A car traveling 56.0 km/h is 23.0 m from a barrier when the driver slams on the brakes. The car hits the barrier 2.13 s later. (a) What is the magnitude of the car's constant acceleration before impact?

(b) How fast is the car traveling at impact?

Answers

Answer 1

a) The magnitude of the car's constant acceleration before impact is approximately 6.56 m/s^2.

b) The car is traveling at approximately 1.95 m/s at the time of impact.

(a) To calculate the magnitude of the car's constant acceleration before impact, we can use the following kinematic equation:

Distance = Initial Velocity * Time + (1/2) * Acceleration * Time^2

The initial velocity is given as 56.0 km/h, which can be converted to m/s:

Initial Velocity = [tex]56.0 km/h * (1000 m/1 km) * (1/3600 h/1 s) ≈ 15.56 m/s[/tex]

The distance is given as 23.0 m, and the time is given as 2.13 s. We can rearrange the equation to solve for acceleration:

Acceleration =[tex](2 * (Distance - (Initial Velocity * Time))) / Time^2[/tex]

Acceleration = ([tex]2 * (23.0 m - (15.56 m/s * 2.13 s))) / (2.13 s)^2 ≈ -6.56 m/s^2[/tex]

(b) To determine the car's speed at impact, we can use another kinematic equation:

Final Velocity = Initial Velocity + (Acceleration * Time)

Plugging in the values:

Final Velocity = [tex]15.56 m/s + (-6.56 m/s^2 * 2.13 s) ≈ 1.95 m/s[/tex]

To know more about acceleration refer here:

https://brainly.com/question/2303856#

#SPJ11


Related Questions

A) The conventional current in a wire travels in the direction I <-0.2876,-0.6675,0.6868> . Find the direction of the velocity of electrons in the wire v .

B) At one instant, a proton is at the origin with a velocity <9.7*10^6,1.1*10^6,7.6*10^6>. At the observation location <2.4,9.9,1.1> m

What is the electric field due to the proton?

What is the magnetic field due to the proton?

C) The plates of a parallel plate capacitor are separated by 0.3 mm. If the space between the plates is air, what plate area is required to provide a capacitance of 11 pF?

D) In a region of space, an electromagnetic wave moves to the right, as indicated in the above diagram. At one moment, the magnitude of the electric field at the indicated point is E=2923 n/C, and its direction is out of the page.

At this point and time, what is the magnitude of the associated magnetic field?

Answers

a) Velocity of electrons in the wire is: v = <0.2876, 0.6675, -0.6868> m/s. b) Electric field due to the proton = 5.34 x 109 N/C; Magnetic field due to the proton = 1.84 x 10^-16 T. c) Area of the plates required to provide a capacitance of 11 pF is 0.373 m^2. d) The magnitude of the associated magnetic field is 9.74 x 10^-6 T.

a) The direction of the velocity of electrons in the wire is opposite to the direction of conventional current. Therefore the direction of electrons in the wire v is v = <0.2876, 0.6675, -0.6868> m/s.

b) The electric field due to the proton is 5.34 x 10^9 N/C, which is the product of charge of proton and the electric field constant. The magnetic field due to the proton is 1.84 x 10^-16 T, which is the product of velocity of proton and the magnetic constant.

c) The capacitance of the parallel plate capacitor is given as 11 pF, which is the ratio of charge and potential difference between the plates. Using this we can find the area of the plates which is 0.373 m^2.

d) The magnitude of the associated magnetic field is given by B = E/c, where E is the magnitude of electric field and c is the speed of light. Substituting the given values, we can find the magnitude of the associated magnetic field.

Learn more about conventional current here:

https://brainly.com/question/31388971

#SPJ11

An electrically conductive rod is 7.5 mm long and 10 mm in
diameter. It has a resistance of 87 Ω measured from one end to the
other.
A) Find the current density in the rod if a potential difference
o

Answers

The current density in the rod, with a potential difference of 25 V, is approximately 961,000 A/m².

The current density in the rod can be found using Ohm's Law, which states that the current flowing through a conductor is directly proportional to the potential difference applied across it and inversely proportional to its resistance.

The formula for current density (J) is given by:

J = I / A

where J is the current density, I is the current flowing through the conductor, and A is the cross-sectional area of the conductor.

First, let's calculate the cross-sectional area of the rod. The rod is cylindrical in shape, so we can use the formula for the area of a circle:

A = π * r^2

where A is the cross-sectional area and r is the radius of the rod.

Given that the diameter of the rod is 10 mm, the radius (r) can be calculated as half of the diameter:

r = 10 mm / 2 = 5 mm = 5 * 10^(-3) m

Substituting the values into the formula, we have:

A = π * (5 * 10^(-3))^2 = π * 25 * 10^(-6) m^2

Now, we need to calculate the current flowing through the rod. We can use Ohm's Law:

V = I * R

where V is the potential difference, I is the current, and R is the resistance.

Given that the potential difference (V) is 25 V and the resistance (R) is 87 Ω, we can rearrange the formula to solve for I:

I = V / R = 25 V / 87 Ω

Now, we have the current (I) and the cross-sectional area (A), so we can calculate the current density (J):

J = I / A = (25 V / 87 Ω) / (π * 25 * 10^(-6) m^2)

Simplifying the expression:

J = (25 V / 87 Ω) * (1 / (π * 25 * 10^(-6) m^2))

J ≈ 9.61 × 10^5 A/m^2

Therefore, the current density in the rod, when a potential difference of 25 V is applied across its length, is approximately 9.61 × 10^5 A/m^2.

To know more about current density refer here:

https://brainly.com/question/29217045#

#SPJ11

Complete question:

A) Find the current density in the rod if a potential difference of 25 V is applied across its length.

A 1.5-m length of wire carrying 4.5 A of current is oriented horizontally. At that point on the Earth's surface, the dip angle of the Earth's magnetic field makes an angle of 38° to the wire. Estimate the magnitude of the magnetic force on the wire due to the Earth's magnetic field of 5.5x105T at this point.

Answers

The magnitude of the magnetic force on the wire due to the Earth's magnetic field at this point is estimated to be 8.4 x [tex]10^{-3}[/tex] N if A 1.5-m length of wire carrying 4.5 A of current is oriented horizontally

The magnitude of the magnetic force on the wire due to the Earth's magnetic field of 5.5x105 T at this point can be estimated using the formula F = BILsinθ, where F is the magnetic force, B is the magnetic field strength, I is the current in the wire, L is the length of the wire, and θ is the angle between the wire and the magnetic field vector.  

This formula is known as the Lorentz force equation.In this case, the magnetic field strength B is given as 5.5x105 T, the current I is 4.5 A, the length L is 1.5 m, and the angle θ is 38°. Hence, substituting the values into the formula we have:F = BILsinθF = (5.5x105 T) x (4.5 A) x (1.5 m) x sin(38°)F = 8.4 x 10^-3 N

This force is directed perpendicular to both the current direction and the magnetic field vector direction, according to the right-hand rule for the direction of the magnetic force. The magnitude of the magnetic force on the wire depends on the current in the wire, the length of the wire, the strength of the magnetic field, and the angle between the wire and the magnetic field vector.

Know more about Lorentz force here:

https://brainly.com/question/28211140

#SPJ11

A cord of mass 0.55 kg is stretched between two supports 6.5 m apart. If the tension in the cord is 150 N, how long will it take a pulse to travel from one support to the other?

Answers

It will take approximately 0.154 seconds for a pulse to travel from one support to the other.

A cord of mass 0.55 kg is stretched between two supports 6.5 m apart. The tension in the cord is 150 N. We are to determine the time it will take a pulse to travel from one support to the other. If the pulse moves at a speed v, then we can use the formula:

v = √(T/μ)

where T is the tension in the cord, and μ is the linear density of the cord.

We can obtain the linear density μ by dividing the mass of the cord by its length. Since we are not given the length of the cord, we will assume it to be L. Hence:

μ = m/L = 0.55/L

The tension T is given as 150 N, while the distance between the two supports is given as 6.5 m. We can then use the formula:

v = √(T/μ)

v = √(150/(0.55/L))

v = √(150L/0.55)

We can also obtain the time t it takes for a pulse to travel from one support to the other using the formula:

t = L/v

Substituting the value of v into the formula gives:

t = L/√(150L/0.55)

t = √(0.55L/150)

Squaring both sides of the equation gives:

t² = (0.55L/150)

t² = 0.00367L

We know that the distance between the two supports is 6.5 m. Hence, L = 6.5 m. Substituting this into the equation for t² gives:

t² = 0.00367(6.5)

t² = 0.0238

t = √(0.0238)

t ≈ 0.154 s

Therefore, it will take approximately 0.154 seconds for a pulse to travel from one support to the other.

To learn more about seconds visit;

https://brainly.com/question/24237610

#SPJ11

2) Jupiter is more massive than Earth, so has more gravity. The acceleration due to gravity on Jupiter is about 25 m/s². How far does an object on Jupiter fall in 4 s?

Answers

An object on Jupiter would fall approximately 200 meters in 4 seconds due to the higher acceleration due to gravity.

The distance an object falls under the influence of gravity can be calculated using the formula:

d = (1/2)gt²

Where:

d = distance

g = acceleration due to gravity

t = time

Given:

g = 25 m/s²

t = 4 s

Substituting the values into the formula:

d = (1/2)(25 m/s²)(4 s)²

Calculating:

d = (1/2)(25 m/s²)(16 s²)

d = (1/2)(400 m)

d = 200 m

Therefore, an object on Jupiter would fall approximately 200 meters in 4 seconds.

An object on Jupiter would fall approximately 200 meters in 4 seconds due to the higher acceleration due to gravity on Jupiter compared to Earth.

To know more about gravity, visit:

https://brainly.com/question/557206

#SPJ11

How far will a projectile travel if it is fired at angle of 50
degrees with an initial velocity of 45 m/s? Assume that
yf = yi = 0 meters. Also, xi = 0
meters.

Answers

When fired at an angle of 50 degrees with an initial velocity of 45 m/s, the projectile will travel approximately 203.15meters

To determine the horizontal distance traveled by the projectile, we can break down the initial velocity into its horizontal and vertical components.

The horizontal component of velocity remains constant throughout the projectile's motion, while the vertical component is affected by gravity.

Initial velocity (vi) = 45 m/s

Launch angle (θ) = 50 degrees

First, we need to calculate the horizontal and vertical components of the initial velocity:

Horizontal component (vi_x) = vi * cos(θ)

Vertical component (vi_y) = vi * sin(θ)

Substituting the given values:

vi_x = 45 m/s * cos(50 degrees)

    = 45 m/s * 0.6428

    ≈ 28.924 m/s

vi_y = 45 m/s * sin(50 degrees)

    = 45 m/s * 0.7660

    ≈ 34.471 m/s

Now, we can calculate the time of flight (t) for the projectile using the vertical component of velocity.

The time it takes for the projectile to reach its highest point is equal to the time it takes for it to fall back down to the same height:

t = 2 * (vi_y / g)

Where g is the acceleration due to gravity, which is approximately 9.8 m/s².

Substituting the values:

t = 2 * (34.471 m/s / 9.8 m/s²)

  ≈ 7.024 seconds

Since the horizontal velocity component remains constant, we can find the horizontal distance (range) using:

Range = vi_x * t

Substituting the values:

Range = 28.924 m/s * 7.024 s

       ≈ 203.15 meters

However, since we assumed that the initial position in the horizontal direction (xi) is 0 meters, the actual horizontal distance traveled is equal to the range. Therefore, the projectile will travel approximately 131.6 meters.

When fired at an angle of 50 degrees with an initial velocity of 45 m/s, the projectile will travel approximately 203.15meters.

To know more about projectile visit:

https://brainly.com/question/8104921

#SPJ11

find the current in the circuit (in a) when the switch has been set to position a for a long time.

Answers

The current through the inductor will reach its first maximum after moving the switch in a time is π√LC/2

[tex]q_{max}[/tex] = CV = CE at long time

Maximum current in the inductor when switch moves from a to b

q = q₀cos(ωt)

i = dq/dt = q₀.ωsin(ωt)

[tex]i_{max}[/tex] = q₀.ωsin(ωt)

where sin(ωt) = 1

ωt = π/2

t = π/2ω

t = π/2(1/√LC)

t = π√LC/2

To know more about current here

https://brainly.com/question/15141911

#SPJ4

-- The given question is incomplete, the complete question is

"The switch in the circuit pictured is in a position for a long time. At t = 0 the switch is moved from a to b. What is the current through the inductor will reach its first maximum after moving the switch in a time?" --

The 300 gram billiard ball of 30 mm radius is struck by a cue stick that exerts an average force of 600 N horizontally over a 0.005 s interval. Immediately after being hit, the billiard ball rolls without slipping. Determine (a) the height h for the cue stick, and (b) the velocity of the ball after the impact.

Answers

If the 300 gram billiard ball of 30 mm radius is struck by a cue stick that exerts an average force of 600 N horizontally over a 0.005 s interval. Immediately after being hit, the billiard ball rolls without slipping. Then the height and velocity is 2.85 m & 7.5 m/s.

Given data:The mass of the billiard ball, m = 300 g = 0.3 kgRadius of the billiard ball, r = 30 mm = 0.03 mAverage force exerted by the cue stick, F = 600 N

Duration of the collision, t = 0.005 s Let's determine the height of the cue stick using the principle of conservation of energy.According to the principle of conservation of energy, the initial energy of the ball and the cue stick system should be equal to the final energy of the system.

Energy of the system before collision = Potential energy = mghEnergy of the system after the collision = Kinetic energy = (1/2)mv²

Now, equating both the energies, we get:mgh = (1/2)mv²... (1)

where h is the height of the cue stick and v is the velocity of the ball after the impact.Let's determine the velocity of the ball using the principle of impulse and momentum.

According to the principle of impulse and momentum, the impulse experienced by the ball is equal to the change in momentum of the ball.Impulse = F × t Change in momentum = mv - 0... (2

)Here, v is the velocity of the ball after the impact.Now, equating both the equations (1) and (2), we get:

mgh = (1/2)mv²⇒ v² = 2gh... (3)And,F × t = mv... (4)

Squaring both sides of equation (4), we get:(Ft)² = m²v² ⇒ v² = (Ft)²/m²... (5)Substituting the value of v² from equation (5) into equation (3), we get:

(Ft)²/m² = 2gh⇒ h = (Ft)²/2mg... (6)Substituting the given values into equation (6), we get:h = [(600 N × 0.005 s)²/(2 × 0.3 kg × 9.8 m/s²)] = 2.85 m

Therefore, the height of the cue stick is 2.85 m.Now, substituting the value of h into equation (3), we get:v² = 2gh⇒ v² = 2 × 9.8 m/s² × 2.85 m = 56.28 m²/s²⇒ v = √56.28 = 7.5 m/s Therefore, the velocity of the ball after the impact is 7.5 m/s.

To know more about velocity visit :

https://brainly.com/question/23855996

#SPJ11

when a 6.0-f capacitor is connected to a generator whose rms output is 34 v, the current in the circuit is observed to be 0.25 a. what is the frequency of the source?

Answers

Given: Capacitance, C = 6.0 F, RMS Voltage, V = 34 V and Current, I = 0.25 AFormula: Reactance of a capacitor, XC = 1/(2πfC)Where, f is the frequency of the source. Capacitive reactance: Reactance of a capacitor is defined as the opposition of a capacitor to the flow of current through it. It is measured in ohms (Ω).The formula for calculating capacitive reactance is given by,XC = 1/(2πfC)Where,C is the capacitance of the capacitorf is the frequency of the source. From the given data, Capacitance, C = 6.0 F, RMS Voltage, V = 34 V and Current, I = 0.25 A. Now, we can calculate the capacitive reactance of the capacitor, XC.XC = V/IXC = 34/0.25XC = 136 ohms. Substitute the given values in the formula of capacitive reactance, we get;136 = 1/(2πf×6)Rearranging the above equation, we get;f = 1/(2π×6×136)f = 120 Hz. Therefore, the frequency of the source is 120 Hz.

To know more about Capacitance visit

https://brainly.com/question/31871398

#SPJ11

When a 6.0-f capacitor is connected to a generator whose rms output is 34 v, the current in the circuit is observed to be 0.25, the frequency of the source is 50Hz.

The formula for calculating the frequency of a source of alternating current is given by; f = I / (2πVCR).

Frequency refers to the number of occurrences of a repeating event per unit of time. It is a fundamental concept in physics and is commonly used to describe various phenomena, particularly in the context of waves and oscillations.

where; I = current, C = capacitance, V = voltage, R = resistanceπ = 3.14

From the question above, we have; C = 6.0fI = 0.25vV = 34v

Substituting the values into the formula above; f = 0.25 / (2 x 3.14 x 34 x 6.0)≈ 50Hz

To know more about generator, visit:

https://brainly.com/question/12841996

#SPJ11

Vertical motion: the height above ground of an object moving vertically is given by S = 16t^2 + 96t + 112 with sin feet and t in second find a. the object's velocity when t = 0; b. its maximum height and when it occurs; c. its velocity when s = 0

Answers

To find the object's velocity when t = 0, we need to calculate the derivative of the height function S(t) with respect to time t. herefore, when t = 0, the object's velocity is 96 feet per second.

To find the maximum height, we need to determine the vertex of the quadratic equation. The vertex can be found using the formula t = -b / (2a), where a and b are the coefficients of the quadratic equation the confusion. Let's find the vertex of the height function S(t) = 16t^2 + 96t + 112 to determine the maximum height and when it occurs.To find the maximum height, we need to determine the vertex of the quadratic function. The vertex represents the peak of the parabolic shape and corresponds to the maximum height.the velocity when the height S(t) is equal to 0, we need to solve the equation S(t) = 16t^2 + 96t + 112 = 0. This will give us the time(s) when the object's height is zero, which corresponds to the moments when the object reaches the ground.

To know more about height visit :

https://brainly.com/question/29131380

#SPJ11

7. A simple harmonic oscillator (a mass m and a spring with spring constant k) oscillates with a maximum velocity Umax. For each of the following cases, state how you could make the oscillator have tw

Answers

A) To change the maximum velocity of the simple harmonic oscillator to twice the maximum velocity (Umax → 2Umax):

a) It is not possible to achieve this solely by changing the maximum displacement while keeping the mass and spring constant the same.

b) It is possible to achieve this by increasing the mass while keeping the maximum displacement and spring constant the same.

c) It is not possible to achieve this solely by changing the spring constant while keeping the mass and maximum displacement the same.

A) The maximum velocity of a simple harmonic oscillator is determined by several factors, including the maximum displacement, mass, and spring constant. To double the maximum velocity, we need to consider the impact of each factor individually.

a) Changing the maximum displacement: The maximum displacement affects the amplitude of the oscillation but does not directly influence the maximum velocity. Therefore, changing the maximum displacement while keeping the mass and spring constant the same will not lead to a doubling of the maximum velocity.

b) Changing the mass: The maximum velocity of a simple harmonic oscillator is inversely proportional to the square root of the mass. By increasing the mass while keeping the maximum displacement and spring constant the same, we can achieve twice the maximum velocity. This can be done by adding additional mass to the system.

c) Changing the spring constant: The spring constant affects the frequency and period of the oscillation but does not directly influence the maximum velocity. Therefore, changing the spring constant while keeping the mass and maximum displacement the same will not result in a doubling of the maximum velocity.

In summary, to achieve twice the maximum velocity in a simple harmonic oscillator, the most effective method is to increase the mass while keeping the maximum displacement and spring constant constant.

To know more about harmonic oscillator refer here:

https://brainly.com/question/31798306#

#SPJ11

Complete Question:

7. A simple harmonic oscillator (a mass m and a spring with spring constant k) oscillates with a maximum velocity Umax. For each of the following cases, state how you could make the oscillator have twice the maximum velocity (Umax → 2Umax), or state that it is not possible. a) How could you change the maximum displacement, keeping the mass and spring con- stant the same? b) How could you change the mass, keeping the maximum displacement and spring con- stant the same? c) How could you change the spring constant, keeping the mass and maximum displace- ment the same?

You carry a 7.0 kg bag of groceries 1.2 m above the level floor at a constant velocity of 75 cm/s across a room that is 2.3 m room. How much work do you do on the bag in the process? A) 158 ) B) 0.0 J C) 134 ) D) 82

Answers

The work done on the bag in the process is 0.0 J. The person carrying the bag does not perform any work as there is no change in the kinetic energy of the bag.The correct option is b.

Here's the explanation:

Given,Mass of the bag of groceries, m = 7.0 kg

Height from the level of the floor, h = 1.2 m

Distance traveled, d = 2.3 m

Velocity at which it is carried, v = 75 cm/s = 0.75 m/sFrom the question, it is clear that the bag is being carried at a constant velocity. Therefore, there is no acceleration, so we know that the net force on the bag is zero.

According to the work-energy principle, the work done on an object is equal to the change in its kinetic energy. Since the bag's velocity is constant, it has zero net force acting on it, and thus, zero acceleration. Therefore, the bag's kinetic energy doesn't change as it is carried across the room. Hence, no work is done by the person carrying the bag of groceries.

:Thus, the work done on the bag in the process is 0.0 J. The person carrying the bag does not perform any work as there is no change in the kinetic energy of the bag.

To know more about Velocity visit:

brainly.com/question/30559316

#SPJ11

When an object is rotating with a constant angular velocity about a fixed axis, the angular momentum (C) and the moment of inertia (D) about that axis remain constant. Therefore, the orientation of the object at different points along the arc will not change these values.

Answers

Angular momentum is a physics concept that is used to describe rotational motion. The concept of angular momentum is that an object with mass that is rotating or moving with an angular velocity is said to have angular momentum.

When an object rotates with a fixed angular velocity around a fixed axis, both the angular momentum and the moment of inertia around that axis stay constant.As a result, the angular momentum and moment of inertia of an object rotating at a constant angular velocity about a fixed axis stay constant regardless of the position of the object along the arc. The moment of inertia is defined as the resistance of an object to rotational motion about a given axis. It depends on the shape and mass distribution of the object. If an object is rotating about a fixed axis, the moment of inertia is an important quantity to calculate because it determines the angular velocity of the object. Angular momentum is represented by L and is given by the product of the moment of inertia and the angular velocity.

Hence,L = Iω, where L is angular momentum, I is the moment of inertiaω is angular velocity. Therefore, when an object is rotating with a constant angular velocity about a fixed axis, the angular momentum (C) and the moment of inertia (D) about that axis remain constant, irrespective of the position of the object along the arc.

To know more about Angular momentum visit:

https://brainly.com/question/29563080

#SPJ11

i
cant figure this out
A solid cylinder (mass 0.356 kg, radius 2.00 cm) rolls without slipping at a speed of 5.00 cm/s. What is its total kinetic energy? mJ

Answers

The total kinetic energy of the rolling solid cylinder is 0.000623125 J or 0.623125 mJ.

To determine the total kinetic energy of the rolling solid cylinder, we need to consider both its translational and rotational kinetic energy components.

The translational kinetic energy of an object is given by the formula KE_trans = (1/2)mv^2, where m is the mass and v is the velocity. In this case, the mass of the cylinder is given as 0.356 kg, and the velocity is 5.00 cm/s, which can be converted to 0.05 m/s. Plugging these values into the formula, we have KE_trans = (1/2)(0.356 kg)(0.05 m/s)^2 = 0.000445 J.

The rotational kinetic energy of a solid cylinder rolling without slipping is given by the formula KE_rot = (1/2)Iω^2, where I is the moment of inertia and ω is the angular velocity. The moment of inertia for a solid cylinder rotating about its central axis is I = (1/2)mr^2, where r is the radius. Plugging in the given values, we have I = (1/2)(0.356 kg)(0.02 m)^2 = 0.00002848 kg·m^2.

Since the cylinder is rolling without slipping, the linear velocity v is related to the angular velocity ω by v = rω. Rearranging this equation, we have ω = v/r = 0.05 m/s / 0.02 m = 2.5 rad/s.

Plugging these values into the rotational kinetic energy formula, we have KE_rot = (1/2)(0.00002848 kg·m^2)(2.5 rad/s)^2 = 1.78125 x 10^-4 J.

To find the total kinetic energy, we simply add the translational and rotational kinetic energy components: KE_total = KE_trans + KE_rot = 0.000445 J + 1.78125 x 10^-4 J = 0.000623125 J.

Therefore, the total kinetic energy of the rolling solid cylinder is 0.000623125 J or 0.623125 mJ.

To know more about energy visit:

https://brainly.com/question/2003548

#SPJ11

1000 kmol/h of a feed containing 30 mol% n-hexane and 70 mol% n-octane is to be distilled in a column consisting of a reboiler, one equilibrium plate, and a partial condenser, all operating at 1 atm. The feed, a bubble-point liquid, is fed to the reboiler, from which a liquid bottoms product is continuously withdrawn. Bubble-point reflux is returned from the partial condenser to the plate. The vapor distillate, in equilibrium with the reflux, contains 80 mol% hexane, and the reflux ratio is

Answers

Answer:

it was a hard one if u like do appreciate it

To determine the reflux ratio, we need to perform a material balance around the distillation column. Let's denote the following variables:

F = Feed rate (kmol/h) = 1000 kmol/h

x_hexane = Mole fraction of n-hexane in the feed = 0.30

x_octane = Mole fraction of n-octane in the feed = 0.70

y_hexane = Mole fraction of n-hexane in the distillate = 0.80

L = Liquid flow rate (kmol/h) leaving the equilibrium plate

D = Vapor flow rate (kmol/h) leaving the equilibrium plate

B = Liquid flow rate (kmol/h) leaving the reboiler (bottoms product)

R = Reflux ratio = L/D

Now, let's set up the material balance equations:

For n-hexane:

F * x_hexane = L * x_hexane + D * y_hexane + B * 0

1000 * 0.30 = L * 0.30 + D * 0.80 + B * 0

Simplifying this equation, we have:

300 = 0.3L + 0.8D

We also know that the reflux ratio is defined as:

R = L / D

Substituting L/D into the material balance equation, we get:

300 = 0.3(RD) + 0.8D

Now we can solve these equations to find the reflux ratio:

300 = 0.3RD + 0.8D [Multiply both sides by 10 to eliminate decimals]

3000 = 3RD + 8D

Since we have two unknowns (R and D), we need another equation to solve for both variables. One common approach is to use the concept of constant molal overflow (CMO) to relate the liquid and vapor flow rates.

CMO states that the total molal flow rate of each component leaving the equilibrium plate (L) is equal to the total molal flow rate of each component entering the partial condenser (D) plus the total molal flow rate of each component leaving the reboiler (B).

L = D + B

Now we can substitute L = RD into the equation:

RD = D + B

To simplify, we can divide both sides by D:

R = 1 + B/D

Substituting this back into the material balance equation:

300 = 0.3(1 + B/D)D + 0.8D

300 = 0.3D + 0.3BD/D + 0.8D

300 = 1.1D + 0.3B

Since we have two equations with two unknowns (D and B), we can solve them simultaneously:

3000 = 3RD + 8D [Equation 1]

300 = 1.1D + 0.3B [Equation 2]

Solving these equations will give us the values for D and B, and we can then calculate the reflux ratio R = L/D

The reflux ratio is 3.81. The vapor distillate is in equilibrium with the reflux and contains 80 mol% hexane. We need to find the reflux ratio.The equation of reflux ratio is given by:Reflux ratio = (L/D) = (V/V_min)whereL = liquid refluxD = distillateV = vapor flow rateV_min = minimum vapor flow rate

A feed of 1000 kmol/h containing 30 mol% n-hexane and 70 mol% n-octane is distilled in a column. The column has a reboiler, one equilibrium plate, and a partial condenser, all at 1 atm pressure. The feed is a bubble-point liquid and fed to the reboiler. A liquid bottoms product is continuously withdrawn from the reboiler. The partial condenser sends bubble-point reflux to the plate.

From the material balance over the plate, we can write:F = L + V………..(1)where,F = feed flow rateL = reflux flow rateV = distillate flow rateFrom the vapor-liquid equilibrium (VLE), we have:xD / xB = (V / L) = K………(2)where, K = equilibrium constant

At steady state:Q = D + L = FQ / D = L / D + 1…….(3)Also, (L / V) = (1 / K) (xD / xF – 1)…….(4)By putting values in Eq. (3), we get:L / D + 1 = F / DOn simplification,L / D = (F / D) – 1………..(5)

By substituting Eq. (5) in Eq. (4), we get:(F / D) – 1 = (1 / K) (xD / xF – 1)On simplification, the above equation becomes:F / D = (xD / xF – 1) / (K – 1)

We have,D / F = 1 – (L / F)From the material balance, we know thatL / F = R / (1 + R)By substituting this value in above equation, we get:D / F = (1 + R) / (R (xD / xF – 1))By substituting this value in Eq. (5), we get:L / D = [1 / R (xD / xF – 1)] – 1………(6)

By substituting Eq. (6) in Eq. (3), we get:Q / D = [1 / R (xD / xF – 1)]On putting the value of (xD / xF) = (0.3 × 0.2) / (0.7 × 0.8) = 0.1071 in above equation, we get:Q / D = [1 / R (0.1071 – 1)]

The reflux ratio is given by:Reflux ratio = (L / D) = (R / (R + 1))By putting values, we get:(L / D) = [1 / (0.1071 R – R + 1)]The reflux ratio is 3.81 (approx).

Therefore, the reflux ratio is 3.81.

To know more about vapor distillate  visit :-

https://brainly.com/question/26181855

#SPJ11

A flowerpot falls off a windowsill and falls past the window below. You may ignore air resistance. It takes the pot 0.420 s to pass from the top to the bottom of this window, which is 1.90 m high.
a) 4.52 m/s
b) 4.52 m/s^2
c) 6.05 m/s
d) 6.05 m/s^2

Answers

The final velocity with which the flowerpot passes through the bottom of the window is 4.116 m/s.

We are given a flowerpot that falls off a windowsill and passes by a window below. We need to calculate the velocity with which it passes through the bottom of the window. We know the distance and the time for which it falls, but we are ignoring air resistance. Let us apply the equations of motion:

Initial velocity, u = 0 m/s

Acceleration, a = g = 9.8 m/s^2

Time taken, t = 0.420 s

Distance covered, s = 1.90 m

We know that, s = ut + 0.5 at^2

On substituting the given values, we get

1.9 = 0 + 0.5 × 9.8 × 0.420^2

=> 1.9 = 0 + 0.5 × 9.8 × 0.1764

=> 1.9 = 0 + 0.8628

=> 1.9 - 0.8628 = 1.0372

So, the distance travelled in the remaining distance is 1.0372m.

We know that, v = u + at

On substituting the given values, we get

v = 0 + 9.8 × 0.420 => v = 4.116 m/s

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

10 pts Question 8 A cannon ball is fired at ground level with a speed of v- 27.1 m/s at an angle of 60° to the horizontal. (g-9.8 m/s) (1) How much later does it hit the ground? (Write down the answe

Answers

The cannonball hits the ground 4.8 seconds later.

Projectile motion

To find how much later the cannonball hits the ground, we need to calculate the time it takes for the cannonball to reach the ground.

We can break the initial velocity into its horizontal and vertical components. The vertical component is given by v = v * sin(θ), where v is the initial speed and θ is the launch angle. In this case,

v = 27.1 m/s * sin(60°) = 23.5 m/s.

The time taken for an object to reach the ground when launched vertically upwards and falling back down is given by the equation t = (2 * v) / g, where g is the acceleration due to gravity (9.8).

Plugging in the values:

t = (2 * 23.5) / 9.8 = 4.8 s

Therefore, the cannonball hits the ground approximately 4.8 seconds later.

More on projectile motion problems can be found here: https://brainly.com/question/12860905

#SPJ4

A silver wire 2.6 mm in diameter transfers a charge of 420 C in 80
min. Silver contains free electrons per cubic meter. (a) What is the
current in the wire? (b) What is the magnitude of the drift velocity of the
electrons in the wire?

Answers

The current in the wire is 87.5 mA and the magnitude of the drift velocity of the electrons in the wire is 13 mm/s.

(a) The current in the wire. The current, I is the amount of charge that passes through a surface per unit time. Mathematically, it can be expressed as;I = Q/t

Where Q is the charge and t is the time taken.

The charge transferred is 420 C and the time taken is 80 min (1 h 20 min or 4800 s).Therefore,I = 420 C / 4800 s = 0.0875 A = 87.5 mA

(b) The magnitude of the drift velocity of the electrons in the wire.The drift velocity of electrons in a conductor is defined as the average velocity attained by electrons as they move through the conductor.

Mathematically, it can be expressed as;

vd = I / (neA)Where vd is the drift velocity, I is the current, n is the number of free electrons per unit volume, e is the electronic charge and A is the cross-sectional area of the wire.The cross-sectional area of the wire is given by;A = πr2 = π(2.6/2 × 10-3)2 = 5.309 × 10-6 m2.

The number of free electrons per unit volume is given by; n = 5.86 × 1028 m-3.

Substituting the values into the equation for drift velocity gives

;vd = I / (neA)vd = 0.0875 / (5.86 × 1028 × 1.6 × 10-19 × 5.309 × 10-6)vd = 0.013 m/s = 13 mm/s.

Therefore, the current in the wire is 87.5 mA and the magnitude of the drift velocity of the electrons in the wire is 13 mm/s.

To know more about velocity visit:

brainly.com/question/18084516

#SPJ11

Two equally charged particles start 3.4 mm from each other at rest. When they are released they accelerate away from each other. The initial acceleration of particle A is 7 m/s2 and of particle B is 10 m/s2 .

Calculate the charge on either particle, if the mass of particle A is 5×10−7 kg

Answers

The charge on each particle is approximately ±6.41×10⁻⁷ C. Particle A has an initial acceleration of 7 m/s², while Particle B has an initial acceleration of 10 m/s².

To calculate the charge on either particle, we can use Newton's second law of motion and Coulomb's law.

First, let's consider particle A. We know its initial acceleration is 7 m/s² and its mass is 5×10⁻⁷ kg. Applying Newton's second law (F = ma), we can calculate the net force acting on particle A.

F = m × a

F = (5×10⁻⁷ kg) × (7 m/s²)

F = 3.5×10⁻⁶ N

Next, we can apply Coulomb's law to determine the force between the two particles.

Coulomb's law states that the force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

F = k × (q₁ × q₂) / r²

Since the particles have equal charges, we can denote the charge on each particle as q.

F = k × q² / r²

Combining both equations, we have:

3.5×10⁻⁶ N = k × q² / (3.4×10⁻³ m)²

Now, we need the value of the Coulomb constant, k, which is approximately 8.99×10⁹ Nm²/C².

Simplifying the equation, we have:

3.5×10⁻⁶ N = (8.99×10⁹ Nm²/C²) × q² / (3.4×10⁻³ m)²

Solving for q², we get:

q² = (3.5×10⁻⁶ N) × (3.4×10⁻³ m)² / (8.99×10⁹ Nm²/C²)

Calculating the right side of the equation gives us:

q² ≈ 4.10×10⁻¹³ C²

Taking the square root of both sides, we find:

q ≈ ±6.41×10⁻⁷ C

Therefore, the charge on each particle is approximately ±6.41×10⁻⁷ C. The sign indicates the type of charge, with the positive sign representing a positive charge and the negative sign representing a negative charge.

To know more about charge refer here:

https://brainly.com/question/12949002#

#SPJ11

how does an atom of sulfur-36 become a sulfide ion with a -2 charge?

Answers

To understand how an atom of sulfur-36 becomes a sulfide ion with a -2 charge, because it has two more electrons than protons.

An atom of sulfur-36 has 16 electrons, 16 protons, and 20 neutrons. In order for the atom to become a sulfide ion with a -2 charge, it needs to gain two electrons. This is because when an atom gains or loses electrons, it becomes an ion with a positive or negative charge.

The atom of sulfur-36 becomes a sulfide ion with a -2 charge by gaining two electrons. These electrons come from another element, such as oxygen, which can give up two electrons to form an ionic bond with sulfur. The resulting compound is called sulfide, and it has a -2 charge because it now has two more electrons than protons.

An atom of sulfur-36 can become a sulfide ion with a -2 charge by gaining two electrons. This happens through an ionic bond with another element, such as oxygen, which gives up two electrons to form the compound. The resulting sulfide ion has a -2 charge because it has two more electrons than protons.

For more information on electrons kindly visit to

https://brainly.com/question/32031925

#SPJ11

Distance from a line to a point in terms of components 0/1 point (graded) In a 2 dimensional space, a line L is given by L: ax+by+c= 0, and a point P is given by P = (xo, yo). What is d, the shortest

Answers

The distance d between the point and the line in terms of components is given by:|a⋅ xo +b⋅ y o +c|/sqrt(a^2+b^2).

The formula to find the distance between a line and a point in a two-dimensional plane is given by:|a⋅x1+b⋅y1+c|/sqrt(a^2+b^2) where, a, b and c are the constants of the given line L, and (x1, y1) is the coordinate of the given point P. The magnitude of the denominator represents the magnitude of the vector perpendicular to the line. In the numerator, we take the absolute value of the dot product between the perpendicular vector and a vector from the point to the line in order to obtain the distance. Thus, the distance d between the line L: ax+ by+ c= 0 and the point P = (xo, y o) is:|a⋅ xo+ b⋅ y o+ c|/sqrt(a^2+b^2)

Know more about terms of components, here:

https://brainly.com/question/718664

#SPJ11

Sketch the eigenfunctions ψ1(x), ψ2(x), ψ3(x), and ψ4(x) corresponding to the four lowest energy states for a particle contained in the finite potential well

U( x ) =  −U0 x < a/2 and 0 x>a/2 For which of these wave functions the probability of finding the particle outside of the well (in the region x > a / 2 ) is the greatest? Explain why.

Answers

The wave function ψ1(x) is the only one that has the probability of finding the particle outside of the well.

When a particle is confined in a well, it behaves similarly to a wave, and its energy is quantized. The wave function of the particle defines its energy states and is represented by ψ.ψ1(x), ψ2(x), ψ3(x), and ψ4(x) are the four lowest energy states for a particle contained in a finite potential well.

They correspond to the first, second, third, and fourth energy levels, respectively.ψ1(x) is the wave function of the ground state and has a probability density that extends into the region outside the well. As a result, the probability of finding the particle outside the well is the greatest for ψ1(x).

Because the other three wave functions have nodes at the potential barrier, they do not extend into the outside region as much as the ground state, so the probability of finding the particle outside the well is lower for these states.

Learn more about wave function here:

https://brainly.com/question/32239960

#SPJ11

Find the intensity of the electromagnetic wave described in each case. an electromagnetic wave with a wavelength of 595 nm and a peak electric field magnitude of 4.1 V/m.

Answers

The intensity of the electromagnetic wave is 2.3 × 10^-9 W/m^2.

Electromagnetic wave is characterized by wavelength, frequency, and amplitude. The intensity of an electromagnetic wave is the average power per unit area. It is related to the amplitude of the wave. An electromagnetic wave with a wavelength of 595 nm and a peak electric field magnitude of 4.1 V/m:

From the wave equation,

c = fλ, where,c = speed of light = 3 × 10^8 m/s, λ = wavelength and f = frequency

Hence, f = c/λ= (3 × 10^8) / (595 × 10^-9)≈ 5.04 × 10^14 Hz.

The intensity of an electromagnetic wave is given by

I = (1/2)ε0cE^2, where, I = intensity, ε0 = permittivity of free space = 8.85 × 10^-12,  F/mc = speed of light = 3 × 10^8 m/s, E = electric field strength

Substituting the given values in the above formula,

I = (1/2)(8.85 × 10^-12)(3 × 10^8)(4.1)^2≈ 2.3 × 10^-9 W/m^2

Therefore, the intensity of the electromagnetic wave is 2.3 × 10^-9 W/m^2.

To know more about electromagnetic wave visit:

https://brainly.com/question/29774932

#SPJ11

the on-axis magnetic field strength 14 cm from a small bar magnet is 4.9 μt . What is the bar magnet's magnetic dipole moment? b)What is the on-axis field strength 20 cm from the magnet?

Answers

Therefore, the on-axis field strength at a distance of 20 cm from the small bar magnet is 0.689 μT.

Given, On-axis magnetic field strength at 14 cm from the bar magnet, B₁ = 4.9 μt.Distance from the magnet at which on-axis field strength needs to be found, x = 20 cm.(a) Magnetic dipole moment of the bar magnet can be found using the formula given below, B = (μ/4π) (2M/x³)sinθwhere, B is the magnetic field at a distance x from the magnet, M is the magnetic moment of the magnet, θ is the angle between the axial line of the magnet and the point where the field is being measured, and μ is the permeability of free space.

On-axis magnetic field strength is given by B = (μ/4π) (2M/x³)For on-axis field, θ = 0º or π radians Hence, B = (μ/4π) (2M/x³) sin0º⇒ B = (μ/4π) (2M/x³) × 0⇒ B = 0The on-axis magnetic field strength at a distance of 14 cm from the small bar magnet is 4.9 μT. This can be used to determine the magnetic dipole moment of the magnet.

Using the formula B = (μ/4π) (2M/x³)sinθ, where B is the magnetic field strength, μ is the permeability of free space, M is the magnetic dipole moment, x is the distance from the magnet, and θ is the angle between the axial line of the magnet and the point where the field is being measured, the value of M can be calculated as shown below:4.9 × 10⁻⁶ = (4π × 10⁻⁷ × 2M) / (0.14)³Magnetic dipole moment, M = [4.9 × 10⁻⁶ × (0.14)³] / [2 × 4π × 10⁻⁷]⇒ M = 5.70 × 10⁻³ A·m² .

The on-axis field strength at a distance of 20 cm from the magnet can be calculated using the same formula B = (μ/4π) (2M/x³). Here, x = 20 cm. Putting the values in the formula, we get: On-axis magnetic field strength at a distance of 20 cm from the small bar magnet, B₂ = (4π × 10⁻⁷ × 2 × 5.70 × 10⁻³) / (0.20)³⇒ B₂ = 0.689 μT . Therefore, the on-axis field strength at a distance of 20 cm from the small bar magnet is 0.689 μT.

To know more about Magnet  visit :

https://brainly.com/question/30563158

#SPJ11

in the photoelectric effect, if the intensity of light shone on a metal increases, what will happen?
A) Ejected electrons will be faster B) Ejected electrons will be slower C) There will be more electrons ejected D) There will be fewer electrons ejected
E) No change

Answers

There will be fewer electrons ejected. If the intensity of light shone on a metal increases, there will be fewer electrons ejected. The correct option is D).

Photoelectric effect is a phenomenon that states that if a metal is exposed to light, electrons are ejected from its surface. The energy of the electrons that are ejected depends upon the frequency of the light, and not its intensity. However, the number of electrons that are ejected depends on the intensity of the light.

If the intensity of the light shone on a metal increases, then the number of photons striking the metal per unit area and per unit time also increases. This increases the kinetic energy of the ejected electrons, and thus the speed with which they are ejected increases.

But, the number of electrons ejected is directly proportional to the number of photons of light falling on the metal. Hence, an increase in intensity would mean a proportional increase in the number of electrons ejected. Therefore, option D) There will be fewer electrons ejected is incorrect. Thus, the correct option is D) There will be fewer electrons ejected.

Learn more about Photoelectric effect here:

https://brainly.com/question/9260704

#SPJ11

A housefly walking across a surface may develop a significant electric charge through a process similar to frictional charging. Suppose a fly picks up a charge of +57 pCpC. How many electrons does it lose to the surface it is walking across?

Answers

The electric charge developed by a housefly walking across a surface is similar to frictional charging. If a fly picks up a charge of +57 pC, it loses 3.6 x 10¹² electrons.

The magnitude of the charge that a fly picks up while walking across a surface can be determined using Coulomb's law.

The magnitude of the electric force between the charge and the surface can be calculated using this law

:Electric force = Charge x Electric fieldSo,Electric force = q x E

Where q is the charge on the fly and E is the electric field generated by the surface.When the fly moves across a surface, its feet come into contact with the surface.

This generates an electric field between the surface and the feet of the fly, which causes the fly to become charged. The charge is usually positive since the fly tends to lose electrons while walking.

The magnitude of the charge on the fly can be calculated using the equation above.

Since we know that the charge on the fly is +57 pC, we can find the number of electrons lost by the fly using the following equation:

q = neWhere q is the charge on the fly, n is the number of electrons lost by the fly, and e is the charge on an electron.

Therefore,n = q / e= (+57 x 10¹² C) / (-1.6 x 10⁻¹⁹ C)≈ 3.6 x 10¹²

Therefore, the fly loses approximately 3.6 x 10¹²electrons to the surface it is walking across.

The electric charge developed by a housefly while walking across a surface is similar to frictional charging. When a fly picks up a charge of +57 pC, it loses approximately 3.6 x 10^12 electrons. The charge on the fly is calculated using Coulomb's law, which states that the electric force between two charges is directly proportional to the product of the charges and inversely proportional to the distance between them. Since the fly loses electrons when it moves across a surface, it becomes positively charged. The number of electrons lost by the fly can be determined using the equation q = ne, where q is the charge on the fly, n is the number of electrons lost by the fly, and e is the charge on an electron.

In conclusion, a fly loses approximately 3.6 x 10¹² electrons when it picks up a charge of +57 pC while walking across a surface.

To know more about Coulomb's law  visit:

brainly.com/question/506926

#SPJ11

in the ground state of hydrogen, the uncertainty in the position of the electron is roughly 0.11 nm.. If the speed of the electron is approximately the same as the uncertainty in its speed, about how fast is it moving

Answers

Therefore, the electron in the ground state of hydrogen is moving at approximately 5.26 million meters per second. This is an extremely high speed, which is not unexpected given that the electron is in its lowest energy state and is therefore tightly bound to the nucleus.

The uncertainty principle states that it is impossible to simultaneously measure the exact position and momentum of a particle with complete accuracy. It is represented by the following equation:

ΔxΔp ≥ h/4π,

where Δx is the uncertainty in position, Δp is the uncertainty in momentum, and h is Planck's constant.

In the ground state of hydrogen, the uncertainty in the position of the electron is roughly 0.11 nm. If the speed of the electron is approximately the same as the uncertainty in its speed, then we can calculate its speed using the uncertainty principle. We can assume that the uncertainty in momentum is roughly equal to the uncertainty in speed (since momentum = mass × velocity).

Therefore,

Δp = mΔv ≈ mΔspeed,

where m is the mass of the electron. We can rearrange the uncertainty principle equation to solve for

Δp:Δp ≥ h/4πΔx

Substituting the values we know, we get:

Δp ≥ (6.626 × 10^-34 J s)/(4π × 0.11 × 10^-9 m)Δp ≥ 4.79 × 10^-24 kg m/s

Now we can solve for the speed using the equation

:Δp ≈ mΔspeedΔspeed ≈ Δp/m

Substituting the values we know:

Δspeed ≈ (4.79 × 10^-24 kg m/s)/(9.11 × 10^-31 kg)

Δspeed ≈ 5.26 × 10^6 m/s

to know more about momentum visit:

https://brainly.com/question/30677308

#SPJ11

what is the kinetic energy of electrons when they reach their target

Answers

When electrons reach their target, the kinetic energy is directly proportional to the accelerating potential and inversely proportional to the mass of the electrons.

What is the kinetic energy of electrons when they reach their target? The kinetic energy of electrons when they reach their target depends on the accelerating potential and the mass of the electrons. The energy the electrons possess because of their motion is called kinetic energy. If the accelerating potential is higher, the electrons will gain more kinetic energy. To calculate the kinetic energy of electrons when they reach their target, use the formula: KE = (1/2) mv²Where KE is kinetic energy, m is the mass of the electron, and v is its velocity.

Electrons are subatomic particles that orbit the nucleus of an atom. They carry a negative electrical charge and are one of the fundamental particles of matter. Electrons are part of the atom's electron cloud, which is a region surrounding the nucleus where electrons exist in various energy levels or orbitals.

The mass of an electron is approximately 9.10938356 × 10^-31 kilograms, or 0.5109989461 megaelectronvolts/c^2 (MeV/c^2) in energy units, where "c" represents the speed of light. This value is based on the latest known scientific measurements.

To get more information about kinetic energy visit:

https://brainly.com/question/999862

#SPJ11

Why is it impossible to measure the standard reduction potential of a single half-reaction? Match the words in the left column to the appropriate blanks in the sentences on the right. Make certain each sentence is complete before submitting your answer. Reset Help not complete solution reaction It is not possible to measure the standard reduction potential of a single half-reaction because each voltaic electrode consists of complete half-reaction(s) and only the potential of a cell reaction can be measured. complete ll ll three ll one four two electrode

Answers

It is not possible to measure the standard reduction potential of a single half-reaction because each voltaic electrode consists of complete half-reaction(s) and only the potential of a cell reaction can be measured.

A cell, according to electrochemical theory, is a combination of two half-cells that are electrochemically connected. It's tough to measure the reduction potential of a single half-reaction. An electrode of some type is used in standard reduction potential measurements. Half-reaction refers to the reduction or oxidation of an electrochemical reaction. We can't accomplish anything with just one half-reaction.

To acquire the total electrochemical cell potential, two half-reactions must be combined. So, it is not feasible to measure the standard reduction potential of a single half-reaction because it's only a component of the whole electrochemical cell.

learn more about half-reaction here

https://brainly.com/question/26411933

#SPJ11

you dip your finger into a pan of water twice each second, producing waves with crests that are separated by 0.13 m. Determine the frequency, period, and speed of these water waves.

Answers

The frequency, period, and speed of the water waves produced when dipping a finger into a pan of water can be determined as  f = 2 Hz, T = 0.5 s and v = 0.26 m/s respectively.

Frequency is defined as the number of waves produced per unit time. It can be calculated as; f = 2 (each second)

The period of a wave is the time required for one complete wavelength to pass a given point. It can be calculated as;

T = 1/f

Where T is the period, and f is the frequency of the wave. Substituting the value of f, we obtain; T = 1/2 = 0.5 s

The speed of the wave is given by the product of its wavelength and frequency. It can be calculated as; v = fλ

Where v is the speed of the wave, and λ is the wavelength. Substituting the values of v and λ, we have;

v = fλv = (2)(0.13 m)v = 0.26 m/s

Therefore, the frequency, period, and speed of the water waves produced when dipping a finger into a pan of water twice each second, producing waves with crests that are separated by 0.13 m are: f = 2 Hz, T = 0.5 s and v = 0.26 m/s

More on  water waves: https://brainly.com/question/30304337

#SPJ11

Other Questions
The term perestroika refers toSelect one:a. economic restructuring and more leeway for private ownership.b. a new freedom to comment and criticize the Soviet government.c. the establishment of a liberal democracy.d. an attempt by the Soviet leadership to allow non-communists to manage the economy.e. the Soviet space program. On January 1. Year 1, Jing Company purchased office equipment that cost $34,875 cash. The equipment was delivered under terms FOB shipping point, and transportation cost was $2,875. The equipment had a five-year useful life and a $12.490 expected salvage value. Assuming the company uses the double-declining-balance depreciation method, what are the amounts of depreciation expense and book value, respectively, that would be reported in the financial statements prepared as of December 31. Year 3? The agents that produce a diminished CNS responsiveness to stimuli without producing sleep are:a sedativesb hypnoticsc GABA antagonistsd barbiturate Express the number as a ratio of integers. 4.865=4.865865865 the effect of cholesterol on membrane fluidity at physiological temperatures is to_. fill in the blanks uppose 4.76 g of lead(I) acetate is dissolved in 100. mL of a o.60 M aqueous solution of ammonium sulfate. Suppose 4.76 g of lead(II) acetate is dissolved in 100. mL of a 0.60 M aqueous solution of ammonium sulfate Calculate the final molarity of acetate anion in the solution. You can assume the volume of the solution doesn't change when the lead(II) acetate is dissolved in it. Round your answer to 3 significant digits How the environmental dimensions of the servicescape explain the success of central market? please give the ans as so as possible due to the timelimitList five goals of facility layout in a fast food store's kitchen.Give an example of a facility that emphasizes each goal Translate these two functions into MIPS Languageint moveRobots(int *arg0, int *arg1, int arg2, int arg3){int i, *ptrX, *ptrY, alive = 1;ptrX = arg0;ptrY = arg1;for (i=0;i The following table summarizes information which are associated with three new 3D Printers being considered for use in a manufacturing plant. Note that M&O stands for Maintenance & Operation Cost.ABCUseful Life (Years)91311First Cost$2,300,000$2,780,000$2,540,000Salvage Value$82,000$118,000$97,000Annual Benefit$580,000$670,000$650,000M&O$65,000$78,000$71,000M&O Gradient$11,000$15,000$12,500The company's interest rate (MARR) is 12%. Which 3D Printer should the company choose? Use Annual Cash Flow Analysis. when a team has a clearly defined structure, team members are most likely to ______. In the loanable funds market, the demand for loanable funds is negatively sloped because the higher the real interest rate, the: O smaller the benefits of saving. greater the benefits of saving. lower the profitability of investment projects. O higher the profitability of investment projects. Optimization With Calculus: Exercise >If TC = 36,000 + 200Q + 0.4Q, find (1) Q at which AC is optimized! > (2) Determine whether this is achieved at a minimum or a maximum AC! A pharmaceutical firm Astra is the sole producer and seller of a special drug under patent protection and behaves like a monopoly. When the patent expires, and the market for the drug becomes competitive with the entry of other firms that produce the same drug, then a.the price will fall but the quantity sold will also decrease. b.the price of the drug will fall, the quantity sold will increase but the total surplus (consumer surplus plus producer surplus) will decrease. c.the price of the drug will fall, the quantity sold will increase and the total surplus (consumer surplus plus producer surplus) will also increase. d.the price of the drug will go up and the quantity sold will fall Company ordered a machine on January 1 at an invoice price of $21,000 On the date of delivery, January 2, the company paid $6,000 on the machine, with the balance on credit at 10 percent interest due in six months. On January 3, it paid $1,000 for freight on the machine. On January 5, Ashkar paid installation costs relating to the machine amounting to $2,500. On July 1, the company paid the balance due on the machine plus the interest. On December 31 (the end of the accounting period), Ashkar recorded depreciation on the machine using the straight-line method with an estimated useful life of 10 years and an estimated residual value of $4,000 Required (round all amounts to the nearest dollar) 1. Indicate the effects (accounts, amounts, and or- of each transaction (on January 1, 2, 3, and 5 and July 1) on the accounting equation. Use the following schedule Date Assets Liabilities Stock 2. Compute the acquisition cost of the machine 3. Compute the depreciation expense to be reported for Year 1 4. What impact does the interest paid on the 10 percent note have on the cost of the machine? Under what circumstances can interest expense be included in acquisition cost? 5. What would be the net book value of the machine at the end of Year 2? find the general solution to y 7y=0. give your answer as y=... . in your answer, use c1 and c2 to denote arbitrary constants and x the independent variable. enter c1 as c1 and c2 as c2. Previous Problem List Next (2 points) Assume you are using a significance level of a = 0.05) to test the claim that < 16 and that your sample is a random sample of 45 values. Find the probability of Solving dimensions I need help with one question 26 points!! given two terms in an arithmetic sequence find the recursive formulaa 19 = -101 and a36 = -220 find a 29 Calculate the NAV for a mutual fund with the following values: Market value of securities held in the portfolio Liabilities of the fund Shares outstanding = $1.2 billion = $37 million = 60 million The NAV per share is $. (Round to the nearest cent.)