A Rydberg atom is an atom with valence electrons in states with a very high principal quantum number n. The smallest value of n such that the Bohr radius of a single hydrogen atom would be greater than 7 microns is approximately 1,573.
This implies that it has a probability cloud with a high amplitude and is situated at a significant distance from the nucleus. Such atoms' existence has been discovered by radio astronomers through radiation from diffuse hydrogen gas in interstellar space. The largest size an atom can achieve is unlimited, given it is free of external effects.A single-celled organism's typical size is 7 microns. To determine the smallest value of n where the Bohr radius of a single hydrogen atom would be greater than 7 microns,
we will use the following formula for Bohr radius:
r = n²h²/4π²me²k where h is Planck's constant, me is the electron's mass, and k is Coulomb's constant.
We can see that the Bohr radius increases as n². We can therefore express the equation as:n² = 4π²me²k * r / h²When r = 7 µm, we can plug it into the equation and solve for n as:n² = 4π²(9.10938356 × 10^-31 kg) (8.9875517923 × 10^9 N m²/C²)(7 × 10^-6 m) / (6.62607015 × 10^-34 m² kg/s)²n² = 2,469,471.663n ≈ 1,572.90
Therefore, the smallest value of n such that the Bohr radius of a single hydrogen atom would be greater than 7 microns is approximately 1,573.
To know more about Rydberg atom refer to:
https://brainly.com/question/31392723
#SPJ11
is carbon oxygen double bond more polar than carbon carbon double bond
Yes, the carbon-oxygen double bond is more polar than the carbon-carbon double bond. Here are some details and explanations on why it is so A polar bond is a chemical bond where a pair of electrons is unequally shared between two atoms.
The unequal sharing of electrons results in the formation of two poles, a negative pole and a positive pole. The difference in the electronegativity of the bonded atoms determines the polarity of the bond. The greater the difference in electronegativity between the two bonded atoms, the more polar the bond is.What is the electronegativity of an atom?The electronegativity of an atom is its ability to attract a pair of electrons towards itself. The higher the electronegativity of an atom, the greater its ability to attract electrons.What is a double bond?A double bond is a type of chemical bond where two pairs of electrons are shared between two atoms.
The difference in electronegativity value has an implication on the polarity of the bond. The greater the difference in electronegativity, the more polar the bond is. In the case of carbon-oxygen double bond, the difference in electronegativity is 1.0, which means that the bond is more polar than the carbon-carbon double bond, which has a difference in electronegativity of 0. In summary, the carbon-oxygen double bond is more polar than the carbon-carbon double bond.
To know more about double bond visit:-
https://brainly.com/question/29068102
#SPJ11
The yield of a chemical process is being studied, from previous experience:
a) The yield is expected to increase.
b) The yield is expected to decrease.
c) The yield is expected to remain the same.
d) The yield cannot be determined without further information.
The yield of a chemical process is being studied and the question is being asked about the expectation of yield. The possible expected outcomes are as follows:a) The yield is expected to increase.b) The yield is expected to decrease.c) The yield is expected to remain the same.d)
The yield cannot be determined without further information.The expected outcome of yield depends on various factors and cannot be generalized. These factors include the nature of the chemical process, the environment, the presence of any impurities, temperature, concentration, etc.
Therefore, to provide a more accurate answer, it is necessary to know the specifics of the chemical process that is being studied and then make a prediction based on that information. Hence, the expected yield cannot be determined without further information.
To know more about chemical process visit:-
https://brainly.com/question/256586
#SPJ11
what is the net ionic equation for the reaction between aqueous solutions of sr(no3)2 and k2so4?
A net ionic equation is a chemical equation that shows the reaction that occurred between ions in aqueous solutions. It focuses on the ions that were changed during the reaction.
The first step of writing a net ionic equation involves writing the balanced molecular equation for the reaction. Sr(NO3)2 and K2SO4 are soluble salts that will dissociate in water to give their constituent ions. The balanced molecular equation for this reaction can be written as: Sr(NO3)2 (aq) + K2SO4 (aq) → 2KNO3 (aq) + SrSO4 (s)The next step is to determine the ions that were involved in the reaction. Only the ions that changed during the reaction are included in the net ionic equation.
The potassium and nitrate ions are not involved in the reaction. Therefore, they are excluded from the net ionic equation. The net ionic equation is:2Sr²⁺ (aq) + SO4²⁻ (aq) → SrSO4 (s)Hence, the net ionic equation for the reaction between aqueous solutions of Sr(NO3)2 and K2SO4 is 2Sr²⁺ (aq) + SO4²⁻ (aq) → SrSO4 (s).
To know more about reaction visit:
https://brainly.com/question/30464598
#SPJ11
consecutive reaction irreversible first-rate reactions below Suppose that And you are interested in isolating the largest possible amount of B. Given the values of k1 and k2, derive an equation for the time that the concentration of B goes through the maximum. Now consider two cases: (a) A reacts more rapidly than B and (b) A reacts less rapidly than B For a given value of k2, in which case would you wait the longer time for B to go through its maximum Hint: Start by writing out the differential equations for each step (i.e d4- -k1 A]). Then d[A dt solve for [B). 2nd hint: [Bj is maximum when dial = 0 dt Question 2. Nth order derivation for half-life (1%) The reaction A-B is nth order (where n= ½,3/2, 2, 3, etc) and goes to completion to the right. Derive the expression for the half-life as a function of k, n and [Ao] Question 3. Steady-state approximation problem Consider the following reaction mechanism Hint: the reverse reaction for C → A+ B should be k2 (a) Derive the rate law using the steady state approximation to eliminate the concentration of [C) (b) Assuming that k3<
if A reacts more slowly than B, the concentration of B has time to increase before A is consumed. (reverse)Assuming that the steady-state approximation applies to intermediate C, we have:
d[C]/dt = 0We can write the rate of forward and reverse reactions as:kf [A][B] and kr[C]Solving for [C], we get:[C] = (kf/[kr]) * [A][B]Substituting [C] into the first equation and solving for [A], we get:d[A]/dt = -(kf/[kr]) * [A]^2 + k2[B]d[B]/dt = -(kf/[kr]) * [A]^2 - k2[B]The rate law for the reaction is given by:Rate = kf[A][B] = kr[C]Substituting for C, we get:Rate = (kf/[kr]) * [A][B] = kr * (kf/[kr]) * [A][B]Therefore, the rate law is given by the following equation:Rate = kr * [C] = (kf * kr/[kr]) * [A][B] = kapp[A][B]where kapp = kf / kr * [C] is the pseudo rate constant.
Part (b): Assuming that k3 << kf, we can eliminate the concentration of [D] by using the steady-state approximation, which states that the intermediate is at a steady state. The rate of the forward reaction can be represented by kf[A][B] and the reverse reaction can be represented by k2[C]. Therefore, we can write the following equation for the steady-state approximation:d[C]/dt = kf [A][B] - k2[C] = 0Solving for [C], we get:[C] = kf[A][B] / k2Substituting this expression for [C] into the rate law for the reaction, we get:Rate = kf[A][B] = kapp[A][B]Therefore, the rate constant for the reaction is kapp = kf and the rate law is given by the following equation:Rate = kapp[A][B].
To know more about concentration visit:-
https://brainly.com/question/3045247
#SPJ11
100. 0 g sample of aluminum at 0. 00 °C absorbs 1379 J
of heat. What is is final temperature?
The final temperature of the 100 g sample of aluminum is 15.3°C after it absorbs 1379 J of heat at an initial temperature of 0.00°C and the specific heat capacity of aluminum is 0.903 J/g °C.
The specific heat capacity of aluminum is 0.903 J/g °C. As given in the question, 0.00°C is the initial temperature of 100 g sample of aluminum and it absorbs 1379 J of heat. We need to find out the final temperature of the sample of aluminum.
Here's how we can calculate it:
Given,Mass of aluminum, m = 100 g
Heat absorbed by the aluminum, Q = 1379 J
Temperature of aluminum, t1 = 0.00°C (initial temperature)
Specific heat capacity of aluminum, c = 0.903 J/g °C
Temperature of aluminum, t2 = ?Q = mc(t2 - t1)1379 = 100 × 0.903 × (t2 - 0.00)
On solving this equation, we get: t2 = 15.3°
, the final temperature of the 100 g sample of aluminum is 15.3°C.
: The final temperature of the 100 g sample of aluminum is 15.3°C after it absorbs 1379 J of heat at an initial temperature of 0.00°C and the specific heat capacity of aluminum is 0.903 J/g °C.
To know more about aluminum visit:
brainly.com/question/28989771
#SPJ11
To calculate the final temperature of a 100.0 g sample of aluminum that absorbs 1379 J of heat at 0.00 °C, we can use the specific heat capacity of aluminum to determine the amount of heat energy required to raise the temperature of the sample by one degree Celsius.
The specific heat capacity of aluminum is 0.90 J/g°C. This means that it takes 0.90 J of energy to raise the temperature of one gram of aluminum by one degree Celsius.
To calculate the amount of energy required to raise the temperature of the 100.0 g sample by one degree Celsius, we can use the following formula:
Energy = mass x specific heat capacity x change in temperature
Where:
Energy = 1379 J (the amount of energy absorbed by the aluminum)
Mass = 100.0 g
Specific heat capacity = 0.90 J/g°C
Change in temperature = final temperature - initial temperature
We can rearrange this formula to solve for the final temperature:
Final temperature = (energy / (mass x specific heat capacity)) + initial temperature
Substituting the values we know:
Final temperature = (1379 J / (100.0 g x 0.90 J/g°C)) + 0.00 °C
Final temperature = 15.32 °C
Therefore, the final temperature of the aluminum sample is 15.32 °C.
For such more question on temperature
https://brainly.com/question/27944554
#SPJ8
What do the coefficients in front of each species in the following chemical equation tell you about the reaction? 3 Huệ) + N) 42 NH, For every hydrogen molecule consumed, two molecules of NH3 are produced. For every 3.03 g of H2 consumed, two moles of NH3 are produced. IF 340 g of NH3 is produced, 14.0 g of N2 was consumed. In order for 36 g of N, to completely react, at least 10 g of Hy would be required. Three moles of nitrogen react with nine moles of hydrogen to generate 6 moles of ammonia
The coefficients in front of each species in the given chemical equation give the stoichiometric relationship between the reactants and products in the chemical reaction.
The coefficients also tell us the relative amount of each substance involved in the reaction.
Thus, the coefficients in the chemical equation `3 H2(g) + N2(g) -> 2 NH3(g)` tell us that three moles of hydrogen react with one mole of nitrogen to produce two moles of ammonia. This means that hydrogen and nitrogen react in the ratio of 3:1 to produce ammonia.When 3.03 g of H2 is consumed, two moles of NH3 is produced and when 14.0 g of N2 is consumed, 340 g of NH3 is produced. It is given that for 36 g of N2 to completely react, at least 10 g of H2 would be required. Thus, the coefficients in the chemical equation tell us the minimum amount of reactants required for the reaction to take place completely.
In summary, the coefficients in the chemical equation provide us with the information on the relative amount of each substance involved in the reaction and also the stoichiometric relationship between the reactants and products.
To know more about coefficients visit:
https://brainly.com/question/1594145
#SPJ11
Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of H+.
Cr2O72-(aq) + I-(aq) ? Cr3+(aq) + I2(aq)
The balanced equation in acidic solution for the given reaction is:
Cr₂O₇²⁻(aq) + 6I⁻(aq) + 14H+(aq) → 2Cr³+(aq) + 3I₂(aq) + 7H₂O(l)
The coefficient of H+ is 14.
What is a coefficient in balancing chemical reaction?In balancing a chemical reaction, coefficients are the numbers placed in front of the chemical formulas to ensure that the number of atoms of each element is the same on both sides of the equation.
These coefficients indicate the relative amounts of reactants and products involved in the reaction.
the balanced equation in acidic solution with the lowest possible integers is:
Cr₂O₇²⁻(aq) + 6I⁻(aq) + 14H+(aq) → 2Cr³+(aq) + 3I₂(aq) + 7H₂O(l)
The coefficient of H+ is 14.
Learn more about acidic solution at
https://brainly.com/question/4113018
#SPJ4
Based on this idea, predict the surface tension ranking of the following substances: • Decane (C10H22) • Hexane (C6H14) • Octane (C8H18) • Pentane (C5H12) Write your prediction in the space below
The substances can be ranked in terms of surface tension as follows: Decane (C₁₀H₂₂) > Octane (C₈H₁₈) > Hexane (C₆H₁₄) > Pentane (C₅H₁₂).
Surface tension, which measures the force needed to stretch or break the surface of a liquid, is influenced by intermolecular forces. As the molecular weight and size of hydrocarbon chains increase, surface tension tends to be higher.
Decane has the highest surface tension due to its longer hydrocarbon chain, followed by octane, hexane, and pentane. The larger and heavier hydrocarbon chains in these substances result in stronger intermolecular forces, leading to higher surface tension.
To know more about surface tension, refer to the link :
https://brainly.com/question/30291477#
#SPJ11
how does the pseudo-3d view from this position and altitude aid in bringing out the terrain features of zion (compared to what you originally saw in the overhead view earlier)?
The altitude is a crucial component of the 3D view since it enables a better understanding of the terrain. In a pseudo-3D view, an image is displayed with the perception of 3D, although it is not a genuine 3D image.
The view from the pseudo-3D angle, however, allows viewers to understand the mountains, cliffs, and other terrain features in a more realistic way. The image is formed by utilizing an aerial image and enhancing it with a 3D effect. As a result, the image has more depth and detail than a conventional overhead image.The altitude is another crucial component that aids in the display of the terrain features of Zion. The higher the altitude, the more information is provided. For example, the 3D map of Zion taken from a height of 30,000 feet can reveal the geography of the land, the valleys, and the different kinds of vegetation.
The same view, when taken from a higher altitude, such as a satellite, provides a more comprehensive perspective of the land.
Read more about geography here;https://brainly.com/question/12790602
#SPJ11
rust can be prevented by:select the correct answer below:
a.submerging the metallic
b.iron in waterapplying
c.paint to the iron magnetizing
d.the ironnone of the above
Rust can be prevented by applying paint to the iron. The correct answer is option c.
Rust refers to the reddish-brown iron oxide that forms on the surface of iron, particularly when exposed to moisture. Rust is a form of corrosion, which is a chemical reaction that occurs when metal surfaces come into touch with water, air, or other chemicals.
The prevention of rustThe following methods can be used to avoid rust:
Painting: Paint serves as a barrier between the surface of the metal and the environment, preventing corrosion or rust formation.
Galvanization: In this procedure, a protective layer of zinc is added to the metal surface, forming a barrier that prevents rust from forming.
Polishing: Polishing metal surfaces ensures that the surface is smooth, devoid of any rough spots that can act as rust initiation sites.
Therefore, the correct answer is option c. Paint to the iron
Learn more about rust here:
https://brainly.com/question/688285
#SPJ11
what is the reaction that corresponds to the first ionization energy of rubidium, rbrb ?
The reaction that corresponds to the first ionization energy of rubidium is:Rb (g) → Rb+ (g) + e-.
The first ionization energy of an element is the energy required to remove the most loosely held electron from one mole of the gaseous atoms of an element. Rubidium is a highly reactive alkali metal that is easily ionized. It is a silvery-white metal that reacts vigorously with air and water vapor. Rubidium's first ionization energy is 4.177 electron volts (eV) or 403 kJ/mol. Rb's ionization energies decrease as more electrons are removed since the attraction between the positively charged nucleus and the remaining electrons gets stronger. Rubidium is used in atomic clocks, photocells, and vacuum tubes as a result of its low work function. It is also used in the study of biomedical science due to its similarity to potassium. The reaction that corresponds to the first ionization energy of rubidium is:Rb (g) → Rb+ (g) + e-.
To know more about ionization visit:
https://brainly.com/question/1602374
#SPJ11
The density of solid Ni is 8.90 g/cm^3. How many atoms are present per cubic centimeter of Ni?
A solid, Ni adopts a face-centered cubic unit cell. How many unit cells are present per cubic centimeter of Ni? What is the volume of a unit cell of this metal? What is the edge length of a unit cell of Ni?
The density of solid Ni is [tex]8.90 g/cm^3[/tex]. There are approximately [tex]4.92 \times 10^{22}[/tex] atoms present per cubic centimeter of Ni. Each unit cell of Ni has a volume of [tex]2.62 \times 10^{-23} cm^3[/tex]. The edge length of a unit cell of Ni is approximately 3.52 Å.
In a face-centered cubic (FCC) unit cell, there are four atoms located at the corners and one atom at the center of each face. To calculate the number of atoms per cubic centimeter, we first need to find the volume of one atom in the unit cell. Since there are four atoms at the corners, each contributing 1/8 of its volume to the unit cell, and one atom at the center of each face, contributing 1/2 of its volume, the total volume of the atoms in the unit cell is (4 x 1/8) + (1 x 1/2) = 1. Therefore, the volume of one atom is equal to the volume of the unit cell.
Given the density of Ni [tex](8.90 g/cm^3)[/tex], we can calculate the mass of one atom using the molar mass of Ni (58.69 g/mol) and Avogadro's number [tex](6.022 \times 10^{23} atoms/mol)[/tex]. The mass of one atom is approximately [tex]9.80 \times 10^{-23} g[/tex]. Dividing the density by the mass of one atom gives us the number of atoms per cubic centimeter, which is approximately [tex]4.92 \times 10^{22} atoms/cm^3[/tex].
The volume of the unit cell can be calculated by dividing the volume of one atom by the number of atoms per unit cell, which gives us approximately [tex]2.62 \times 10^{-23} cm^3[/tex]. Since an FCC unit cell consists of eight cubes, the edge length of the unit cell can be determined by taking the cube root of the volume, resulting in an edge length of approximately 3.52 Å (angstroms).
To learn more about density refer:
https://brainly.com/question/31070060
#SPJ11
There are approx. 8.48 * 10^22 nickel atoms per cm^3, approx. 2.12×10^22 unit cells/cm^3, the volume of one unit cell is ~4.71×10^-23 cm^3, and the edge length of one unit cell is about 3.61 * 10^-8 cm.
Explanation:The density of solid Ni is given as 8.90 g/cm^3. Since Ni (Nickel) is face-centered cubic, it has 4 atoms per unit cell. So, first we need to find the number of moles per unit volume. The molar mass of Ni is roughly 58.69 g/mol. Convert this into atoms/cm^3 we get approx. 8.48 * 10^22 atoms/cm^3. Therefore, there are approx. 8.48 * 10^22 nickel atoms present per cubic centimeter of Ni.
For face-centered cubic unit cell, there are 4 atoms in one unit cell. Hence, number of unit cells per cm3 would be number of atoms per cm3 divided by 4. We'll then have ~2.12×10^22 unit cells/cm^3.
To find the volume of this unit cell, we'll simply divide the total volume (1 cm^3) by the number of unit cells. This gives ~4.71×10^-23 cm^3.
Lastly, to get the edge length of the unit cell, we just take the cube root of the volume of the unit cell. That leads us to an edge length of 3.61 * 10^-8 cm.
Learn more about Unit Cells here:https://brainly.com/question/31627817
#SPJ12
What volume of a concentrated HCL , which is 36.0% HCL by mass and has a density of 1.179g/mL , should be used to make 5.10 L of an HCL solution with a pH of 1.8?
Concentration is a term used in chemistry to refer to the amount of a substance present in a particular volume or mass of a solvent or mixture. It is expressed as a percentage, weight by volume, or molarity, among other things, and it is used to measure the amount of one or more substances present in a given solution.
The HCL solution has a pH of 1.8, indicating that it is acidic. In order to produce the HCL solution, it will be necessary to add concentrated HCL of a certain volume. Let us determine the volume of concentrated HCL required to make 5.10 L of an HCL solution with a pH of 1.8.
What is meant by concentration?
Concentration is a term used in chemistry to refer to the amount of a substance present in a particular volume or mass of a solvent or mixture. It is expressed as a percentage, weight by volume, or molarity, among other things, and it is used to measure the amount of one or more substances present in a given solution. Density is the amount of mass that a substance contains per unit volume. When a substance has a high density, it is denser than when it has a low density. As a result, density is a key factor in the calculation of the amount of concentrated HCL required to produce a specified amount of HCL solution. A concentrated HCL that is 36.0% HCL by mass and has a density of 1.179 g/mL is the concentrated HCL mentioned in the problem. To determine the volume of concentrated HCL required to make 5.10 L of an HCL solution with a pH of 1.8, we will use the formula for calculating the volume of concentrated HCL, which is given as:
Volume of concentrated HCL = (Molar concentration × Volume of HCL solution) ÷ (Molar concentration of concentrated HCL × Density of concentrated HCL)
Where: Molar concentration = 10-pH
Volume of HCL solution = 5.10 L
Molar concentration of concentrated HCL = 36.0% by mass = 12.1 M = 0.121
Density of concentrated HCL = 1.179 g/mL
Substituting the values we get: Volume of concentrated HCL = (10-pH × Volume of HCL solution) ÷ (Molar concentration of concentrated HCL × Density of concentrated HCL)
Volume of concentrated HCL = (10-1.8 × 5.10 L) ÷ (0.121 × 1.179 g/mL)
Volume of concentrated HCL = 334.68 mL or 0.33468 L
Therefore, the volume of concentrated HCL required to make 5.10 L of an HCL solution with a pH of 1.8 is 0.33468 L.
To know more about molarity visit: https://brainly.com/question/31545539
#SPJ11
Which of the following statements about electrolysis is FALSE?
(1 Point)
(A) non-metals like oxygen and chlorine are formed at the cathode
(B) any ionic compound dissolved in water can undergo electrolysis
(C) an electrolyte is a solution or liquid (molten state) that contains ions and so
(D) negatively charged ions migrate to the anode
The given statement (A) non-metals like oxygen and chlorine are formed at the cathode is FALSE. Electrolysis is a process of using electric current to carry out a non-spontaneous chemical reaction.
Correct option is, A.
The compound that is undergoing electrolysis is referred to as an electrolyte. In electrolysis, the cathode is the negatively charged electrode. It attracts positively charged ions from the electrolyte and then reduces them. Non-metals like oxygen and chlorine are formed at the anode. Positively charged ions migrate to the cathode, and negatively charged ions migrate to the anode.
In electrolysis, any ionic compound dissolved in water can undergo electrolysis, thus statement (B) is correct. An electrolyte is a solution or liquid that contains ions and hence can conduct electricity. Therefore, statement (C) is correct. Negatively charged ions migrate to the anode and positively charged ions migrate to the cathode.
To know more about non-metals visit:
https://brainly.com/question/29404080
#SPJ11
arrange these oxoacids (oxyacids) according to acid strength.
Most acidic - Least acidic
Answer Bank HIO HBrO HCIO
The order from most acidic to least acidic oxacid is HCIO > HBrO > HIO.
Oxoacids, also known as oxyacids, are a group of acids that have one or more oxygen atoms in addition to hydrogen and a nonmetal. The acid strength of oxoacids can be determined by the electronegativity of the nonmetal and the number of oxygen atoms present in the molecule. The higher the electronegativity of the nonmetal and the greater the number of oxygen atoms, the stronger the acid is.
Most acidic: HCIO > HBrO > HIO
Least acidic: HIO > HBrO > HCIO
To figure out which oxoacid is the most acidic, we must first determine which nonmetal has the highest electronegativity. Fluorine possesses the highest electronegativity among the elements in the periodic table.
As a result, the amount of oxygen surrounding it will have the most pull on the oxygen-hydrogen bond in an acid. Chlorine is the second most electronegative nonmetal, followed by bromine, and then iodine.
As a result, we can expect HCIO to be the most acidic oxyacid, followed by HBrO and then HIO.
Therefore, the order from most acidic to least acidic is HCIO, HBrO, and HIO.
Learn more about oxacid at: https://brainly.com/question/21795128
#SPJ11
What would be the molecular formula for a polymer made from eight glucose (C6H12O6) molecules linked together by dehydration reactions?
Answer choices:
C48H80O40
or
C48H82O41
The molecular formula of a polymer made from eight glucose (C6H12O6) molecules linked together by dehydration reactions is C48H80O40.
Correct answer is , C48H80O40 .
To determine the molecular formula of the polymer formed from 8 glucose (C6H12O6) molecules linked together by dehydration reactions, we can simply add the molecular formula of 8 glucose molecules:8 (C6H12O6)The number of carbon, hydrogen, and oxygen atoms in the 8 glucose molecules is: 8 x 6C, 8 x 12H, and 8 x 6O respectively.After linking the glucose molecules together, a water molecule is removed, which implies the loss of 1 oxygen atom and 2 hydrogen atoms for each glucose molecule added.
The number of water molecules eliminated is seven (7) because 8 - 1 = 7 and the number of oxygen and hydrogen atoms removed is: (7 x 1O) + (7 x 2H) = 21O + 14H, respectively. Therefore, the molecular formula of the polymer formed from 8 glucose molecules linked together by dehydration reactions is:8 (C6H12O6) - 7 (H2O) = C48H80O40.
To know more about reactions visit:
https://brainly.com/question/30464598
#SPJ11
the solubility of ag₃po₄ in water at 25 °c is 4.3 × 10⁻⁵ m. what is ksp for ag₃po₄?
The Ksp value for Ag₃PO₄ is 3.18 × 10⁻¹⁴.
The solubility product constant (Ksp) for Ag₃PO₄ can be calculated using the solubility information provided. The solubility of Ag₃PO₄ in water at 25 °C is given as 4.3 × 10⁻⁵ M.The formula for Ag₃PO₄ is Ag₃PO₄(s) → 3Ag⁺(aq) + PO₄³⁻(aq). Since Ag₃PO₄ dissociates into three Ag⁺ ions and one PO₄³⁻ ion, the equilibrium expression for the solubility can be written as:
Ksp = [Ag⁺]³ [PO₄³⁻]
We know that the solubility of Ag₃PO₄ is 4.3 × 10⁻⁵ M. Since Ag₃PO₄ dissociates completely, the concentration of Ag⁺ and PO₄³⁻ ions will be equal to the solubility.Substituting the solubility value into the equilibrium expression, we get:
Ksp = (4.3 × 10⁻⁵)³ × (4.3 × 10⁻⁵) = 3.18 × 10⁻¹⁴
Therefore, the Ksp value for Ag₃PO₄ is 3.18 × 10⁻¹⁴.
To know more about equilibrium, click here https://brainly.com/question/30694482
#SPJ11
If you have 1 mole of a diprotic weak acid in solution, how much strong base much be added to reach the first equivalence point in a titration curve? How much strong base must be added to reach the pH that equals the pKa of the second titratable hydrogen?
A diprotic weak acid is an acid that has two replaceable hydrogen atoms. The acid will then undergo two dissociations to produce two hydrogen ions. As a result, the acid's reaction with bases is more complex, and it is dependent on the concentration of acid and pH.
A diprotic weak acid is an acid that has two replaceable hydrogen atoms. The acid will then undergo two dissociations to produce two hydrogen ions. As a result, the acid's reaction with bases is more complex, and it is dependent on the concentration of acid and pH. When titrated, the following data must be considered: the concentration of the acid, the concentration of the base, and the pKa values of the acid. The equivalent point is the point in titration where the number of moles of acid is equal to the number of moles of base added to it. In a titration curve, the first equivalence point is determined by the point where the initial amount of diprotic acid is neutralized. It's the point where the base added to the acid neutralizes all the H+ present in the solution.
The amount of strong base required to reach the first equivalence point can be calculated as follows: As per the equation, 1 mole of diprotic acid releases two moles of hydrogen ions, which means that to neutralize one mole of acid, you will require two moles of strong base. Therefore, you would require two moles of strong base to reach the first equivalence point in a titration curve. The pKa of the second titratable hydrogen would be equal to the pH at the halfway point between the two equivalent points. As a result, the amount of strong base required to reach the pH equivalent to the pKa of the second titratable hydrogen is also equal to the amount required to achieve the halfway point between the two equivalence points.
To know more about diprotic weak acid visit: https://brainly.com/question/9434046
#SPJ11
for mn3 , enter an equation that shows how the cation acts as an acid.
MnO2+ is called manganic ion and is a powerful oxidizing agent. The above equation shows how Mn3+ cation acts as an acid.
Manganese(III) cation (Mn3+) can act as an acid under certain conditions. Mn3+ has an incomplete d-shell, resulting in the availability of electrons to donate, making it a Lewis acid. Mn3+ may react with water or other species as an acid, releasing a proton, which can be expressed in a chemical equation as follows:Mn3+ + H2O ⇌ MnO2+ + H+The above equation displays how the cation, Mn3+ acts as an acid.
In chemistry, Mn3+ or manganese(III) cation refers to the manganese ion with a charge of +3. A cation is an ion that carries a positive charge. Mn3+ has an incomplete d-shell, resulting in the availability of electrons to donate, making it a Lewis acid. Mn3+ can act as an acid, as it can accept a pair of electrons from a species or donate a proton to another species.
To know more about manganic ion visit:-
https://brainly.com/question/29950700
#SPJ11
The Chemical equation for ethane combustion is: 7O2+2C2H6-->6H2O+4CO2. The gases behave ideally. Most nearly, what volume of O2 at 298k and 1.0atm is required for complete combustion of 10L of C2H6 (gas) at 500K and 1atm. answer choices: 16,19,21,22 liters.
Therefore, the volume of O2 needed at 298K and 1 atm is approximately 77 liters.
The balanced chemical equation for the combustion of ethane is shown below:
7O2 + 2C2H6 → 4CO2 + 6H2O
We can use the stoichiometry of the reaction to find out how much O2 is needed to completely react with 2 moles of C2H6.
2 moles of C2H6 requires 7 moles of O2.10 L of C2H6 will contain (10/22.4) x 2 moles of C2H6 = 0.892 mole C2H6.
So the amount of O2 needed will be: (7/2) x 0.892 mole C2H6 = 3.118 moles O2.
Since the gases behave ideally, we can use the ideal gas law to find the volume of O2 at 298K and 1 atm.
PV = nRTV = nRT/PV = (3.118 mol) (0.08206 L atm K-1 mol-1) (298 K) / (1 atm)V = 77.02 L ≈ 77 L
Therefore, the volume of O2 needed at 298K and 1 atm is approximately 77 liters.
To know more about Chemical equation visit:
https://brainly.com/question/28792948
#SPJ11
In which of the following regions of the nephron is water actively transported?
(a) Proximal convoluted tubule
(b) Descending limb of the nephron loop
(c) Peritubular capillaries
(d) None of the above
A nephron is the basic functional unit of the kidney that removes waste and additional substances from the blood. It is a long, convoluted tube that extends from the Bowman's capsule to the collecting duct. The correct option in the given question is (a) Proximal convoluted tubule.
The function of the nephron is to filter blood and to create urine. The following are the different regions of a nephron:
Renal corpuscle: It consists of Bowman's capsule and glomerulus. It is the starting point of urine formation.Proximal convoluted tubule: It is responsible for the reabsorption of 60-70% of the filtered load. Water and solutes are reabsorbed from the tubular lumen back into the peritubular capillary network in this area.Nephron loop: It consists of the descending limb and ascending limb. The function of the nephron loop is to establish an osmotic gradient that allows for the formation of concentrated urine.Distal convoluted tubule: It is responsible for the reabsorption of approximately 5% of the filtered load. In this region, there is also active secretion of potassium ions and hydrogen ions into the tubular lumen.Collecting duct: It collects urine from multiple nephrons and transports it to the renal pelvis.Water is actively transported in the proximal convoluted tubule. In this region, water and solutes are reabsorbed from the tubular lumen back into the peritubular capillary network. Water is also passively reabsorbed in the descending limb of the nephron loop. Hence, a is the correct option.
You can learn more about nephron at: rainly.com/question/12307837
#SPJ11
Water is actively transported in the proximal convoluted tubule. This statement is true regarding the transport of water and the region of the nephron. Approximately 65 percent of the filtrate is reabsorbed in the proximal convoluted tubule. Therefore, the correct option among the given choices is (a) Proximal convoluted tubule.
A nephron is water actively transported. It is a part of the kidney, specifically the renal tubule, that helps in filtering blood, reabsorbing essential elements, and excreting the waste in the form of urine.
Regions of the nephron include the following:
Proximal convoluted tubule (PCT)
Loop of Henle
Distal convoluted tubule (DCT)
Collecting duct
In the proximal convoluted tubule, water is reabsorbed by osmosis. Na+ ions and other substances are reabsorbed actively, making the environment of the filtrate hypotonic to blood. As a result, water moves passively from the proximal convoluted tubule to the capillaries. Approximately 65 percent of the filtrate is reabsorbed in the proximal convoluted tubule. Therefore, the correct option among the given choices is (a) Proximal convoluted tubule.
To know more about proximal convoluted tubule visit:
https://brainly.com/question/10033530
#SPJ11
how much is the pressure change in kpa as the pipe expands? the density of water is 1000 kg/m3. enter a positive value for an increase in pressure, a negative value for a decrease. kpa
If we expand the pipe reaction, the pressure will decrease. The formula for calculating pressure change as a result of pipe expansion is:∆P = (E × α × ΔT × P) / (2(1 - v))
Let's go through each variable's meaning:∆P represents the pressure changeE represents the modulus of elasticityα represents the coefficient of thermal expansionΔT represents the temperature changeP represents the original pressurev represents Poisson's ratio.
The material's deformation under stressHere's the answer to the question:∆P = (2.1 x 10^5 × 1.4 x 10^-5 × 80 × 1 × 10^5) / (2(1 - 0.45))≈ 324 kPaThus, the pressure change is approximately 324 kPa.
To know more about reaction visit:
https://brainly.com/question/30464598
#SPJ11
Report Sheet Carboxylic acids and their salts Characteristics of Acetic Acid Property Water Solution NaOH Solution HCI Solution Odor Solubility PH Characteristics of Benzoic Acid Property Water Solution NaOH Solution HCl Solution Odor Solubility pH
Report Sheet Carboxylic acids and their saltsCharacteristics of Acetic AcidPropertyWater SolutionNaOH SolutionHCI SolutionOdorSolubilityPHAcetic AcidColorless liquidSlightly sweetish odor, vinegar-likeTangy and acidic odorSoluble in water and polar solvents,
insoluble in non-polar solvents4.8 (0.1 M solution)Acetate SaltWhite crystalline solidOdorlessSoluble in water and polar solvents, insoluble in non-polar solvents7.0 - 9.0Explanation of the table given aboveThe above table gives a summary of the different properties of acetic acid and acetate salt. Some of the properties are common to both acetic acid and acetate salt while some are different from one another. Some of the main answers are given below:Property: Acetic acid is a colorless liquid that has a slightly sweetish odor, vinegar-like.Odor: Acetic acid has a tangy and acidic odor.Solubility:
Acetic acid is soluble in water and polar solvents but insoluble in non-polar solvents. pH: The pH of a 0.1 M solution of acetic acid is 4.8.Characteristics of Benzoic AcidPropertyWater SolutionNaOH SolutionHCl SolutionOdorSolubilityPHBenzoic AcidWhite crystalline powderOdorlessOdorless, colorless liquid, slightly sweet and acidicOdorless, colorless liquid, tangy and acidicSoluble in water and polar solvents, insoluble in non-polar solvents4.2 (0.1 M solution)Benzoate SaltWhite crystalline solidOdorless Odorless Soluble in water and polar solvents, insoluble in non-polar solvents7.0 - 9.0Explanation of the table given aboveThe above table gives a summary of the different properties of benzoic acid and benzoate salt. Some of the properties are common to both benzoic acid and benzoate salt while some are different from one another. Some of the main answers are given below:Property: Benzoic acid is a white crystalline powder that is odorless.Odor: Benzoic acid is odorless.Solubility: Benzoic acid is soluble in water and polar solvents but insoluble in non-polar solvents. pH: The pH of a 0.1 M solution of benzoic acid is 4.2.
To know more about Carboxylic acids visit:
https://brainly.com/question/4721247
#SPJ11
calculate the ph when 90.0 ml of 0.200 m hbr is mixed with 30.0 ml of 0.400 m ch₃nh₂ (kb = 4.4 × 10⁻⁴). 1 0 . 4 7 1 2 3 4 5 6 7 8 9 /- . 0 c x 10
In a solution where 90.0 mL of 0.200 M HBr are mixed with 30.0 mL of 0.400 M CH3NH2 (Kb = 4.4 × 10⁻⁴), the pH is calculated to be 10.47.
The balanced equation for the reaction of CH3NH2 and HBr is:
CH3NH2(aq) + HBr(aq) → CH3NH3+Br-(aq)
Moles of HBr = M × V = 0.200 M × 0.0900 L = 0.018 moles
Moles of CH3NH2 = M × V = 0.400 M × 0.0300 L = 0.012 moles
Moles of CH3NH3+ and Br- formed = 0.012 moles (since 1 mole of HBr reacts with 1 mole of CH3NH2)
Therefore, the moles of CH3NH2 converted to CH3NH3+ = 0.012 moles
The concentration of CH3NH3+ = 0.012 moles/0.120 liters = 0.100 M
The Kb value given is: Kb = Kw/Ka = 1.0 x 10^-14/4.4 x 10^-4 = 2.27 x 10^-11
Since this is a weak base problem, we can assume that the reaction proceeds in the forward direction.
CH3NH2(aq) + H2O(l) CH3NH3+(aq) + OH-(aq)
Initial Conc. 0.100M 0 0 Change -x +x +x Equilibrium Conc. 0.100-x x x
Therefore, [OH-] = [CH3NH3+] = x.Kb = [CH3NH3+][OH-]/[CH3NH2]= 2.27 x 10^-11 = x^2/0.100-x0.100-x ≈ 0.100 (since x is very small compared to 0.100)2.27 x 10^-11 = x^2/0.100= x^2x = sqrt(2.27 x 10^-12) = 1.507 x 10^-6M
Therefore, the pH = 14 – pOH = 14 + log[OH-]= 14 + log(1.507 x 10^-6) = 10.47
Answer: In a solution where 90.0 mL of 0.200 M HBr are mixed with 30.0 mL of 0.400 M CH3NH2 (Kb = 4.4 × 10⁻⁴), the pH is calculated to be 10.47.
To know more about pH visit: https://brainly.com/question/2288405
#SPJ11
acetylene is unstable at temperatures above ____ fahrenheit.
Acetylene is unstable at temperatures above 300 degrees fahrenheit.
At temperatures, more than 149 degrees Celsius (300 degrees Fahrenheit), acetylene (C2H2) is typically regarded as unstable.
Acetylene can undergo a self-decomposition reaction at temperatures over this limit, resulting in a highly exothermic and perhaps explosive decomposition.
Acetylene is often carried and stored in specialised containers made to reduce the risk of temperature and pressure accumulation in order to ensure safe handling and storage.
Acetylene can become highly reactive and prone to breakdown at temperatures higher than this, resulting in dangerous situations and the possibility of explosions.
To reduce the hazards, handling and storing acetylene safely is essential while adhering to all applicable laws and regulations.
To learn more about Acetylene, visit:
https://brainly.com/question/20529866
#SPJ11
which of the following antipsychotic drugs appears to work at serotonin receptors?
One of the antipsychotic drugs that appears to work at serotonin receptors is Clozapine. Clozapine is a medication used to treat schizophrenia.
It is effective in reducing symptoms of agitation, aggression, hallucinations, and delusions in people with schizophrenia. Unlike most other antipsychotic medications, clozapine works on both dopamine and serotonin receptors in the brain. This drug is called an atypical antipsychotic, meaning it is less likely to cause the movement disorders associated with traditional antipsychotics like haloperidol.
Clozapine binds strongly to the serotonin 5-HT2A receptor, which is believed to be responsible for its efficacy in treating schizophrenia. In addition, it is also a potent antagonist at the D1, D2, D3, D4, and D5 dopamine receptors. This is the reason why it has such a broad therapeutic effect on schizophrenia. In summary, clozapine appears to work at serotonin receptors.
To know more about Clozapine visit;-
https://brainly.com/question/28313213
#SPJ11
1. Find the pH of 2.5 M sulfurous acid (H2SO3). FIrst Ka=1.3x10-2; second Ka= 6.3x10-8
2. Find the final concentration of [H+] in 2.0M phosphoric acid solution given that the first Ka=7.5x10-3, second Ka=6.2x10-8 and third Ka=4.8x10-13
We take into account the two dissociation processes of the 2.5 M sulfuric acid (H2SO3) solution to determine its pH. We solve for the concentration of H+ ions using the supplied equilibrium constant (Ka) values of 1.3x10-2 for the first step and 6.3x10-8 for the second step.
The concentration of H+ from the first dissociation is quite low because of the low Ka1 value. We determine that the concentration of H+ in the second dissociation step is roughly 3.97 x 10-4 M, resulting in a pH of 3.40.
We take into account each of the three dissociation processes for the 2.0 M phosphoric acid (H3PO4) solution. Ka1 = 7.5x10-3, Ka2 = 6.2x10-8, and Ka3 = 4.8x10-13 allow us to infer that the concentration of H+ in each phase is substantially lower than 2.0 M.
Learn more about dissociation at :
https://brainly.com/question/13363697
#SPJ4
for the chemical equilibrium aa bb d cc, the value of the equilibrium constant k is 10. what is the value of the equilibrium constant for the reaction 2aa 2 bb d 2cc?
The expression below: K' = K²K' = 10²K' = 100 the value of the equilibrium constant for the reaction 2aa + 2bb ⇌ 2cc is 100.
What would be the value of the equilibrium constant for the reaction 2aa 2 bb d 2cc?
When the chemical reaction aa bb d cc attains equilibrium, it will follow the expression below:aa + bb ⇌ ccK = 10Now, the chemical equation for the reaction of 2aa 2 bb d 2cc is shown below:2aa + 2bb ⇌ 2ccK' = ?The equilibrium constant for the given chemical reaction can be determined using the following expression
:K' = [C]² / ([A]² x [B]²).
where:[A] = concentration of reactant aa[B] = concentration of reactant bb[C] = concentration of product cc Since the chemical reaction is 2aa + 2bb ⇌ 2cc, its equilibrium constant will be the square of the K value for the first chemical equation. This is shown in the expression below: K' = K²K' = 10²K' = 100
Therefore, the value of the equilibrium constant for the reaction 2aa + 2bb ⇌ 2cc is 100.
To know more about chemical equilibrium visit
https://brainly.com/question/4289021
#SPJ11
the change in enthalpy (δhorxn)(δhrxno) for a reaction is -33.1 kj/molkj/mol . the equilibrium constant for the reaction is 1.5×103 at 298 kk.
Enthalpy change (δHrxn) is the amount of heat transferred at constant pressure in a system as a result of a chemical reaction. Equilibrium constant (Kc) is the proportion of concentrations of reactants and products at equilibrium.
Enthalpy change (δHrxn) is the amount of heat transferred at constant pressure in a system as a result of a chemical reaction. Equilibrium constant (Kc) is the proportion of concentrations of reactants and products at equilibrium. The formula used to calculate the equilibrium constant from enthalpy change is:
ΔHrxn = -RTlnKc
where ΔHrxn is the enthalpy change, R is the universal gas constant, T is the temperature in kelvins, and Kc is the equilibrium constant. When you rearrange this equation to isolate Kc, you get:
Kc = e^(-ΔHrxn/RT)
where e is the mathematical constant e (approx. 2.718) and the rest of the variables have the same meaning as before. We can substitute the given values and obtain:
Kc = e^(-(-33.1 kJ/mol)/(8.314 J/mol*K * 298 K))= 1.5 * 10^3
Taking the natural logarithm of both sides of this equation:
ln(Kc) = -ΔHrxn/RTln(1.5 * 10^3) = -(-33.1 kJ/mol)/(8.314 J/mol*K * 298 K)ln(1.5 * 10^3) = 14.306
This means that the enthalpy change for this reaction is exothermic since ΔHrxn is negative. In other words, heat is being released into the surroundings.
To know more about Enthalpy visit: https://brainly.com/question/29145818
#SPJ11
2 hcl na2co3 → 2 nacl h2o co2 179.2 liters of co2 is collected at stp. how many moles of nacl are also formed? 1.6.0 moles 2. 12.5 moles 3. 32.0 moles 4 4.0 moles 5.8.0 moles
The balanced equation for the reaction between hydrochloric acid and sodium carbonate is;`2HCl + Na2CO3 → 2NaCl + H2O + CO2`From the equation, 2 moles of NaCl is produced for every 1 mole of CO2.
If 179.2 liters of CO2 is collected at STP, then n = PV/RT = (1.00 atm × 179.2 L)/(0.08206 L atm mol^-1 K^-1 × 273 K) = 7.28 moles of CO2`Since 2 moles of NaCl is produced for every 1 mole of CO2, then 2 moles of NaCl = 1 mole of CO2``1 mole of NaCl = 1/2 mole of CO2.
Therefore, the number of moles of NaCl produced is 7.28 × (1/2) = 3.64 moles of NaCl. Rounding off to the appropriate number of significant figures gives 3.6 moles of NaCl. Option 2 (12.5 moles) is incorrect.Option 3 (32.0 moles) is incorrect.Option 4 (4.0 moles) is incorrect. Option 5 (8.0 moles) is incorrect.
To know more about hydrochloric visit :
https://brainly.com/question/14519330
#SPJ11