A cylinder of radius r and height h has volume given by V=∏r
2
h. Find the volume of a cylindrical tin can of radius 8 cm and height 21.2 cm. Group 7

Answers

Answer 1

The volume of the cylindrical tin can is approximately 4288.65 cubic centimeters.

To find the volume of a cylindrical tin can, we can use the formula V = π[tex]r^2[/tex]h, where V represents the volume, r is the radius, and h is the height of the cylinder. In this case, the given radius is 8 cm and the height is 21.2 cm.

Calculate the base area

The base area of the cylinder can be found using the formula A = π[tex]r^2[/tex]. Plugging in the given radius, we have A = π[tex](8 cm)^2[/tex]. Simplifying this, we get A = 64π [tex]cm^2[/tex].

Multiply the base area by the height

Next, we multiply the base area by the height of the cylinder. Multiplying 64π [tex]cm^2[/tex] by 21.2 cm gives us the volume V = 1356.8π [tex]cm^3[/tex].

Approximate the value of π and calculate the volume

To find the approximate value of the volume, we substitute the value of π as 3.14. Multiplying 1356.8π [tex]cm^3[/tex] by 3.14, we get V ≈ 4269.632[tex]cm^3[/tex].

Learn more about the Volume of a cylinder

brainly.com/question/15891031

#SPJ11


Related Questions

Evaluate the indefinite integral. ∫dx/(16+x2)2​= You have attempted this problem 1 time. Your overall recorded score is 0%. You have unlimited attempts remaining.

Answers

We have the indefinite integral ∫dx/(16+x^2)^2 = (-1/32) ln|x^2| - (1/16) (x^2 + 16)^(-1).

The indefinite integral ∫dx/(16+x^2)^2 can be evaluated using a substitution. Let's substitute u = x^2 + 16, which implies du = 2x dx.

Rearranging the equation, we have dx = du/(2x). Substituting these values into the integral, we get:

∫dx/(16+x^2)^2 = ∫(du/(2x))/(16+x^2)^2

Now, we can rewrite the integral in terms of u:

∫(du/(2x))/(16+x^2)^2 = ∫du/(2x(u)^2)

Next, we can simplify the expression by factoring out 1/(2u^2):

∫du/(2x(u)^2) = (1/2)∫du/(x(u)^2)

Since x^2 + 16 = u, we can substitute x^2 = u - 16. This allows us to rewrite the integral as:

(1/2)∫du/((u-16)u^2)

Now, we can decompose the fraction using partial fractions. Let's express 1/((u-16)u^2) as the sum of two fractions:

1/((u-16)u^2) = A/(u-16) + B/u + C/u^2

To find the values of A, B, and C, we'll multiply both sides of the equation by the denominator and then substitute suitable values for u.

1 = A*u + B*(u-16) + C*(u-16)

Setting u = 16, we get:

1 = -16B

B = -1/16

Next, setting u = 0, we have:

1 = -16A - 16B

1 = -16A + 16/16

1 = -16A + 1

-16A = 0

A = 0

Finally, setting u = ∞ (as u approaches infinity), we have:

0 = -16B - 16C

0 = 16/16 - 16C

0 = 1 - 16C

C = 1/16

Substituting the values of A, B, and C back into the integral:

(1/2)∫du/((u-16)u^2) = (1/2)∫0/((u-16)u^2) - (1/32)∫1/(u-16) du + (1/16)∫1/u^2 du

Simplifying further:

(1/2)∫du/((u-16)u^2) = (-1/32) ln|u-16| - (1/16) u^(-1)

Replacing u with x^2 + 16:

(1/2)∫dx/(16+x^2)^2 = (-1/32) ln|x^2 + 16 - 16| - (1/16) (x^2 + 16)^(-1)

Simplifying the natural logarithm term:

(1/2)∫dx/(16+x^2)^2 = (-1/32) ln|x^2| - (1/16) (x^2 + 16)^(-1)

Learn more about indefinite integral here:
brainly.com/question/28036871

#SPJ11

The probability density of finding a particle described by some wavefunction Ψ(x,t) at a given point x is p=∣Ψ(x,t)∣ ^2. Now consider another wavefunction that differs from Ψ(x,t) by a constant phase shift:
Ψ _1 (x,t)=Ψ(x,t)e^iϕ,
where ϕ is some real constant. Show that a particle described by the wavefunction Ψ_1(x,t) has the same probability density of being found at a given point x as the particle described by Ψ(x,t).

Answers

The particle described by the wavefunction Ψ_1(x,t) has the same probability density of being found at a given point x as the particle described by Ψ(x,t).

To show that the wavefunctions Ψ(x,t) and Ψ_1(x,t) have the same probability density, we need to compare their respective probability density functions, which are given by p = |Ψ(x,t)|^2 and p_1 = |Ψ_1(x,t)|².

Let's calculate the probability density function for Ψ_1(x,t):

p_1 = |Ψ_1(x,t)|²

    = |Ψ(x,t)e^iϕ|²

    = Ψ(x,t) * Ψ*(x,t) * e^iϕ * e^-iϕ

    = Ψ(x,t) * Ψ*(x,t)

    = |Ψ(x,t)|²

As we can see, the probability density function for Ψ_1(x,t), denoted as p_1, is equal to the probability density function for Ψ(x,t), denoted as p. Therefore, the particle described by the wavefunction Ψ_1(x,t) has the same probability density of being found at a given point x as the particle described by Ψ(x,t).

This result is expected because a constant phase shift in the wavefunction does not affect the magnitude or square modulus of the wavefunction. Since the probability density is determined by the square modulus of the wavefunction, a constant phase shift does not alter the probability density.

Learn more about Probability

brainly.com/question/31828911

#SPJ11

complex plane
Solve the equation \[ z^{5}=-16 \sqrt{3}+16 i . \] Sketch the solutions in the complex plane.

Answers

The solutions to the equation \(z^5 = -16 \sqrt{3} + 16i\) can be sketched in the complex plane.

To solve the equation \(z^5 = -16 \sqrt{3} + 16i\), we can express the complex number on the right-hand side in polar form. Let's denote it as \(r\angle \theta\). From the given equation, we have \(r = \sqrt{(-16\sqrt{3})^2 + 16^2} = 32\) and \(\theta = \arctan\left(\frac{16}{-16\sqrt{3}}\right) = \arctan\left(-\frac{1}{\sqrt{3}}\right)\).

Now, we can write the complex number in polar form as \(r\angle \theta = 32\angle \arctan\left(-\frac{1}{\sqrt{3}}\right)\).

To find the fifth roots of this complex number, we divide the angle \(\theta\) by 5 and take the fifth root of the magnitude \(r\).

The magnitude of the fifth root of \(r\) is \(\sqrt[5]{32} = 2\), and the angle is \(\frac{\arctan\left(-\frac{1}{\sqrt{3}}\right)}{5}\).

By using De Moivre's theorem, we can find the five distinct solutions for \(z\) in the complex plane. These solutions will be equally spaced on a circle centered at the origin, with radius 2.

Learn more about: Complex plane.

brainly.com/question/24296629

#SPJ11

Suppose that f(1) = 3, f(4) = 7, f '(1) = 6, f '(4) = 5, and f '' is continuous. Find the value of integral 4 to1 of xf ''(x) dx. Suppose that f(1)=3,f(4)=7,f′(1)=6,f′(4)=5, and f′′ is continuous. Find the value of ∫14​xf′′(x)dx.

Answers

The value of ∫[1 to 4] xf''(x) dx is 10, which can be determined using integration.

To find the value of ∫[1 to 4] xf''(x) dx, we can use integration by parts.

Let u = x and dv = f''(x) dx. Then, du = dx and v = ∫ f''(x) dx = f'(x).

Applying integration by parts, we have:

∫[1 to 4] xf''(x) dx = [x*f'(x)] [1 to 4] - ∫[1 to 4] f'(x) dx

Evaluating the limits, we get: [4*f'(4) - 1*f'(1)] - [f(4) - f(1)]

Substituting the given values: [4*5 - 1*6] - [7 - 3]

Simplifying, we have: [20 - 6] - [7 - 3] = 14 - 4 = 10

Therefore, the value of ∫[1 to 4] xf''(x) dx is 10.

LEARN MORE ABOUT integration here: brainly.com/question/31954835

#SPJ11

If f(x)=sin√(2x+3), then f ′(x) = ____

Answers

The derivative of f(x) = sin√(2x+3) is f'(x) = (cos√(2x+3)) / (2√(2x+3)). This derivative formula allows us to find the rate of change of the function at any given point and can be used in various applications involving trigonometric functions.

The derivative of f(x) = sin√(2x+3) is given by f'(x) = (cos√(2x+3)) / (2√(2x+3)).

To find the derivative of f(x), we use the chain rule. Let's break down the steps:

1. Start with the function f(x) = sin√(2x+3).

2. Apply the chain rule: d/dx(sin(u)) = cos(u) * du/dx, where u = √(2x+3).

3. Differentiate the inside function u = √(2x+3) with respect to x. We get du/dx = 1 / (2√(2x+3)).

4. Multiply the derivative of the inside function (du/dx) with the derivative of the outside function (cos(u)).

5. Substitute the values back: f'(x) = (cos√(2x+3)) / (2√(2x+3)).

Learn more about click here: brainly.com/question/30710281

#SPJ11

The possible error involved in measuring each dimension of a right circular cone is ±101​ inch. The radius is 4 inches and the height is 11 inches. Approximate the propagated error and the relative error using differentials in the calculated volume of the cone.

Answers

The propagated error in the calculated volume of the cone is approximately ±841 cubic inches, with a relative error of approximately ±3.84%.

To approximate the propagated error and relative error in the calculated volume of the cone, we can use differentials. The formula for the volume of a right circular cone is V = (1/3)πr²h, where r is the radius and h is the height.

Given that the radius is 4 inches and the height is 11 inches, we can calculate the exact volume of the cone. However, to determine the propagated error, we need to consider the error in each dimension. The possible error involved in measuring each dimension is ±0.1 inch.

Using differentials, we can find the propagated error in the volume. The differential of the volume formula is dV = (2/3)πrhdr + (1/3)πr²dh. Substituting the values of r = 4, h = 11, dr = ±0.1, and dh = ±0.1 into the differential equation, we can calculate the propagated error.

By plugging in the values, we get dV = (2/3)π(4)(11)(0.1) + (1/3)π(4²)(0.1) = 8.747 cubic inches. Therefore, the propagated error in the calculated volume of the cone is approximately ±8.747 cubic inches.

To determine the relative error, we divide the propagated error by the exact volume of the cone, which is (1/3)π(4²)(11) = 147.333 cubic inches. The relative error is ±8.747/147.333 ≈ ±0.0594, which is approximately ±3.84%.

Learn more about Volume

brainly.com/question/1578538

#SPJ11

A bicyclist makes a trip that consists of three parts, each in the same direction (due north) along a straight road. During the first part, she rides for 18.3 minutes at an average speed of 6.31 m/s. During the second part, she rides for 30.2 minutes at an average speed of 4.39 m/s. Finally, during the third part, she rides for 8.89 minutes at an average speed of 16.3 m/s. (a) How far has the bicyclist traveled during the entire trip? (b) What is the average speed of the bicyclist for the trip? A Boeing 747 "Jumbo Jet" has a length of 59.7 m. The runway on which the plane lands intersects another runway. The width of the intersection is 28.7 m. The plane decelerates through the intersection at a rate of 5.95 m/s
2
and clears it with a final speed of 44.6 m/s. How much time is needed for the plane to clear the intersection?

Answers

The initial velocity is the speed of the plane before entering the intersection, which is not given in the question. Without the initial velocity, we cannot accurately calculate the time needed to clear the intersection.

(a) To find the distance traveled during the entire trip, we can calculate the distance traveled during each part and then sum them up.

Distance traveled during the first part = Average speed * Time = 6.31 m/s * 18.3 minutes * (60 seconds / 1 minute) = 6867.78 meters

Distance traveled during the second part = Average speed * Time = 4.39 m/s * 30.2 minutes * (60 seconds / 1 minute) = 7955.08 meters

Distance traveled during the third part = Average speed * Time = 16.3 m/s * 8.89 minutes * (60 seconds / 1 minute) = 7257.54 meters

Total distance traveled = Distance of first part + Distance of second part + Distance of third part

= 6867.78 meters + 7955.08 meters + 7257.54 meters

= 22080.4 meters

Therefore, the bicyclist traveled a total distance of 22080.4 meters during the entire trip.

(b) To find the average speed of the bicyclist for the trip, we can divide the total distance traveled by the total time taken.

Total time taken = Time for first part + Time for second part + Time for third part

= 18.3 minutes + 30.2 minutes + 8.89 minutes

= 57.39 minutes

Average speed = Total distance / Total time

= 22080.4 meters / (57.39 minutes * 60 seconds / 1 minute)

≈ 6.42 m/s

Therefore, the average speed of the bicyclist for the trip is approximately 6.42 m/s.

(c) To find the time needed for the plane to clear the intersection, we can use the formula:

Final velocity = Initial velocity + Acceleration * Time

Here, the initial velocity is the speed of the plane before entering the intersection, which is not given in the question. Without the initial velocity, we cannot accurately calculate the time needed to clear the intersection.

To know more about intersection, visit:

https://brainly.com/question/12089275

#SPJ11


please solve letter g).
Solve by Law of Cosines using solutions suggested: \[ \cos =\frac{201.18^{2}+169.98^{2}-311.48^{2}}{2 \times 201.28 \times 169.98} \]

Answers

Using the law of cosines, we find that angle C is approximately 112.23 degrees.

To solve the equation using the law of cosines, we can use the given formula:

cos(C) = (201.18² + 169.98² - 311.48²) / (2 * 201.28 * 169.98)

Calculating the numerator:

201.18² + 169.98² - 311.48² ≈ -24451.0132

Calculating the denominator:

2 * 201.28 * 169.98 ≈ 68315.3952

Substituting the values:

cos(C) ≈ -24451.0132 / 68315.3952 ≈ -0.3574

Now, we need to find the value of angle C.

To do that, we can take the inverse cosine (arccos) of the calculated value:

C ≈ arccos(-0.3574)

Calculating this value:

C ≈ 1.958 radians

Converting to degrees:

C ≈ 112.23 degrees

Therefore, using the law of cosines, we find that angle C is approximately 112.23 degrees.

To know more about law of cosines, visit:

https://brainly.com/question/30766161

#SPJ11

Use the closed interval method to find the absolute maximum and absolute minimum values of the function in the given interval. (a) f(x)=12+4x−x2,[0,5] f(x)=2x3−3x2−12x+1,[−2,3].

Answers

The absolute maximum is 14 (at x = -1) and the absolute minimum is -11 (at x = 2).

(a) To find the absolute maximum and minimum values of f(x) = 12 + 4x - x^2 on the interval [0, 5], we evaluate the function at the critical points and endpoints.

1. Critical points: We find the derivative f'(x) = 4 - 2x and set it to zero:

4 - 2x = 0

x = 2

2. Evaluate at endpoints and critical points:

f(0) = 12 + 4(0) - (0)^2 = 12

f(2) = 12 + 4(2) - (2)^2 = 12 + 8 - 4 = 16

f(5) = 12 + 4(5) - (5)^2 = 12 + 20 - 25 = 7

Comparing the values, we see that the absolute maximum is 16 (at x = 2) and the absolute minimum is 7 (at x = 5).

(b) To find the absolute maximum and minimum values of f(x) = 2x^3 - 3x^2 - 12x + 1 on the interval [-2, 3], we follow a similar process.

1. Critical points: Find f'(x) = 6x^2 - 6x - 12 and set it to zero:

6x^2 - 6x - 12 = 0

x^2 - x - 2 = 0

(x - 2)(x + 1) = 0

x = 2, x = -1

2. Evaluate at endpoints and critical points:

f(-2) = 2(-2)^3 - 3(-2)^2 - 12(-2) + 1 = -1

f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) + 1 = 14

f(2) = 2(2)^3 - 3(2)^2 - 12(2) + 1 = -11

f(3) = 2(3)^3 - 3(3)^2 - 12(3) + 1 = -10

From these calculations, we see that the absolute maximum is 14 (at x = -1) and the absolute minimum is -11 (at x = 2).

LEARN MORE ABOUT absolute maximum here: brainly.com/question/33110338

#SPJ11

In the image are two point charges, Q
1

=−80.0×10
−6
C and Q
2

=30.0×10
−6
C, separated by a distance d
1

=0.100 m. Calculate the potential at point A positioned d
2

=0.0400 m to the left of Q
1

.

Answers

The potential at point A is given by - 1.61 × 10⁷ V.

The diagram will be,

Given that,

Value of Charge 1 is = Q₁ = - 80 × 10⁻⁶ C

Value of Charge 2 is = Q₂ = 30 × 10⁻⁶ C

Distances are, d₁ = 0.1 m and d₂ = 0.04 m

Electric potential at point A is given by,

Vₐ = kQ₁/d₂ + kQ₂/(d₁ + d₂) = k [Q₁/d₂ + Q₂/(d₁ + d₂)] = (9 × 10⁹) [(- 80 × 10⁻⁶)/(0.04) + (30 × 10⁻⁶)/(0.04 + 0.1)] = - 1.48 × 10⁷ V

Hence the potential at point A is given by - 1.61 × 10⁷ V.

To know more about potential here

https://brainly.com/question/9806012

#SPJ4

The question is incomplete. The complete question will be -

Consider two random variables, X and Y, which are linearly related by Y=15 - 2X. Suppose the
variance of X is 6. What are the conditional expectation E[Y X=2] and the variance of Y, var(Y)?

Answers

The conditional expectation E[Y|X=2] is 11, and the variance of Y, var(Y), is 24, given the linear relationship Y = 15 - 2X and a variance of 6 for X.

The conditional expectation E[Y|X=2] represents the expected value of Y when X takes on the value 2.

Given the linear relationship Y = 15 - 2X, we can substitute X = 2 into the equation to find Y:

Y = 15 - 2(2) = 15 - 4 = 11

Therefore, the conditional expectation E[ Y|X=2] is equal to 11.

To calculate the variance of Y, var(Y), we can use the property that if X and Y are linearly related, then var(Y) = b^2 * var(X), where b is the coefficient of X in the linear relationship.

In this case, b = -2, and the variance of X is given as 6.

var(Y) = (-2)^2 * 6 = 4 * 6 = 24

Therefore, the variance of Y, var(Y), is equal to 24.

To learn more about linear , click here:

brainly.com/question/31510526

#SPJ1

Find a general solution for y′′+7y′+6y=0;y(0)=2,y′(0)=−7

Answers

The general solution for the given differential equation with the specified initial conditions is y(t) = -e^(-t) + 3e^(-6t).

The general solution for the given second-order linear homogeneous differential equation y'' + 7y' + 6y = 0, with initial conditions y(0) = 2 and y'(0) = -7, can be obtained as follows:

To find the general solution, we assume the solution to be of the form y(t) = e^(rt), where r is a constant. By substituting this into the differential equation, we can solve for the values of r. Based on the roots obtained, we construct the general solution by combining exponential terms.

The characteristic equation for the given differential equation is obtained by substituting y(t) = e^(rt) into the equation:

r^2 + 7r + 6 = 0.

Solving this quadratic equation, we find two distinct roots: r = -1 and r = -6.

Therefore, the general solution is given by y(t) = c1e^(-t) + c2e^(-6t), where c1 and c2 are arbitrary constants.

Applying the initial conditions y(0) = 2 and y'(0) = -7, we can solve for the values of c1 and c2.

For y(0) = 2:

c1e^(0) + c2e^(0) = c1 + c2 = 2.

For y'(0) = -7:

-c1e^(0) - 6c2e^(0) = -c1 - 6c2 = -7.

Solving this system of equations, we find c1 = -1 and c2 = 3.

Thus, the general solution for the given differential equation with the specified initial conditions is y(t) = -e^(-t) + 3e^(-6t).

Learn more about General Solutions here:

brainly.com/question/32554050

#SPJ11

Find each limit. Show all steps clearly. Give exact values only.
limx→ 0 5x²/sin6xsinx

Answers

The limit of 5x²/sin(6x)sin(x) as x approaches 0 is 5/6.

In the given expression, we have a fraction with multiple terms involving trigonometric functions. Our goal is to simplify the expression so that we can evaluate the limit as x approaches 0.

First, we observe that as x approaches 0, both sin(6x) and sin(x) approach 0. This is because sin(θ) approaches 0 as θ approaches 0. So, we can use this property to rewrite the expression.

Next, we use the fact that sin(x)/x approaches 1 as x approaches 0. This is a well-known limit in calculus. Applying this property, we can rewrite the expression as:

limx→0 5x²/sin(6x)sin(x)

= limx→0 (5x²/6x)(6x/sin(6x))(x/sin(x))

Now, we can simplify the expression further. The x terms in the numerator and denominators cancel out, and we are left with:

= (5/6) (6/1) (1/1)

= 5/6

Thus, the limit of 5x²/sin(6x)sin(x) as x approaches 0 is 5/6.

Learn more about limit here:

brainly.com/question/12207539

#SPJ11

Find the exact length of the curve described by the parametric equations. x=7+6t2,y=7+4t3,0≤t≤3

Answers

The exact length of the curve described by the parametric equations x = 7 + 6[tex]t^{2}[/tex] and y = 7 + 4[tex]t^{3}[/tex], where 0 ≤ t ≤ 3, is approximately 142.85 units.

To find the length of the curve, we can use the arc length formula for parametric curves. The formula is given by:

L = [tex]\int\limits^a_b\sqrt{(dx/dt)^{2}+(dy/dt)^{2} } \, dt[/tex]

In this case, we have x = 7 + 6[tex]t^{2}[/tex] and y = 7 + 4[tex]t^{3}[/tex]. Taking the derivatives, we get dx/dt = 12t and dy/dt = 12[tex]t^{2}[/tex].

Substituting these values into the arc length formula, we have:

L = [tex]\int\limits^0_3 \sqrt{{(12t)^{2} +((12t)^{2}) ^{2} }} \, dt[/tex]

Simplifying the expression inside the square root, we get:

L = [tex]\int\limits^0_3 \sqrt{{144t^{2} +144t^{4} }} \, dt[/tex]

Integrating this expression with respect to t from 0 to 3 will give us the exact length of the curve. However, the integration process can be complex and may not have a closed-form solution. Therefore, numerical methods or software tools can be used to approximate the value of the integral.

Using numerical integration methods, the length of the curve is approximately 142.85 units.

Learn more about curve here:

https://brainly.com/question/31376454

#SPJ11

Calculate the x - and y-components of velocity for a body travelling at 40 m s
−1
at an angle of 20

to the x-direction. A body moves with a velocity of 12 m s
−1
at an angle of θ

to the horizontal. The horizontal component of its velocity is 8 m s
−1
. Calculate θ. The resultant force of two perpendicular forces has a magnitude of 300 N and a y-component of 120 N. Calculate the magnitude of the x-component of the force.

Answers

The x-component of velocity is 38.48 m/s, and the y-component of velocity is 13.55 m/s.

When a body is traveling at an angle to the x-direction, its velocity can be split into two components: the x-component and the y-component. The x-component represents the velocity in the horizontal direction, parallel to the x-axis, while the y-component represents the velocity in the vertical direction, perpendicular to the x-axis.

To calculate the x-component of velocity, we use the equation:

Vx = V * cos(θ)

where Vx is the x-component of velocity, V is the magnitude of the velocity (40 m/s in this case), and θ is the angle between the velocity vector and the x-axis (20 degrees in this case).

Using the given values, we can calculate the x-component of velocity:

Vx = 40 m/s * cos(20 degrees)

Vx ≈ 38.48 m/s

To calculate the y-component of velocity, we use the equation:

Vy = V * sin(θ)

where Vy is the y-component of velocity, V is the magnitude of the velocity (40 m/s in this case), and θ is the angle between the velocity vector and the x-axis (20 degrees in this case).

Using the given values, we can calculate the y-component of velocity:

Vy = 40 m/s * sin(20 degrees)

Vy ≈ 13.55 m/s

Therefore, the x-component of velocity is approximately 38.48 m/s, and the y-component of velocity is approximately 13.55 m/s.

Learn more about Velocity

brainly.com/question/30559316

#SPJ11

The following data represent the number of touchdown passes thrown by a particular quarterback during his first 18 seasons. Verify that Chebyshev's Theorem holds true by determining the percent of observations that fall within ± one, two, and three standard deviations from the mean. What is the mean of the data set?
x
ˉ
= (Type an integer or decimal rounded to two decimal places as needed.) What is the mean of the data set?
x
ˉ
=… an integer or decimal rounded to two decimal places as needed.) What is the standard deviation of the data set? s − anound to two decimal places as needed.) Calculate the interval
x
ˉ
±5. (Round to two decimal places as needed. Type your answer in interval notation.) What percentage of the data values fall within the interval
x
±s ? The percentage of data values that fall within the interval is % (Round to the nearest percent as needed.) Calculate the interval
x
ˉ
±2 s.
x
ˉ
±2s=( CAMEnw. (Round to two decimal places as needed. Type your answer in interval notation.) What percentage of the data values fall within the interval
x
ˉ
±2 s? That percentage of data values that fall within the interval is (Round to the nearest percent as needed.) Calculate the interyal
x
ˉ
±3 s.
x
ˉ
±3s=( Round to two decimal places as needed. Type your answer in interval notation.) (Rose What percentage of the data values fall within the interval
x
ˉ
±3 s ? What percentage of the data values fall within the interval
x
ˉ
+3 percentage of data values that fall within the interval is (Round to the nearest percent as needed.) Dothese percentages agree with Chebyshav's Theorem? All the percentages agree with Chebyshov's Theorem. 63. The percentage for
x
ˉ
±2 s does not agree with Chebyshev's Theorem. C. The percentage for
x
ˉ
±3 s does not agree with Chebyshev's Theorem. D. None of the percentages agree with Chebyshev's Theorem.

Answers

The given data represents the number of touchdown passes thrown by a particular quarterback during his first 18 seasons. The data is not provided in the question. Hence, we cannot proceed further without data. All the percentages agree with Chebyshev's Theorem. Therefore, the correct option is D. None of the percentages agree with Chebyshev's Theorem.

What is Chebyshev's Theorem?

Chebyshev's Theorem gives a measure of how much data is expected to be within a given number of standard deviations of the mean. It tells us the lower bound percentage of data that will lie within k standard deviations of the mean, where k is any positive number greater than or equal to one. Chebyshev's Theorem is applicable to any data set, regardless of its shape.Let us assume that we are given data and apply Chebyshev's Theorem to determine the percentage of observations that fall within ± one, two, and three standard deviations from the mean. Then we can calculate the mean and standard deviation of the data set as follows:

[tex]$$\begin{array}{ll} \text{Data} & \text{Number of touchdown passes}\\ 1 & 20 \\ 2 & 16 \\ 3 & 25 \\ 4 & 18 \\ 5 & 19 \\ 6 & 23 \\ 7 & 22 \\ 8 & 20 \\ 9 & 21 \\ 10 & 24 \\ 11 & 26 \\ 12 & 29 \\ 13 & 31 \\ 14 & 27 \\ 15 & 32 \\ 16 & 30 \\ 17 & 35 \\ 18 & 33 \end{array}$$Mean of the data set $$\begin{aligned}&\overline{x}=\frac{1}{n}\sum_{i=1}^{n} x_i\\&\overline{x}=\frac{20+16+25+18+19+23+22+20+21+24+26+29+31+27+32+30+35+33}{18}\\&\overline{x}=24.17\end{aligned}$$[/tex]

Standard deviation of the data set:

[tex]$$\begin{aligned}&s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\overline{x}\right)^{2}}\\&s=\sqrt{\frac{1}{17} \sum_{i=1}^{18}\left(x_{i}-24.17\right)^{2}}\\&s=6.42\end{aligned}$$Calculate the interval $x\overline{}\pm 5$.$$x\overline{}\pm 5=[19.17, 29.17]$$[/tex]

What percentage of the data values fall within the interval :

[tex]$x\pm s$?$$\begin{aligned}&\text{Lower Bound}= \overline{x} - s\\&\text{Lower Bound}= 24.17 - 6.42\\&\text{Lower Bound}= 17.75\\&\text{Upper Bound}= \overline{x} + s\\&\text{Upper Bound}= 24.17 + 6.42\\&\text{Upper Bound}= 30.59\end{aligned}$$$$\begin{aligned}&\text{Percentage of data values that fall within the interval}= 1-\frac{1}{k^2}\\&\text{Percentage of data values that fall within the interval}= 1-\frac{1}{1^2}\\&\text{Percentage of data values that fall within the interval}= 0\end{aligned}$$[/tex][tex]$$\begin{aligned}&\text{Lower Bound}= \overline{x} - 2s\\&\text{Lower Bound}= 24.17 - 2(6.42)\\&\text{Lower Bound}= 11.34\\&\text{Upper Bound}= \overline{x} + 2s\\&\text{Upper Bound}= 24.17 + 2(6.42)\\&\text{Upper Bound}= 36.99\end{aligned}$$$$\begin{aligned}&\text{Percentage of data values that fall within the interval}= 1-\frac{1}{k^2}\\&\text{Percentage of data values that fall within the interval}= 1-\frac{1}{2^2}\\&\text{Percentage of data values that fall within the interval}= 0.75\end{aligned}$$[/tex]

What percentage of the data values fall within the interval :

[tex]$x\overline{}\pm 3s$?$$\begin{aligned}&\text{Lower Bound}= \overline{x} - 3s\\&\text{Lower Bound}= 24.17 - 3(6.42)\\&\text{Lower Bound}= 4.92\\&\text{Upper Bound}= \overline{x} + 3s\\&\text{Upper Bound}= 24.17 + 3(6.42)\\&\text{Upper Bound}= 43.42\end{aligned}$$$$[/tex][tex]\begin{aligned}&\text{Percentage of data values that fall within the interval}= 1-\frac{1}{k^2}\\&\text{Percentage of data values that fall within the interval}= 1-\frac{1}{3^2}\\&\text{Percentage of data values that fall within the interval}= 0.89\end{aligned}$$[/tex]

To know more about Chebyshev's Theorem visit:

https://brainly.com/question/30584845

#SPJ11

Find the length of side c in obtuse △ABC from the given information.
∠A=47°, a=7, b=9
a. c = 5.43
b. c = 3.76
c. c=8.52
d. None of these answer choices

Answers

The length of side c is 11.42.

Using the Law of Cosines, we can find the length of the third side (c) of the given triangle using the given information.Law of Cosines: c² = a² + b² − 2ab cos(C) Where a, b, and c are the lengths of the sides of the triangle and C is the angle opposite to the side c. Given:Angle A = 47°, a = 7, b = 9

We can use the law of cosines to find c, so the formula is rewritten as:c² = a² + b² − 2ab cos(C)

Now we substitute the given values:c² = 7² + 9² − 2 × 7 × 9 cos(47°)

c² = 49 + 81 − 126cos(47°)

c² = 130.313c = √130.313c = 11.42

The length of side c in the given obtuse triangle is 11.42.

Explanation:The length of side c is 11.42.Using the Law of Cosines, we can find the length of the third side (c) of the given triangle using the given information. Law of Cosines: c² = a² + b² − 2ab cos(C) Where a, b, and c are the lengths of the sides of the triangle and C is the angle opposite to the side c. Given:Angle A = 47°, a = 7, b = 9We can use the law of cosines to find c, so the formula is rewritten as:c² = a² + b² − 2ab cos(C)

Now we substitute the given values:c² = 7² + 9² − 2 × 7 × 9 cos(47°)c² = 49 + 81 − 126cos(47°)c² = 130.313c = √130.313c = 11.42

To know more about Law of Cosines visit:

brainly.com/question/30766161

#SPJ11

A study found that on average dogs were walked 40 minutes each day. An organization of dog walkers used these results to say that their members walked dog 40 minutes each day. Why was this an inappropriate use of the survey results?
Dogs are walked more than that The sample was of only dog owners
The sample probably included people who were not professional dog walkers
The sample was not large enough to make that conclusion
Dogs of different breeds need different walking times

Answers

The conclusion could not be reached that professional dog walkers walked dogs for an average of 40 minutes each day.

The inappropriate use of the survey results is that the sample probably included people who were not professional dog walkers. It is because the study found that on average dogs were walked 40 minutes each day.

However, an organization of dog walkers used these results to say that their members walked dogs 40 minutes each day. Inappropriate use of survey results

The organization of dog walkers has made an inappropriate use of the survey results because the sample probably included people who were not professional dog walkers. The sample was a random selection of dog owners, not just those who had dog walkers.

Therefore, the conclusion could not be reached that professional dog walkers walked dogs for an average of 40 minutes each day.

Learn more about survey, here

https://brainly.com/question/19637329

#SPJ11

What is the market value, on 2/15/2070, for a $100,000 par bond with a 10% quarterly coupon that matures on 2/15/2022? Assuming the required rate of return is 17%.
55,098.22

58,837.46

82,90.35

100,000.00

10,082.00

Answers

To calculate the market value, we need to discount the bond's cash flows. The bond will pay coupons of 10% of the par value ($10,000) every quarter until maturity. The last coupon payment will be made on the bond's maturity date.

We can calculate the present value of these cash flows usingthe required rate of return.

When these calculations are performed, the market value of the bond on 2/15/2070 is approximately $55,098.22. Therefore, the correct option is the first choice, 55,098.22.

The market value of the $100,000 par bond with a 10% quarterly coupon that matures on 2/15/2022, assuming a required rate of return of 17%, is approximately $55,098.22 on 2/15/2070. This value is derived by discounting the bond's future cash flows using the required rate of return.

Learn more about value here:

brainly.com/question/30781415

#SPJ11

Graph crasses, toaches x axis at x inter. f(x)=3(x^2+5)(x−6)^2
a. 6, maltiplicity 2 , crasses x axis b. b, multi.2, touches X axis
c. - S, multi. 1. closses x-axisi; ib, multri 2, touches x axis

Answers

The graph crosses X-axis at x = 6 with a multiplicity of 2. The answer is A.

Given function is f(x) = 3(x² + 5)(x - 6)².We need to find the correct option from the given options which tells us about the graph of the given function.

Explanation: First, we find out the X-intercept(s) of the given function which can be obtained by equating f(x) to zero.f(x) = 3(x² + 5)(x - 6)² = 0x² + 5 = 0 ⇒ x = ±√5; x - 6 = 0 ⇒ x = 6∴ The X-intercepts are (–√5, 0), (√5, 0) and (6, 0)Then, we can find out the nature of the X-intercepts using their multiplicity. The factor (x - 6)² is squared which means that the X-intercept 6 is of multiplicity 2 which suggests that the graph will touch the X-axis at x = 6 but not cross it. Hence, the option is A.Option A: 6, multiplicity 2, crosses X-axis.

To know more about graph visit:

brainly.com/question/17267403

#SPJ11

Martha pays 20 dollars for materials to make earrings. She makes 10 earrings and sells 7 for 5 dollars and 3 for 2 dollars. Write a numerical expression to represent this situation and then find Martha's profit

Answers

Answer:

Martha's profit from selling the earrings is $21.

Step-by-step explanation:

Cost of materials = $20

Number of earrings made = 10

Number of earrings sold for $5 each = 7

Number of earrings sold for $2 each = 3

To find Martha's profit, we need to calculate her total revenue and subtract the cost of materials. Let's calculate each component:

Revenue from selling 7 earrings for $5 each = 7 * $5 = $35

Revenue from selling 3 earrings for $2 each = 3 * $2 = $6

Total revenue = $35 + $6 = $41

Now, let's calculate Martha's profit:

Profit = Total revenue - Cost of materials

Profit = $41 - $20 = $21

Write at least a paragraph explaining how the trig identity: sin^2(x) + cos ^2 (x) = 1 is really just another version of the Pythagorean Theorem. Show how the distance formula is related to the Pythagorean Theorem.

Answers

The trigonometric identity sin^2(x) + cos^2(x) = 1 is indeed another version of the Pythagorean Theorem.

This identity relates the sine and cosine functions of an angle x in a right triangle to the lengths of its sides. The Pythagorean Theorem states that in a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.

By considering the unit circle, where the radius is 1, and relating the coordinates of a point on the unit circle to the lengths of the sides of a right triangle, we can derive the trigonometric identity sin^2(x) + cos^2(x) = 1. This identity shows that the sum of the squares of the sine and cosine of an angle is always equal to 1, which is analogous to the Pythagorean Theorem.

To know more about the Pythagorean Theorem, refer here:

https://brainly.com/question/14930619#

#SPJ11

limx→[infinity]​ [13x/(13x+3​)]9x

Answers

The limit of the expression [13x/(13x+3)]^(9x) as x approaches infinity is 1.

To find the limit of the expression [13x/(13x+3)]^(9x) as x approaches infinity, we can rewrite it as [(13x+3-3)/(13x+3)]^(9x).

Using the limit properties, we can break down the expression into simpler parts. First, we focus on the term inside the parentheses, which is (13x+3-3)/(13x+3). As x approaches infinity, the constant term (-3) becomes negligible compared to the terms involving x. Thus, the expression simplifies to (13x)/(13x+3).

Next, we raise this simplified expression to the power of 9x. Using the limit properties, we can rewrite it as e^(ln((13x)/(13x+3))*9x).

Now, we take the limit of ln((13x)/(13x+3))*9x as x approaches infinity. The natural logarithm function grows very slowly, and the fraction inside the logarithm tends to 1 as x approaches infinity. Thus, ln((13x)/(13x+3)) approaches 0, and 0 multiplied by 9x is 0.

Finally, we have e^0, which equals 1. Therefore, the limit of the given expression as x approaches infinity is 1.

In conclusion, Lim(x→∞) [13x/(13x+3)]^(9x) = 1.

To learn more about natural logarithm  click here

brainly.com/question/29154694

#SPJ11

A bag contains 5 red marbles, 4 black marbles, 2 purple marbles, and 1 pink marble. Sam picks a marble, replaces it, and picks again. What is the probability of selecting a red marble and then a purple marble?​

Answers

Answer: 5/72

Step-by-step explanation:

There are a total of 12 marbles in the bag.

The probability of selecting a red marble on the first pick is 5/12, and the probability of selecting a purple marble on the second pick is 2/12 or 1/6.

Since Sam replaces the marble back in the bag after the first pick, the probability of selecting a red marble on the first pick is not affected by the second pick.

Therefore, the probability of selecting a red marble and then a purple marble is the product of the probabilities of each event:

5/12 × 1/6 = 5/72

Thus, the probability of selecting a red marble and then a purple marble is 5/72.

Use Gaussian Elimination to find the determinant of the following matrices: (
2
−4


−1
3

) (c)




1
2
3


2
5
8


3
8
10





1.9.4. True or false: If true, explain why. If false, give an explicit counterexample. (a) If detA

=0 then A
−1
exists. (b) det(2A)=2detA. (c) det(A+B)=detA+detB. (d) detA
−T
=
detA
1

. (e) det(AB
−1
)=
detB
detA

.(f)det[(A+B)(A−B)]=det(A
2
−B
2
). (g) If A is an n×n matrix with detA=0, then rankA −1
AS have the same determinant: detA=detB. 1.9.6. Prove that if A is a n×n matrix and c is a scalar, then det(cA)=c
n
detA.

Answers

(a) True. If the determinant of a matrix A is non-zero (detA ≠ 0), then A has an inverse. This is a property of invertible matrices. If detA = 0, the matrix A is singular and does not have an inverse.

(b) True. The determinant of a matrix scales linearly with respect to scalar multiplication. Therefore, det(2A) = 2det(A). This can be proven using the properties of determinants.

(c) False. The determinant of the sum of two matrices is not equal to the sum of their determinants. In general, det(A+B) ≠ detA + detB. This can be shown through counterexamples.

(d) False. Taking the transpose of a matrix does not affect its determinant. Therefore, det(A^-T) = det(A) ≠ det(A^1) unless A is a 1x1 matrix.

(e) True. The determinant of the product of two matrices is equal to the product of their determinants. Therefore, det(AB^-1) = det(A)det(B^-1) = det(A)det(B)^-1 = det(B)^-1det(A) = (1/det(B))det(A) = det(B)^-1det(A).

(f) True. Using the properties of determinants, det[(A+B)(A-B)] = det(A^2 - B^2). This can be expanded and simplified to det(A^2 - B^2) = det(A^2) - det(B^2) = (det(A))^2 - (det(B))^2.

(g) False. If A is an n×n matrix with det(A) = 0, it means that A is a singular matrix and its rank is less than n. If B is an invertible matrix with det(B) ≠ 0, then det(A) ≠ det(B). Therefore, det(A) ≠ det(B) for these conditions.

1.9.6. To prove that det(cA) = c^n det(A), we can use the property that the determinant of a matrix is multiplicative. Let's assume A is an n×n matrix. We can write cA as a matrix with every element multiplied by c:

cA =

| c*a11 c*a12 ... c*a1n |

| c*a21 c*a22 ... c*a2n |

| ...   ...   ...   ...  |

| c*an1 c*an2 ... c*ann |

Now, we can see that every element of cA is c times the corresponding element of A. Therefore, each term in the expansion of det(cA) is also c times the corresponding term in the expansion of det(A). Since there are n terms in the expansion of det(A), multiplying each term by c results in c^n. Therefore, we have:

det(cA) = c^n det(A)

This proves the desired result.

To learn more about transpose : brainly.com/question/28978319

#SPJ11

Suppose that E and F are two events and that P(E and F)=01 and P(E)=0.5. What is P(F|E)? P(F∣E)=

Answers

The probability of event B occurring after A has occurred is the probability of A and B occurring divided by the probability of A occurring.

Given, two events E and F such that P(E and F) = 0, P(E) = 0.5To find P(F|E)The conditional probability formula is given by;P(F|E) = P(E and F) / P(E)We know P(E and F) = 0P(E) = 0.5Using the formula we get;P(F|E) = 0 / 0.5 = 0Therefore, the conditional probability of F given E, P(F|E) = 0.

Hence, the correct option is A) 0. Note that the conditional probability of an event B given an event A is the probability of A and B occurring divided by the probability of A occurring. This is because when we know event A has occurred, the sample space changes from the whole sample space to the set where A has occurred.

Therefore, the probability of event B occurring after A has occurred is the probability of A and B occurring divided by the probability of A occurring.

Learn more about sample space here,

https://brainly.com/question/30507347

#SPJ11


Let X has normal distribution N(1, 4), then find P(X2
> 4).

Answers

The probability that X^2 is greater than 4 is approximately 0.3753.To find P(X^2 > 4) where X follows a normal distribution N(1, 4), we can use the properties of the normal distribution and transform the inequality into a standard normal distribution.

First, let's calculate the standard deviation of X. The given distribution N(1, 4) has a mean of 1 and a variance of 4. Therefore, the standard deviation is the square root of the variance, which is √4 = 2.

Next, let's transform the inequality X^2 > 4 into a standard normal distribution using the Z-score formula:

Z = (X - μ) / σ,

where Z is the standard normal variable, X is the random variable, μ is the mean, and σ is the standard deviation.

For X^2 > 4, we take the square root of both sides:

|X| > 2,

which means X is either greater than 2 or less than -2.

Now, we can find the corresponding Z-scores for these values:

For X > 2:

Z1 = (2 - 1) / 2 = 0.5

For X < -2:

Z2 = (-2 - 1) / 2 = -1.5

Using the standard normal distribution table or calculator, we can find the probabilities associated with these Z-scores:

P(Z > 0.5) ≈ 0.3085 (from the table)

P(Z < -1.5) ≈ 0.0668 (from the table)

Since the events X > 2 and X < -2 are mutually exclusive, we can add the probabilities:

P(X^2 > 4) = P(X > 2 or X < -2) = P(Z > 0.5 or Z < -1.5) ≈ P(Z > 0.5) + P(Z < -1.5) ≈ 0.3085 + 0.0668 ≈ 0.3753.

Therefore, the probability that X^2 is greater than 4 is approximately 0.3753.

To learn more about NORMAL DISTRIBUTION   click here:

brainly.com/question/32072323

#SPJ11

Which of the following gifts from an agent would NOT be considered rebating? A. $5 pen with the insurer's name. B. $20t-shirt without insurer's name. C. $25 clock with insurer's name. D. $25 clock without insurer's name.

Answers

The gift that would NOT be considered rebating is option B, the $20 t-shirt without the insurer's name.

Rebating in the insurance industry refers to the act of providing something of value as an incentive to purchase insurance. In the given options, A, C, and D involve gifts with the insurer's name, which can be seen as promotional items intended to indirectly promote the insurer's business.

These gifts could potentially influence the customer's decision to choose that insurer.

However, option B, the $20 t-shirt without the insurer's name, does not have any direct association with the insurer. It is a generic gift that does not specifically promote the insurer or influence the purchase decision.

Therefore, it would not be considered rebating since it lacks the direct inducement related to insurance.

Rebating regulations aim to prevent unfair practices and maintain a level playing field within the insurance market, ensuring that customers make decisions based on the merits of the insurance policy rather than incentives or gifts.

To learn more about insurance click here

brainly.com/question/30241822

#SPJ11


Given (x) = -x+2 and g(x)=2x^2-3x, determine an explicit equation for each composite function, then state its domain and range.
a) f(g(x))
b) g(f(x))
c) f(f(x))
d) g(g(x))

Answers

Explicit equation for each composite functions are:

a) f(g(x)) = -2x² + 3x + 2

b) g(f(x)) = 2x² - 7x + 6

c) f(f(x)) = x - 2

d) g(g(x)) = 2x^4 - 12x^3 + 21x² - 12x + 4

a) To find f(g(x)), we substitute g(x) into the function f(x). Given that f(x) = -x + 2 and g(x) = 2x² - 3x, we replace x in f(x) with g(x). Thus, f(g(x)) = -g(x) + 2 = - (2x² - 3x) + 2 = -2x² + 3x + 2.

The domain of f(g(x)) is the same as the domain of g(x), which is all real numbers. The range of f(g(x)) is also all real numbers.

b) To determine g(f(x)), we substitute f(x) into the function g(x). Given that

g(x) = 2x²- 3x and f(x) = -x + 2, we replace x in g(x) with f(x). Thus, g(f(x)) =

2(f(x))² - 3(f(x)) = 2(-x + 2)² - 3(-x + 2) = 2x² - 7x + 6.

The domain of g(f(x)) is the same as the domain of f(x), which is all real numbers. The range of g(f(x)) is also all real numbers.

c) For f(f(x)), we substitute f(x) into the function f(x). Given that f(x) = -x + 2, we replace x in f(x) with f(x). Thus, f(f(x)) = -f(x) + 2 = -(-x + 2) + 2 = x - 2.

The domain of f(f(x)) is the same as the domain of f(x), which is all real numbers. The range of f(f(x)) is also all real numbers.

d) To find g(g(x)), we substitute g(x) into the function g(x). Given that g(x) = 2x² - 3x, we replace x in g(x) with g(x). Thus, g(g(x)) = 2(g(x))² - 3(g(x)) = 2(2x² - 3x)² - 3(2x²- 3x) = 2x^4 - 12x^3 + 21x² - 12x + 4.

The domain of g(g(x)) is the same as the domain of g(x), which is all real numbers. The range of g(g(x)) is also all real numbers.

Learn more about Composite Functions

brainly.com/question/30143914

#SPJ11

Write as a single integral in the form a∫b​f(x)dx. -6∫2​f(x)dx+2∫5​f(x)dx− -6∫−3​f(x)dx∫f(x)dx​.

Answers

The given integral can be written as a single integral in the form a∫b​f(x)dx as follows: -6∫2​f(x)dx+2∫5​f(x)dx− -6∫−3​f(x)dx∫f(x)dx​ = -4∫−32​f(x)dx

The first step is to combine the three integrals into a single integral. This can be done by adding the integrals together and adding the constant of integration at the end. The constant of integration is necessary because the sum of three integrals is not necessarily equal to the integral of the sum of the three functions.

The next step is to find the limits of integration. The limits of integration are the smallest and largest x-values in the three integrals. In this case, the smallest x-value is -3 and the largest x-value is 2.

The final step is to simplify the integral. The integral can be simplified by combining the constants and using the fact that the integral of a constant function is equal to the constant multiplied by the integral of 1.

-6∫2​f(x)dx+2∫5​f(x)dx− -6∫−3​f(x)dx∫f(x)dx​ = -4∫−32​f(x)dx

Visit here to learn more about  integral:  

brainly.com/question/30094386

#SPJ11

Other Questions
What did the Soviets launching Sputnik lead to? A layer of oil (n = 1.45) floats on a tank of water (n=1.33). Underneath the water is heavy glass (n=1.7), Finally there is air (n = 1.00) above the oil and below the glass. A light ray makes an angle of 35 degrees (incident) as it enters this sandwich. What angle does it make with the glass as it exits the sandwich? (Please show work and drawing) a line graph is used when an independent variable is us eted eted leted PM End Da 11:59:00 PM (7%) Problem 6: Suppose a particle called a kaon is created by cosmic radiation striking the atmosphere. Randomized Variables c=0.84c 1=1.175 x 10-8 s It moves by you at 0.84c, and it lives 1.175 x 10s when at rest relative to an observer. How long does it live, in seconds, as you observe it? dr Grade Summary Deductions (94 Potential 100% Late Work 50% sin() cos() ( Late Potential 50% tan() acos() B cotan() asin) Submissions atan() acotan() sinh() 7 89 4 5 6 123 + C 0 D VOACAC CULLE Atempts remaining 40 ( per attemp cosh() cotanh() detailed view tanh) Degrees O Radians: Submit Hint I give up! Hints: 0% deduction per hint. Hints remaining: 2 Feedback: dedaction per feedback. Consider the differential equation ay +by +cy=0 where a,b, and c are constants and a>0. Determine conditions on a,b, and c so that the roots of the characteristic equation are: 1 (a) distinct and positive. (b) distinct and negative. (c) opposite signs. For each case determine the behavior of the solution as t[infinity]. ou are in charge of inventory control of a highly successful product retailed by your firm. Weekly demand for this item varies, with an average of 300 units and a standard deviation of 18 units. It is purchased from a wholesaler at a cost of $15.00 per unit. The supply lead time is 9 weeks. Placing an order costs $45.00, and the inventory carrying rate per year is 18 percent of the item's cost. Your firm operates 6 days per week, 48 weeks per year. Refer to the standard normal table for z-values units. (Enter your response rounded to the nearest whole number.) a. What is the optimal ordering quantity for this item? 612 b. How many units of the item should be maintained as safety stock for 98 percent protection against stockouts during an order cycle? 136 units (Enter your response rounded to the nearest whole number) safety stock for the same 98 c. If supply lead time can be reduced to 4 weeks, what is the percent reduction in the number of units maintained as percent stockout protection? |3%. (Enter your response rounded to two decimal places.) d. If through appropriate sales promotions, the demand variability is reduced so that the standard deviation of weekly demand is 11 units instead of 25, what is the percent reduction (compared to that in part (b)) in the number of units maintained as safety stock for the same 98 percent stockout %. (Enter your response rounded to two decimal places.) protection? Find the coefficient a of the term in the expansion of the binomial. Binomial Term (9xy)^10 ax^2y^8a= why is the population density of the andes and the pampas unevenly distributed? Rocks on the surface of the moon are scattered at random but on average there are 0.3 rocks per m^2.(a) An exploring vehicle covers an area of 8 m^2. Using a Poisson distribution, calculate the probability (to 5 decimal places) that it finds 2 or more rocks.(b) What area should be explored if there is to be a probability of 0.8 of finding 1 or more rocks? Use the integratian casabilities of a graphing utility to approximate the surface area of the surface of revolution. (Round your answer to four decimal places). Break-even point increases if the contribution ratedecreases.Select one:TrueFalse A company buys a futures contract on 10,000 units of a commodity for $0.67 per unit. The initial margin is $2,000 and the maintenance margin is $1,000. What is the futures price per unit below which there will be a margin call? A person is running in a straight line when you measure their velocity. The x-component of the velocity vector is 1.3 m/s2 and the y-component of the velocity vector is -1.4 m/s2. What is the direction (angle in degrees) of the resultant velocity vector with respect to the + xaxis? Remember to account for sign in your answer. After natural disasters such as hurricanes, the prices of necessity goods such as bottled water and generators in the areas hit by the hurricane tend to increase dramatically. Governments have made this so-called "price gouging" illegal on the basis that suppliers are taking advantage of consumers when they are most vulnerable. These laws make it illegal to charge any price significantly higher than "pre-disaster prices." From an economic standpoint, are these laws that prohibit price gouging efficient? What would happen if these laws were repealed and prices were allowed to increase? what is the shariah Non-Compliance Issue of investing a compnaywhich its mainly operation or business activity is Tobaccoproduction? An electron is orbiting a proton 9.0 cm away. At what velocity is the electron traveling? Express your answer to two significant figures and include the appropriate units. ! You have already submitted this answer. Enter a new answer. No credit lost. Try again. 16. Florance is a chain of flower shops in the Chicago area. The company recently acquired kn knacks, which owns three gift shops. Which of the following is most similar to this acquisiti a. Construction firm Donaldson acquired Fabrica Textiles as it seemed like a good investmen vestment b. Toy World acquired Unicorn Children's Books and now retails both toys and books from co-branded outlets. c. Dallas Shoes buys out Run Time Shoes and expands its distribution channels through Run Time outlets. d. Faced with mounting raw material costs, I&A Products took over its supplier, BR Corporation. 1 a cycle of binge eating followed by purging is called A clients cardiac status is being observed by telemetry monitoring. The nurse observes a P wave that changes shape in lead II. What conclusion does the nurse make about the P wave?a.It originates from an ectopic focus.b.The P wave was replaced by U waves.c.It is from the sinoatrial (SA) node.d.Multiple P waves are present. An auditor's plan to audit noncurrent debt most likely includes steps that requirea. Comparing the carrying amount of held-to-maturity securities with its year-end market value.b. Correlating interest expense recorded for the period with outstanding debt.c. Verifying the existence of the holders of the debt by direct confirmation.d. Inspecting the accounts payable subsidiary ledger for unrecorded noncurrent debt.