10^{24}\,kg)}{\left[\frac{1}{21}\cdot \left(3\times 10^{8}\,\frac{m}{s} \right) \right]^{2}}[/tex]
[tex]r = 3.883\,m[/tex]
The expected radius of the Earth is 3.883 meters.
b) Assume the rod is 0.60 m long and has a mass of 0.50 kg, and the clay blob has a mass of 0.20 kg and moves at an initial velocity of 8.0 m/s. Calculate the final angular velocity of the rod. Be sure to put units in your calculation and show the resulting units in your answer.
Answer:
The correct answer is "6.96 rad/s".
Explanation:
The given values are:
Length,
L = 0.6 m
Mass,
m₁ = 0.5 kg
m₂ = 0.2 kg
Initial velocity,
V = 8 m/s
Now,
The final angular velocity will be:
⇒ [tex]\omega =\frac{6m_1V}{(4m_1+3m_2)L}[/tex]
By substituting the values, we get
⇒ [tex]=\frac{6\times 0.2\times 8}{(4\times 0.2+3\times 0.5)0.6}[/tex]
⇒ [tex]=\frac{9.6}{1.38}[/tex]
⇒ [tex]=6.96 \ rad/s[/tex]
Suppose that a ball decelerates from 8.0 m/s to a stop as it rolls up a hill, losing 10% of its kinetic energy to friction. Determine how far vertically up the hill the ball reaches when it stops. Show your work.(2 points)
Answer:
The maximum height is 0.33 m.
Explanation:
initial velocity, u = 8 m/s
final velocity, v = 0 m/s
10% of kinetic energy is lost in friction.
The kinetic energy used to move up the top,
KE = 10 % of 0.5 mv^2
KE = 0.1 x 0.5 x m x 8 x 8 = 3.2 m
Let the maximum height is h.
Use conservation of energy
KE at the bottom = PE at the top
3.2 m = m x 9.8 x h
h = 0.33 m
The height traveled vertically up the hill by the ball when it stops is 0.327 meter.
Given the following data:
Velocity = 8.0 m/sKinetic energy = 10% lost to friction.Scientific data:
Acceleration due to gravity = 9.8 [tex]m/s^2[/tex]To determine how far (height) vertically up the hill the ball reaches when it stops:
By applying the law of conservation of energy, we have:
Kinetic energy lost at the bottom = Potential energy gained at the top.
Mathematically, the above expression is given by the formula:
[tex]0.1 \times \frac{1}{2} mv^2 = mgh\\\\0.1 \times \frac{1}{2} v^2 = gh\\\\h=\frac{0.1v^2}{2g}[/tex]
Substituting the given parameters into the formula, we have;
[tex]h=\frac{0.1 \times 8^2}{2\times 9.8} \\\\h=\frac{0.1 \times 64}{19.6} \\\\h=\frac{6.4}{19.6}[/tex]
Height, h = 0.327 meter.
Read more on kinetic energy here: https://brainly.com/question/17081653