As sample size increases, the variance decreases because the increase in the numerator is offset by the decrease in the denominator. This is an important concept to understand when analyzing data and making statistical inferences.
As sample size increases, the value in the denominator for sample variance decreases while the value in the numerator for sample variance increases. This means that the variance of a larger sample will be smaller than that of a smaller sample.
To understand this concept, it is important to know that variance is a measure of how spread out a dataset is. The formula for sample variance involves the sum of squared deviations from the mean, divided by the degrees of freedom. The degrees of freedom represent the number of independent pieces of information used to calculate the sample variance.
As sample size increases, the number of independent pieces of information decreases, hence the degrees of freedom decrease. However, the sum of squared deviations from the mean is likely to increase with a larger sample size, as there will be more data points that deviate from the mean. This increase in the numerator will be offset by a decrease in the denominator, resulting in a smaller variance value.
learn more about variance refer: https://brainly.com/question/13673183
#SPJ11
What feature of molecular orbital theory is responsible for bond formation?
Molecular Orbital Theory (MOT) is a key concept in understanding chemical bonding, and it explains the formation of bonds through the interaction of atomic orbitals. The essential feature of MOT responsible for bond formation is the concept of constructive and destructive interference between the overlapping atomic orbitals.
When two atoms approach each other, their atomic orbitals overlap and combine to form molecular orbitals. These molecular orbitals can be bonding or antibonding, depending on the nature of their interaction. Constructive interference occurs when the wave functions of the atomic orbitals combine in-phase, resulting in a lower energy molecular orbital with electron density concentrated between the nuclei. This increased electron density strengthens the electrostatic attraction between the positively charged nuclei and the negatively charged electrons, forming a stable chemical bond.
On the other hand, destructive interference occurs when the wave functions of the atomic orbitals combine out-of-phase, leading to the formation of a higher energy antibonding molecular orbital. In this case, electron density is reduced between the nuclei, creating a node that weakens the electrostatic attraction and destabilizes the bond. Electrons in antibonding orbitals can counteract the bonding effect of electrons in bonding orbitals.
Bond order, a measure of bond strength, is determined by the difference between the number of electrons in bonding and antibonding orbitals. A positive bond order signifies a stable bond, while a zero or negative bond order indicates that the bond is not formed or is weak.
In summary, the formation of molecular orbitals through constructive and destructive interference between atomic orbitals is the key feature of MOT responsible for bond formation. Bonding orbitals result in stable chemical bonds, while antibonding orbitals can weaken or prevent bonds from forming.
For more such questions on Molecular Orbital Theory.
https://brainly.com/question/30550903#
#SPJ11
A 30. 0 μF capacitor initially charged to 30. 0 μC is discharged through a 1. 70 kΩ resistor. How long does it take to reduce the capacitor's charge to 30. 0 μC ?
Answer:
We can use the formula for the discharge of a capacitor through a resistor:
Q(t) = Q0 * e^(-t/(RC))
where Q(t) is the charge on the capacitor at time t, Q0 is the initial charge on the capacitor, R is the resistance, C is the capacitance, and e is the mathematical constant e.
Setting Q(t) to 30.0 μC, Q0 to 30.0 μC, R to 1.70 kΩ, and C to 30.0 μF, we get:
30.0 μC = 30.0 μC * e^(-t/(1.70 kΩ * 30.0 μF))
Simplifying, we get:
1 = e^(-t/(51.0 s))
Taking the natural logarithm of both sides, we get:
ln(1) = ln(e^(-t/(51.0 s)))
0 = -t/(51.0 s)
Solving for t, we get:
t = 0 s
This means that the capacitor is already discharged to 30.0 μC, so it took no time for this to happen.
What is the influence of heredity on personality?
Heredity, also known as genetics, can influence personality traits in several ways.
Firstly, genetics can influence the temperament of an individual, which refers to their innate and consistent patterns of emotional reactivity and self-regulation. Some people are naturally more reactive and emotional, while others are more calm and more relaxed. These differences can be partially attributed to genetic factors.
Secondly, genetics can also play a role in determining certain personality traits, such as extraversion, agreeableness, and conscientiousness. Studies of identical twins, who share 100% of their genes, have shown that these traits are more similar between identical twins than between fraternal twins or non-twin siblings, who share only 50% of their genes on average.
Learn more about personality trait
https://brainly.com/question/28139450
#SPJ4
3
The sun is on the celestial equator at which of the following times?
A)The vernal equinox only
B )Both equinoxes
C)The summer solstice only
D) Both solstices
Answer:
B
Explanation:
A baseball player uses a bat to hit a 0. 145-kilogram stationary baseball with a force of 18 436 newtons. What is the force, in newtons, on the player's bat?
The force on the bat is also 18,436 newtons. This is because the bat and the ball experience the same force but in opposite directions. When the bat exerts a force on the ball, the ball exerts an equal and opposite force on the bat, according to Newton's third law.
Newton's third law of motion states that for every action, there is an equal and opposite reaction. In other words, when one object exerts a force on another object, the second object exerts an equal and opposite force back on the first object. This law applies to all objects in the universe, from the smallest subatomic particles to the largest celestial bodies.
The forces can be contact forces, such as the force exerted by a person pushing on a wall, or non-contact forces, such as the force of gravity between two objects. For example, when a person jumps, they exert a force on the ground, and the ground exerts an equal and opposite force back on the person, propelling them upwards. Similarly, when a rocket expels gas out of its engines, the gas exerts a force on the rocket, and the rocket exerts an equal and opposite force on the gas, propelling the rocket forward.
To learn more about Newton's third law visit here:
brainly.com/question/29768600
#SPJ4
Can u write a brief summary of this?
The diagram illustrates the motion of the planets around the sun.
What are the planetary system?The planetary system refers to Nine Planets or sometimes eight planets, which typically refers to the traditional classification of the major celestial bodies that orbit the Sun in our solar system.
The nine planets include the following;
MercuryVenusEarthMarsJupiterSaturnUranusNeptunePluto (dwarf planet)So the image depicts the motion of the planets around the sun.
Learn more about planets here: https://brainly.com/question/1286910
#SPJ1
given that the focal length of the eyepiece is 2.5 cm , and the focal length of the objective is 0.49 cm , find the magnitude of the angle subtended by the red blood cell when viewed through this microscope.
The magnitude of the angle subtended by the red blood cell when viewed through this microscope is approximately 1 x 10^-6 radians.
The magnification of a microscope is given by the ratio of the focal length of the objective lens to the focal length of the eyepiece:
M = [tex]fo / fe[/tex]
where M is the magnification, fo is the focal length of the objective lens, and fe is the focal length of the eyepiece.
To determine the angle subtended by the red blood cell when viewed through the microscope, we can use the formula:
θ = d / f
where θ is the angle subtended by the object, d is the diameter of the object, and f is the focal length of the objective lens.
Assuming that the diameter of a red blood cell is 8 µm, we can calculate the angle subtended by the cell as follows:
θ = [tex](8 µm) / (0.49 cm) = 1.63 x 10^-5 radians[/tex]
Now, we can use the magnification of the microscope to find the angle subtended by the cell when viewed through the eyepiece:
θ' = [tex]Mθ = (fo / fe)θ[/tex]
Substituting the given values, we get:
θ' =[tex](0.49 cm / 2.5 cm) x 1.63 x 10^-5 radians ≈ 1 x 10^-6 radians[/tex]
Therefore, the magnitude of the angle subtended by the red blood cell when viewed through this microscope is approximately [tex]1 x 10^-6[/tex] radians.
To know more about microscope, visit:
https://brainly.com/question/18661784#
#SPJ11
If you went to a fireworks show in Atlanta you would see the fireworks explode before you heard them go BOOM. However if astronauts are
watching the same fireworks show from space, they would see them explode, but never hear them. Why is this true?
O Sound waves travel too slowly through a vacuum for the astronauts to hear them.
O Sound waves travel faster than light waves, but they cannot travel through a vacuum.
O Sound waves travel slower than light waves and they cannot travel through a vacuum.
O Sound and light waves cannot travel through a vacuum.
If you went to a fireworks show in Atlanta you would see the fireworks explode before you heard them go BOOM. However if astronauts are
watching the same fireworks show from space, they would see them explode, but never hear them because Sound waves travel slower than light waves and they cannot travel through a vacuum. Hence option C is correct.
Sound waves are a form of energy transmission method that uses adiabatic loading and unloading to move across a material. Acoustic pressure, particle velocity, particle displacement, and acoustic intensity are all important parameters for defining acoustic waves. Acoustic waves have a particular acoustic velocity that relies on the medium through which they move. Acoustic waves include audible sound from a speaker (waves that travel at the speed of sound through air), seismic waves (ground vibrations that travel through the earth), and ultrasound used for medical imaging (waves that travel through the body). Sound waves cannot travel through vacuum.
Hence option C is correct.
To know more about Sound waves :
https://brainly.com/question/21995826
#SPJ1.
Electromagnetism describes how a fluctuating electric and magnetic energy fields oscillate in ________ at 90 degrees to each other. Group of answer choices
lines
blocks
waves
vectors
Answer:
D
Explanation:
What can be said of the size of the event horizon for a 10Msun black hole?
-larger than that of a 1Msun black hole.
-smaller than that of a 1Msun black hole.
-the same size as for a 1Msun black hole (because the escape velocity for both is the speed of light).
The event horizon of a black hole is the boundary beyond which nothing, not even light, can escape its gravitational pull. The size of the event horizon is directly related to the mass of the black hole.
Specifically, the Schwarzschild radius formula can be used to determine the size of the event horizon, which is given by Rs = 2GM/c^2, where Rs is the Schwarzschild radius (event horizon radius), G is the gravitational constant, M is the mass of the black hole, and c is the speed of light. For a 10Msun black hole, the event horizon will be larger than that of a 1Msun black hole. This is because the mass term (M) in the formula directly affects the event horizon size. When comparing a 10Msun black hole to a 1Msun black hole, the 10Msun black hole has 10 times the mass, which will result in a correspondingly larger event horizon. The escape velocity for both black holes is indeed the speed of light, but their event horizons will differ in size due to the variation in mass.
Learn more about gravitational pull here
https://brainly.com/question/28854345
#SPJ11
How long does it take a radio signal from Earth to reach the Moon, which has an orbital radius of approximately 3.84 x10^8 m?
The time it takes for a radio signal to travel from Earth to the Moon depends on various factors such as the distance between the two celestial bodies, the speed of the radio signal, and the interference along the way. Since the Moon has an orbital radius of approximately 3.84 x 10^8 m.
The speed of a radio signal in a vacuum is approximately 299,792,458 m/s. If we assume that the Moon is at its closest point to the Earth, which is about 363,104 km, it would take a radio signal of approximately 1.28 seconds to travel from Earth to the Moon. On the other hand, if the Moon is at its farthest point from the Earth, which is about 405,696 km, it would take approximately 1.42 seconds for a radio signal to travel from Earth to the Moon.
However, it is essential to note that the time taken for a radio signal to travel from Earth to the Moon can vary depending on several factors such as the strength of the signal and the interference along the way. In general, the radio signal takes around 1.28 to 1.42 seconds to reach the Moon from Earth, depending on the distance between the two celestial bodies.
Learn more about celestial bodies here:
https://brainly.com/question/28876984
#SPJ11
If it takes total work W to give an object a speed v and ki- netic energy K, starting from rest, what will be the object’s speed (in terms of v) and kinetic energy (in terms of K) if we do twice as much work on it, again starting from rest?
The object's new kinetic energy is twice its original kinetic energy.
K = (1/2)mv² (1)
W = K (2)
If we do twice as much work on the object, the new total work done on the object, W', is given by:
W' = 2W
Using equation (2), we can say that the new kinetic energy of the object, K', is:
K' = W' = 2W
Substituting this expression for K' into equation (1), we get:
K' = (1/2)mv'²
where v' is the new speed of the object. Substituting K' = 2W and solving for v', we get
v' = √(4W/m)
Thus, the object's new speed is twice its original speed:
v' = 2v
Substituting K' = 2W into equation (2), we get:
2W = (1/2)mv'²
Substituting v' = 2v, we get:
2W = (1/2)m(4v²)
Simplifying this expression, we get:
K' = 2K
Kinetic energy is a type of energy that an object possesses by virtue of its motion. In physics, it is defined as the energy an object possesses due to its motion relative to another object or reference frame. The formula for kinetic energy is 1/2 mv², where m is the mass of the object and v is its velocity. Kinetic energy is a scalar quantity, meaning it has only magnitude and no direction.
The kinetic energy of an object increases as its mass or velocity increases. This means that a heavier object moving at the same speed as a lighter object has more kinetic energy. Similarly, an object moving at a higher velocity has more kinetic energy than the same object moving at a lower velocity. Kinetic energy is a fundamental concept in physics and is used to explain many phenomena, including the behavior of particles in motion, the motion of vehicles, and the conversion of energy from one form to another. It is also a key concept in engineering, where it is used to design and optimize machines that rely on the motion.
To learn more about kinetic energy visit here:
brainly.com/question/26472013
#SPJ4
A building has a flat roof of area
42.0 m2. Wind blows over the top of
the roof at 14.8 m/s. The air inside
the building is stationary. What is
the TOTAL force acting on the roof?
[?] N
The TOTAL force acting on the roof is 5,947.6 N.
What is the total force acting on the roof?
The pressure difference between inside and outside building is calculated as;
ΔP = ¹/₂ρv²
where;
ρ is the density of airv is the speed of the airΔP = ¹/₂ x 1.293 x 14.8²
ΔP = 141.6 Pa
The TOTAL force acting on the roof is calculated from the product of the pressure difference and area.
F = ΔP x A
F = 141.6 x 42
F = 5,947.6 N
Learn more about force here: https://brainly.com/question/12970081
#SPJ1
An object moving in the xy-plane is acted on by a conservative force described by the potential-energy function: U(x,y)=α(1x2−1y2)�(�,�)=�(1�2−1�2), where α� is a positive constant. Derive an expression for the force expressed in terms of the unit vectors ^i�^ and ^j�^ of the xy-plane?
The force acting on the object is conservative, as it can be derived from a potential-energy function. It is proportional to the distance from the origin and directed towards it, and its expression in terms of the unit vectors ^i and ^j is F(x,y) = [tex]2αx ^i - 2αy ^j.[/tex]
To derive the force expressed in terms of the unit vectors ^i and ^j, we need to calculate the gradient of the potential-energy function.
∇U(x,y) = [tex](∂U/∂x) ^i + (∂U/∂y) ^j[/tex]
∂U/∂x = α(-2x) and ∂U/∂y = α(2y)
Thus, ∇U(x,y) = [tex]-2αx ^i + 2αy ^j[/tex]
Therefore, the force acting on the object is given by F(x,y) = -∇U(x,y) = [tex]2αx ^i - 2αy ^j[/tex]
This means that the force acting on the object is directed toward the origin of the XY plane, and its magnitude is proportional to the distance from the origin. As the object moves away from the origin, the force acting on it decreases.
To know more about potential-energy function refer here:
https://brainly.com/question/11621795#
#SPJ11
A charge of 3 micro-c (left) and a charge of 7 micro-c (right) are separated by 50 cm on the x-axis. What is the electric potential at 70 cm to the right of the left charge?
The electric potential at 70 cm to the right of the left charge is 7.125 x [tex]10^3 V.[/tex]
To calculate the electric potential at a point due to two point charges, we need to use the following formula:
V = kq1 / r1 + kq2 / r2
where V is the electric potential, k is Coulomb's constant ([tex]9 x 10^9 N m^2 / C^2[/tex]), q1 and q2 are the magnitudes of the charges, r1 and r2 are the distances between the point and the charges.
In this case, the left charge has a magnitude of 3 micro-c and the right charge has a magnitude of 7 micro-c. The distance between the left charge and the point of interest (70 cm to the right of the left charge) is 120 cm, and the distance between the right charge and the point of interest is 50 cm.
So, plugging in the values, we get:
V = (9 x [tex]10^9[/tex]N [tex]m^2[/tex] / [tex]C^2[/tex]) x (3 x [tex]10^-6[/tex] C) / 1.2 + (9 x [tex]10^9[/tex] N [tex]m^2[/tex] / [tex]C^2[/tex]) x (7 x [tex]10^-6[/tex] C) / 0.5
Simplifying this expression gives:
V = 7.125 x[tex]10^3[/tex] V
Therefore, the electric potential at 70 cm to the right of the left charge is 7.125 x [tex]10^3 V.[/tex]
Learn more about electric potential
https://brainly.com/question/17058027
#SPJ4
which image illustrates refraction please help me
Answer:
B is the answer because it can show the line bending on the other side. you can try it yourself, just put a pencil in a glass of water
The cart has a mass of 2 kg and rolls freely down the slope. When it reaches the bottom, a spring loaded gun fires a
0.5-kg ball out the back with a horizontal velocity of vb/c = 0.3 m/s , measured relative to the cart. Suppose that h = 1.25 m . (Figure 1)
Determine the final speed of the cart.
The final speed of the cart, after calculations is 2.45 m/s.
To solve this problem, we can use the principle of conservation of energy. At the top of the slope, the cart has potential energy equal to mgh, where m is the mass of the cart, g is the acceleration due to gravity, and h is the height of the slope.
At the bottom of the slope, the potential energy of the cart is converted into kinetic energy, and some of this kinetic energy is transferred to the ball when it is fired.
The total mechanical energy of the system (cart plus ball) is conserved. Let v1 be the velocity of the cart just before the ball is fired, and let v2 be the velocity of the cart just after the ball is fired. Let V be the velocity of the ball relative to the ground. Then we have:
mgh =[tex](m + 0.5) v1^2/2 + 0.5 V^2 + (m + 0.5) v2^2/2[/tex]
where the first term on the right-hand side is the initial potential energy of the cart, the second term is the kinetic energy of the ball, and the third term is the final kinetic energy of the cart and ball.
We know that the velocity of the ball relative to the cart is vb/c = 0.3 m/s. Therefore, the velocity of the ball relative to the ground is V = v2 + vb/c. We also know that the mass of the cart is m = 2 kg, the mass of the ball is 0.5 kg, the height of the slope is h = 1.25 m, and the acceleration due to gravity is g = [tex]9.81 m/s^2.[/tex]
Substituting these values into the equation above and solving for v2, we get:
v2 = [tex]sqrt((2gh - V^2)/2.5)[/tex]
To find V, we can use the fact that the momentum of the system is conserved in the horizontal direction. Initially, the momentum is zero, and finally, it is (m + 0.5) v2 + 0.5 (m + 0.5) V. Therefore,
0 =[tex](m + 0.5) v2 + 0.5 (m + 0.5) V[/tex]
Solving for V, we get:
V = [tex]-2v2[/tex]
Substituting this into the equation for v2 above, we get:
v2 = [tex]sqrt(2gh/2.5 - 0.12)[/tex]
Plugging in the given values, we get:
v2 = 2.45 m/s
Therefore, the final speed of the cart is 2.45 m/s.
To know more about speed, visit:
https://brainly.com/question/17661499#
#SPJ11
I WILL MARK AS BRAINLIEST!! HELP PLEASE!! I know that the correct answer is C, but can someone please explain it?
Answer:
Can you give me better photo because i cant see? i really want to help you
a bicycle wheel of radius 15.0 in rotates twice each second. the linear velocity of a point on the wheel in ft/s is
The linear velocity of a point on a bicycle wheel of radius 15.0 in that rotates twice each second is 7.85 ft/s. This is determined using the formula v = rω, where v is the linear velocity, r is the radius, and ω is the angular velocity. It is important to make sure the units are consistent and convert them if necessary.
To determine the linear velocity of a point on the bicycle wheel, we need to use the formula:
v = rω
where v is the linear velocity, r is the radius of the wheel, and ω is the angular velocity in radians per second.
Given that the radius of the bicycle wheel is 15.0 in, we first need to convert it to feet:
r = 15.0 in / 12 in/ft = 1.25 ft
The angular velocity of the wheel is twice each second, which means:
ω = 2π rad/s
Substituting the values, we get:
v = rω = 1.25 ft × 2π rad/s = 7.85 ft/s
Therefore, the linear velocity of a point on the bicycle wheel is 7.85 ft/s.
learn more about linear velocity here: brainly.com/question/18003489
#SPJ11
A periodic wave having a frequency of 5.0 hertz and a speed of 10 mps has a wavelength of
A: 0.50 m
B: 2.0 m
C: 5.0 m
D: 50 m
The formula for calculating wavelength is: wavelength = speed / frequency. Therefore, the wavelength of the wave is 2.0 m. The answer is B.
To find the wavelength of a periodic wave, you can use the formula: λ=fv
where λ is the wavelength, v is the wave speed, and f is the frequency123.
Given that the wave has a frequency of 5.0 hertz and a speed of 10 m/s, you can plug these values into the formula and solve for λ:
λ=fv
λ=510
λ=2
In this case, the frequency is 5.0 hertz and the speed is 10 mps. Substituting these values into the formula gives:
wavelength = 10 / 5.0 = 2.0 m
Therefore, the answer is B: 2.0 m.
to learn more about wavelength click here:
brainly.com/question/12377285
#SPJ11
using your kst value, what would the displacement from equilibrium be if you hung a 0.5 kg mass from the spring? include uncertainty.
kstat: 8.37+/-0.1
The displacement from equilibrium when hanging a 0.5 kg mass from the spring is -0.585 +/- 0.007 m. The displacement from equilibrium when hanging a 0.5 kg mass from the spring can be calculated using Hooke's Law, which states that the force exerted by a spring is directly proportional to its displacement from equilibrium.
The equation for Hooke's Law is F = -kx, where F is the force applied, k is the spring constant, and x is the displacement from equilibrium.
To find the displacement, we can rearrange the equation to x = -F/k. In this case, the force applied is the weight of the mass, which can be calculated as F = mg, where m is the mass and g is the acceleration due to gravity (9.81 m/s^2). Therefore, F = 0.5 kg x 9.81 m/s^2 = 4.905 N.
Substituting the values into the equation, we get x = -4.905 N / 8.37 N/m = -0.585 m. However, we must take into account the uncertainty in the spring constant. The uncertainty in the displacement can be calculated using the formula Δx = |x| x (Δk/k), where Δk/k is the relative uncertainty in the spring constant.
In this case, the relative uncertainty is 0.1/8.37 = 0.012, so the uncertainty in the displacement is Δx = 0.585 m x 0.012 = 0.007 m. Therefore, the displacement from equilibrium when hanging a 0.5 kg mass from the spring is -0.585 +/- 0.007 m.
learn more about Hooke's Law, here: brainly.com/question/24637789
#SPJ11
now, select two slits and a slit separation of 1750 nm . (keep the slit widths and barrier location the same as in part c, and be sure the amplitude is still set to the highest setting). which statement best describes how the intensity of light on the screen behaves?
Based on the information provided about a double-slit experiment with a slit separation of 1750 nm (nanometers), assuming the slit widths and barrier location remain the same as in part c, and the amplitude is set to the highest setting, the most likely description of how the intensity of light on the screen behaves is:
1. Interference pattern: The intensity of light on the screen would exhibit an interference pattern, characterized by bright fringes (constructive interference) and dark fringes (destructive interference). This is a well-known phenomenon in double-slit experiments, where light waves from the two slits interfere with each other, resulting in a pattern of bright and dark regions on the screen.
The specific pattern of bright and dark fringes would depend on the wavelength of the light used, the slit separation, and the slit widths. In general, the intensity of light on the screen would be highest at the center of the pattern (central maximum) and gradually decrease towards the edges of the pattern (secondary maxima) with alternating bright and dark fringes.
It's worth noting that the exact behavior of the intensity of light on the screen in a double-slit experiment can be more complex and may also depend on other factors such as the distance between the slits and the screen, the size of the slits, and the overall experimental setup.
However, based on the information provided, an interference pattern with bright and dark fringes is the most likely description of how the intensity of light on the screen would behave.
To know more about double-slit experiment refer here :-
https://brainly.com/question/30727105#
#SPJ11
What voltage is produced by a 27 μh inductor if the current through the inductor is increasing at a rate of 63 ma/s?
The voltage produced by the 27 µH inductor, if the current through the inductor is increasing at a rate of 63 mA/s, is 1.701 mV.
The voltage produced by an inductor is given by the formula:
V = L*(di/dt)
where V is the voltage, L is the inductance, and di/dt is the rate of change of current.
Substituting the given values:
L = 27 µH = 27 x [tex]10^{-6}[/tex] H
di/dt = 63 mA/s = 63 x [tex]10^{-3}[/tex] A/s
V = (27 x [tex]10^{-6}[/tex] H) * (63 x [tex]10^{-3}[/tex] A/s) = 1.701 mV
Therefore, the voltage produced by the 27 µH inductor if the current through the inductor is increasing at a rate of 63 mA/s is 1.701 mV.
To learn more about Inductor Voltage visit:
brainly.com/question/31310905
A bomb, initially at rest, explodes into several pieces.
(a) Is linear momentum of the system (the bomb before the explosion, the pieces after the explosion) conserved?
Yes
No
insufficient information
The linear momentum of the system the bomb before the explosion, the piece after the explosion is conserved. Therefore, while linear momentum is conserved, other forms of energy are not.
The explosion, the bomb was at rest, so its momentum was zero. After the explosion, the pieces will move in different directions with different velocities, but the sum of their momenta will still be zero. This means that the total momentum of the system is conserved. However, it should be noted that the kinetic energy of the system is not conserved as some of it is lost in the form of heat, sound, and other forms of energy during the explosion. Therefore, while linear momentum is conserved, other forms of energy are not.
learn more about momentum here.
https://brainly.com/question/30677308
#SPJ11
According to Bernoulli's principle, all other things being equal, for a non-viscous incompressible fluid undergoing streamline flow:
b) The greater the density of a fluid, the greater the buoyant force on any object submerged in the fluid.
C) The pressure in a fluid is lower where the fluid is moving faster
D) Air moves faster over an airplane wing than it does under.
E) The deeper the position in an incompressible fluid, the greater the density of the fluid.
The correct statement according to Bernoulli's principle is (C),the pressure in a fluid is lower where the fluid is moving faster.
What is Bernoulli's principle and how does it apply to non-viscous, incompressible fluids that undergo streamline flow?The correct statement according to Bernoulli's principle is (C).
The pressure in a fluid is lower where the fluid is moving faster.
Bernoulli's principle states that for a non-viscous incompressible fluid undergoing streamline flow, the pressure of the fluid decreases as the speed of the fluid increases.
This means that where the fluid is moving faster, the pressure is lower, and where the fluid is moving slower, the pressure is higher. This principle is often used to explain phenomena such as lift on airplane wings and the flow of fluids through pipes.
The other statements in the question are not directly related to Bernoulli's principle. Density does play a role in the buoyant force on an object submerged in a fluid, but this is due to Archimedes' principle.
The speed of air over an airplane wing is related to Bernoulli's principle, but the statement is incomplete and does not fully explain the phenomenon of lift.
The density of a fluid increases with depth, but this is due to gravity and the weight of the fluid above, not Bernoulli's principle.
Learn more about Bernoulli's principle
brainly.com/question/30471862
#SPJ11
In Part I, after adjusting the lens between the object and screen, to find the focal length we will need to measure: Object Distance Image Distance Object Height Image Height Magnification
Answer:
Object Distance
Explanation:
The object distance and image distance are the two factors used for the focal length of a lens using the lens formula.
To find the focal length of a lens using the lens formula, we need to measure the object distance and image distance. The object distance is the distance between the object and the lens, while the image distance is the distance between the lens and the image formed on the screen. Both distances are measured along the optical axis of the lens.In Part I, we need to adjust the distance between the object and screen until a clear, focused image is obtained. This distance is the image distance. The object distance is the distance between the lens and the object, which is known and can be measured.Once we have the object distance and image distance, we can use the lens formula, 1/f = 1/d0 + 1/di, to calculate the focal length of the lens. In this formula, f is the focal length, d0 is the object distance, and di is the image distance.We do not need to measure object height, image height, or magnification to find the focal length using the lens formula. However, these measurements may be useful in other types of experiments or calculations involving lenses.For more such question on focal length
https://brainly.com/question/30571594
#SPJ11
True or false? Lenses focus light by reflecting the light rays
The statement is False. Lenses do not focus light by reflecting the light rays.
Lenses are transparent objects made of materials such as glass or plastic that are used to refract or bend light. The primary function of lenses is to focus light, which is why they are commonly used in many optical devices such as cameras, telescopes, microscopes, and eyeglasses.
Lenses work by changing the direction of light as it passes through them, causing the light rays to converge or diverge. There are two main types of lenses: convex lenses, which are thicker in the middle and cause light rays to converge, and concave lenses, which are thinner in the middle and cause light rays to diverge. Convex lenses are used in devices that require magnification, such as telescopes and microscopes, while concave lenses are used to correct vision problems such as nearsightedness.
To learn more about Lenses visit here:
brainly.com/question/28025799
#SPJ4
A double-slit experiment is performed with light of wavelength 560nm . The bright interference fringes are spaced 2.2mm apart on the viewing screen. Part A What will the fringe spacing be if the light is changed to a wavelength of 450nm ? Express your answer to two significant figures and include the appropriate units.
The bright fringes of interference are observed at intervals of 2.2mm on the screen used for viewing. The distance between fringes for the new wavelength of 450 nm is approximately 1.76 x 10³ meters, which can be rounded to 1.8 millimeters when expressed to two significant figures.
Part A :
The fringe spacing in a double-slit experiment is given by the equation dλ/Δx, where d is the distance between the two slits, λ is the wavelength of the light, and Δx is the spacing between adjacent bright fringes on the viewing screen.
Given: λ = 560nm, Δx = 2.2mm = 2.2 x 10⁻³ m
Using the equation above, we can solve for d:
d = Δxλ/Δx = λ(Δx/d)
Now we can use this equation to find the fringe spacing for a different wavelength, say λ' = 450nm:
d' = λ'(Δx/d) = (450nm)(2.2 x 10⁻³ m)/(560nm) ≈ 1.76 x 10⁻³ m
Therefore, the fringe spacing for the new wavelength of 450nm is approximately 1.76 x 10³ m, or 1.8 mm to two significant figures.
To know more about the double-slit experiment refer here :
https://brainly.com/question/28108126#
#SPJ11
A uniform rod BC of mass 4 kg is connected to a collar A by a 250-mm cord AB. Neglecting the mass of the collar and cord, determine (a) the smallest constant acceleration aA for which the cord and the rod lie in a straight line, (b) the corresponding tension in the cord.
(a) The smallest constant acceleration aA for which the cord and the rod lie in a straight line is -2.4275 [tex]m/s^2[/tex].
(b) The corresponding tension in the cord is 19.65 N.
To solve this problem, we need to use Newton's second law of motion, which states that the net force acting on an object is equal to its mass times its acceleration.
(a) Let's start by considering the motion of the collar A. The tension in the cord pulls the collar towards the right, and the weight of the rod pulls it downwards. The acceleration of the collar, aA, is also the acceleration of the rod, since they are connected by the cord.
Using Newton's second law, we can write the equation:
maA = T - mg
where m is the mass of the rod, g is the acceleration due to gravity, T is the tension in the cord, and we have taken upwards as positive.
Since we want the cord and the rod to lie in a straight line, we can assume that the angle between the cord and the vertical is very small, and thus we can approximate sin(theta) = theta. This allows us to relate the tension T to the distance AB:
T = kAB
where k is a constant that depends on the angle between the cord and the vertical, but we can approximate it as 1.
Substituting this into the equation above, we get:
maA = AB - mg
Solving for aA, we get:
aA = (AB - mg)/m
Substituting the given values, we get:
aA = (0.25 - 4*9.81)/4 = -2.4275 [tex]m/s^2[/tex]
Note that the negative sign means that the collar and rod will move to the left.
(b) To find the tension in the cord, we can use the equation T = maA + mg. Substituting the values we get:
T = 4*(-2.4275) + 4*9.81 = 19.65 N
Therefore, the corresponding tension in the cord is 19.65 N.
For more such questions on Tension.
https://brainly.com/question/29989325#
#SPJ11
A common trick for a show dog is to jump vertically upward off its hind legs. A particular dog of mass =10.5 kg shows off its jumping ability by jumping straight up and rising d = 0.548 m off the ground. What impulse did this dog receive from the ground in order to pull this off?
As a particular dog of mass =10.5 kg shows off its jumping ability by jumping straight up and rising d = 0.548 m off the ground, the dog did not receive any impulse from the ground to pull off the vertical jump.
What is impulse?The force acting on the object and the length of time over which the force is exerted are combined to form the impulse that the object feels.
We may apply the theory of conservation of momentum to determine the impulse that the dog got. The dog's change in momentum during the jump is equal to the impulse.
An object's momentum is determined by multiplying its mass by its velocity.
The dog in this instance jumps vertically upward, resulting in starting and ultimate velocities of 0 m/s at the start and greatest point of the jump, respectively.
As a result, the velocity change = 0 - 0 = 0 m/s.
We know that, the momentum change or impulse is given by the equation:
Impulse = Change in momentum = Mass * Change in velocity
As the velocity is 0, Impulse = 0
Thus, the dog did not receive any impulse from the ground to perform the vertical jump.
For more details regarding impulse, visit:
https://brainly.com/question/30466819
#SPJ6