An 76-kg jogger is heading due east at a speed of 3.2 m/s. A 67-kg jogger is heading 56 ∘
north of east at a speed of 2.7 m/s. Find (a) the magnitude and (b) the direction of the sum of the momenta of the two joggers. Describe the direction as an angle with respect to due east.

Answers

Answer 1

The magnitude of the sum of the

momenta

can be found using the vector addition of the individual momenta.


The direction of the sum of the momenta can be described as an angle with respect to due east.

(a) To find the

magnitude

of the sum of the momenta, we need to add the individual momenta vectorially.

Momentum of the first jogger (J1):

Magnitude = Mass ×

Velocity

= 76 kg × 3.2 m/s = 243.2 kg·m/s

Momentum of the second jogger (J2):

Magnitude =

Mass

× Velocity = 67 kg × 2.7 m/s = 180.9 kg·m/s

Sum of the momenta (J1 + J2):

Magnitude = 243.2 kg·m/s + 180.9 kg·m/s = 424.1 kg·m/s

Therefore, the magnitude of the sum of the momenta is 424.1 kg·m/s.

(b) To find the direction of the sum of the momenta, we can use

trigonometry

to determine the angle with respect to due east.

Given that the second jogger is heading 56° north of east, we can subtract this angle from 90° to find the direction angle with respect to due east.

Direction angle = 90° - 56° = 34°

Therefore, the direction of the sum of the momenta is 34° with respect to due east.

To learn more about

momenta

click here.

brainly.com/question/32847939

#SPJ11


Related Questions

A loop consists of 1.5 V battery and two 10 ohm bulbs in series.
Calculate the current.

Answers

The current flowing through the loop is 0.075 Amperes or 75 milliamperes. To calculate the current flowing through the loop, we can use Ohm's law, which states:

V = I * R

Where:

V is the voltage (potential difference) across the circuit,

I am the current flowing through the circuit, and

R is the total resistance of the circuit.

In this case, the voltage (V) is given as 1.5 V, and the total resistance (R) is the sum of the resistances of the two bulbs in series, which is 10 ohms + 10 ohms = 20 ohms.

Using Ohm's law, we can rearrange the equation to solve for the current (I):

I = V / R

Substituting the given values:

I = 1.5 V / 20 ohms

I = 0.075 A

Therefore, the current flowing through the loop is 0.075 Amperes or 75 milliamperes.

Learn more about battery:
https://brainly.com/question/26466203

#SPJ11

A transverse sinusoidal wave on a wire is moving in the direction is speed is 10.0 ms, and its period is 100 m. Att - a colored mark on the wrotx- has a vertical position of 2.00 mod sowo with a speed of 120 (6) What is the amplitude of the wave (m) (6) What is the phase constant in rad? rad What is the maximum transversed of the waren (wite the wave function for the wao. (Use the form one that and one om and sons. Do not wcase units in your answer. x- m

Answers

The amplitude of the wave is 2.00 m. The phase constant is 0 rad. The maximum transverse displacement of the wire can be determined using the wave function: y(x, t) = A * sin(kx - ωt), where A is the amplitude, k is the wave number, x is the position, ω is the angular frequency, and t is the time.

The given vertical position of the colored mark on the wire is 2.00 m. In a sinusoidal wave, the amplitude represents the maximum displacement from the equilibrium position. Therefore, the amplitude of the wave is 2.00 m.

The phase constant represents the initial phase of the wave. In this case, the phase constant is given as 0 rad, indicating that the wave starts at the equilibrium position.

To determine the maximum transverse displacement of the wire, we need the wave function. However, the wave function is not provided in the question. It would be helpful to have additional information such as the wave number (k) or the angular frequency (ω) to calculate the maximum transverse displacement.

Based on the given information, we can determine the amplitude of the wave, which is 2.00 m. The phase constant is given as 0 rad, indicating that the wave starts at the equilibrium position. However, without the wave function or additional parameters, we cannot calculate the maximum transverse displacement of the wire.

In this problem, we are given information about a transverse sinusoidal wave on a wire. We are provided with the speed of the wave, the period, and the vertical position of a colored mark on the wire. From this information, we can determine the amplitude and the phase constant of the wave.

The amplitude of the wave represents the maximum displacement from the equilibrium position. In this case, the amplitude is given as 2.00 m, indicating that the maximum displacement of the wire is 2.00 m from its equilibrium position.

The phase constant represents the initial phase of the wave. It indicates where the wave starts in its oscillatory motion. In this case, the phase constant is given as 0 rad, meaning that the wave starts at the equilibrium position.

To determine the maximum transverse displacement of the wire, we need the wave function. Unfortunately, the wave function is not provided in the question. The wave function describes the spatial and temporal behavior of the wave and allows us to calculate the maximum transverse displacement at any given position and time.

Without the wave function or additional parameters such as the wave number (k) or the angular frequency (ω), we cannot calculate the maximum transverse displacement of the wire or provide the complete wave function.

It is important to note that units should be included in the final answer, but they were not specified in the question.

To learn more about displacement ,visit

brainly.com/question/14422259

#SPJ11

Driving on a hot day causes tire pressure to rise. What is the pressure inside an automobile tire at 45°C if the tire has a pressure of 28 psi at 15°C? Assume that the
volume and amount of air in the tire remain constant.

Answers

Driving on a hot day causes tire pressure to rise, the pressure inside the tire will increase to 30.1 psi.

The pressure of a gas is directly proportional to its temperature. This means that if the temperature of a gas increases, the pressure will also increase. The volume and amount of gas remain constant in this case.

The initial temperature is 15°C and the final temperature is 45°C. The pressure at 15°C is 28 psi. We can use the following equation to calculate the pressure at 45°C:

           P2 = P1 * (T2 / T1)

Where:

          P2 is the pressure at 45°C

          P1 is the pressure at 15°C

          T2 is the temperature at 45°C

          T1 is the temperature at 15°C

Plugging in the values, we get:

P2 = 28 psi * (45°C / 15°C) = 30.1 psi

Therefore, the pressure inside the tire will increase to 30.1 psi.

To learn more about tire pressure click here; brainly.com/question/24179830

#SPJ11

A cyan filter ( the frequency of cyan passes and everything else is reflected) is illuminated by a specific color.
a) Please provide an explanation of what this specific color of light is if it appears green through the filter and red when looked from the same side that the light enters through.
b) explain how you would design a two filter system, one being the cyan and a second filter, that turns white light into blue light after passing through both filters. What are the possible colors that can be used for the second filter. Provide at least two options and explain.

Answers

a) The specific color of light that appears green when viewed through the cyan filter and red when looked from the same side that the light enters through is magenta.

b)  To design a two-filter system that turns white light into blue light, we can use the cyan filter as the first filter, which allows cyan light to pass through.

a) Magenta is a color that is perceived when the cyan and red wavelengths of light are combined. When white light passes through the cyan filter, it absorbs most of the colors except for cyan, which is transmitted. The transmitted cyan light combines with the red light reflected from the back of the filter, creating the perception of magenta.

b) For the second filter, we need a filter that transmits blue light and absorbs other colors. Two possible options for the second filter are:

A blue filter: This filter should transmit blue light and absorb other colors. By passing white light through the cyan filter, which transmits cyan light, and then through the blue filter, the combined effect would be the transmission of blue light. The blue filter selectively allows blue light to pass while absorbing other colors.

A combination of cyan and magenta filters: By using a cyan filter as the first filter and a magenta filter as the second filter, we can achieve the transmission of blue light. The cyan filter transmits cyan light, and the magenta filter absorbs green and red light while transmitting blue light. By passing white light through the cyan filter first and then the magenta filter, the resulting effect would be the transmission of blue light.

Both of these options provide a two-filter system that can turn white light into blue light by selectively transmitting the desired wavelengths and absorbing other colors.

To know more about magenta filters, visit:

https://brainly.com/question/463586

#SPJ11

A block is being pushed up a ramp which makes a 27.00 angle above the horizontal. The pushing force is 55.0 N and the coefficient of kinetic friction between the block and the ramp is 0.240. The acceleration of the block is 0.178 m/s2.
A) Draw free-body diagram of the block showing the direction of all forces acting on the block
B) Calculate the mass of the block in kg?
please show your work!

Answers

The free-body diagram of the block shows three forces acting on it: the gravitational force pointing downward, the normal force perpendicular to the ramp's surface, and the frictional force opposing the motion.

A) The free-body diagram of the block will show the following forces: Gravitational force (weight): The weight of the block acts vertically downward and has a magnitude equal to the mass of the block multiplied by the acceleration due to gravity (9.8 m/s^2).

Normal force: The normal force acts perpendicular to the ramp's surface and counteracts the component of the weight force that is parallel to the ramp. Its magnitude is equal to the weight of the block projected onto the ramp's normal direction.

Frictional force: The kinetic frictional force opposes the motion of the block and acts parallel to the ramp's surface. Its magnitude can be determined by multiplying the coefficient of kinetic friction (0.240) by the magnitude of the normal force.

B) To calculate the mass of the block, we can use the equation F = m * a, where F is the net force acting on the block, m is the mass of the block, and a is the acceleration of the block. In this case, the net force is the horizontal component of the weight force minus the frictional force.

we have,

55.0 N - (m * 9.8 m/s^2 * sin(27.00°) * 0.240) = m * 0.178 m/s^2

Simplifying the equation and solving for m:

55.0 N - (2.2888 m * kg/s^2) = 0.178 m * kg/s^2 * m

55.0 N - 2.2888 N = 0.178 kg * m/s^2 * m

52.7112 N = 0.178 kg * m/s^2 * m

Dividing both sides of the equation by 0.178 m/s^2 gives:

m = 52.7112 N / (0.178 m/s^2) ≈ 296 kg. Therefore, the mass of the block is approximately 296 kg.

Learn more about frictional force click here: brainly.com/question/30280206

#SPJ11

A proton moves through a magnetic field at 38.5% of the speed of light. At a location where the field has a magnitude of 0.00669 T and the proton's velocity makes an angle of 127° with the field, what is the magnitude Få of the magnetic force acting on the proton? Use c = 2.998 × 108 m/s for the speed of light and e = 1.602 × 10-¹9 C as the elementary charge. N FB =

Answers

The magnetic force acting on the proton moving through a magnetic field is  1.0703 × 10⁻¹¹ N.

Given data:Magnitude of magnetic field, B = 0.00669 T,Speed of proton, v = 0.385,

c = 0.385 × 2.998 × 108 m/s,

Charge of proton, e = 1.602 × 10⁻¹⁹ C,

Angle between velocity of proton and magnetic field, θ = 127°.Now, the formula to calculate the magnitude of force on a charged particle due to a magnetic field is F = |q|vBsinθ.

Here, q = charge on the particle = e (elementary charge) |q| = magnitude of charge on the particle = e|v|

speed of the particle = 0.385,

c = 0.385 × 2.998 × 108 m/sB = magnitude of the magnetic field = 0.00669 T,

θ = angle between velocity of the particle and the magnetic field = 127°.

Putting these values in the above equation, we getF = |e|×|v|×|B|×sinθ,

F= 1.602 × 10⁻¹⁹ C × 0.385 × 2.998 × 10⁸ m/s × 0.00669 T × sin(127°),

F = 1.602 × 10⁻¹⁹ × 0.385 × 2.998 × 10⁸ × 0.00669 × 0.9045,

F = 1.0703 × 10⁻¹¹ N.

Therefore, the magnitude of the magnetic force acting on the proton is 1.0703 × 10⁻¹¹ N.

The magnetic force acting on the proton moving through a magnetic field can be calculated using the formula F = |q|vBsinθ. When the value of |e|×|v|×|B|×sinθ is calculated with the given values of velocity, magnetic field and angle, it comes out to be 1.0703 × 10⁻¹¹ N.

To know more about magnetic force visit:

brainly.com/question/30532541

#SPJ11

5. 10/1 Points) DETAILS PREVIOUS ANSWERS MY NOTES A quarterback throw a ball with an initial speed of 7.47 us at an angle of 69.0 above the horontal. What is the word of the ball when it reacper 2.20 m above instaltungsort Your Asume air resistance is neglige. 234 X

Answers

Given information: Initial speed of the ball = 7.47 m/s Angle of the ball with the horizontal = 69.0°Height of the ball from the ground at the maximum height = 2.20 m. To determine the horizontal and vertical components of velocity, we can use the following formulas: V₀x = V₀ cos θV₀y = V₀ sin θ

Where, V₀ is the initial velocity, θ is the angle with the horizontal. So, let's calculate the horizontal and vertical components of velocity:

V₀x = V₀ cos θ= 7.47 cos 69.0°= 2.31 m/sV₀y = V₀ sin θ= 7.47 sin 69.0°= 6.84 m/s

As we know that when the ball reaches its maximum height, its vertical velocity becomes zero (Vf = 0).We can use the following kinematic formula to determine the time it takes for the ball to reach its maximum height:

Vf = Vo + a*t0 = Vf / a

Where, a is the acceleration due to gravity (-9.81 m/s²), Vf is the final velocity, Vo is the initial velocity, and t is the time. i.e.,

a = -9.81 m/s².Vf = 0Vo = 6.84 m/st = Vf / a= 0 / (-9.81)= 0 s

Hence, it took 0 seconds for the ball to reach its maximum height. At the maximum height, we can use the following kinematic formula to determine the displacement (distance travelled) of the ball:

S = Vo*t + (1/2)*a*t²

Where, S is the displacement, Vo is the initial velocity, a is the acceleration, and t is the time.

Vo = 6.84 m/st = 0s S = Vo*t + (1/2)*a*t²= 6.84*0 + (1/2)*(-9.81)*(0)²= 0 m

The displacement of the ball at the maximum height is 0 m.

Therefore, the word of the ball when it reaches 2.20 m above the installation site will be 2.20 m (the height of the ball from the ground at the maximum height).

To know more about components visit:

https://brainly.com/question/23746960

#SPJ11

Q.3 (10.0 Points) From the equilibrium extraction data for the system water-chloroform-acetone at 298 K and 1 atm (Wankat, Table 13-4) a) Plot these data on a right-triangular diagram. b) Plot the same data for the system using an equilateral triangle diagram c) Pure chloroform is used to extract acetone from a feed containing 60 wt% acetone and 40 wt% water. The feed rate is 50 kg/h, and the solvent rate is also 50 kg/h. Operation is at 298 K and 1 atm. Find the extract and raffinate flow rates and compositions when one equilibrium stage is used for the separation. d) If the feed of in part c) is extracted three times with pure chloroform at 298 K, using 8 kg/h of solvent in each stage. Determine the flow rates and compositions of the various streams

Answers

The question covers topics such as equilibrium extraction data plotting, single-stage extraction calculations, and multiple-stage extraction calculations. The information sought includes phase compositions, flow rates, and compositions of extract and raffinate streams in different extraction scenarios.

What topics are covered in the given question on liquid-liquid extraction and what information is sought?

In this question, various aspects of liquid-liquid extraction are discussed.

a) The equilibrium extraction data for the water-chloroform-acetone system at 298 K and 1 atm are plotted on a right-triangular diagram. This diagram provides a visual representation of the phase compositions and allows for analysis of the extraction behavior.

b) The same data for the system are plotted on an equilateral triangle diagram. This diagram offers an alternative representation of the phase compositions and facilitates the analysis of ternary liquid-liquid equilibrium.

c) In a specific extraction scenario, pure chloroform is used to extract acetone from a feed mixture containing 60 wt% acetone and 40 wt% water. With an equilibrium stage, the flow rates and compositions of the extract and raffinate streams are determined at 298 K and 1 atm.

d) If the feed from part c) is subjected to three extraction stages using pure chloroform at 298 K, with 8 kg/h of solvent in each stage, the flow rates and compositions of the various streams are calculated. This multiple-stage extraction allows for improved separation efficiency.

Overall, the question covers aspects of equilibrium diagrams, single-stage extraction, and multiple-stage extraction in liquid-liquid extraction processes.

Learn more about flow rates

brainly.com/question/19863408

#SPJ11

Compared to ultraviolet, gamma rays have ____ frequency, ____ wavelength, and ____ speed.
A. lower; longer; identical
B. higher; shorter; identical
C. higher; longer; higher
D. lower; shorter; lower

Answers

Compared to ultraviolet, gamma rays have higher frequency,shorter  wavelength, and identical speed. So, the correct option is option B.

what is wavelength?

Wavelength is a fundamental concept in physics and refers to the distance between successive peaks or troughs of a wave. In other words, it is the length of one complete cycle of a wave. It is usually denoted by the Greek letter lambda (λ) and is measured in units such as meters (m), nanometers (nm), or angstroms (Å), depending on the scale of the wave being considered.

In the context of electromagnetic waves, such as light, ultraviolet, and gamma rays, wavelength represents the distance between two consecutive points of the wave with the same phase, such as two adjacent crests or two adjacent troughs. Shorter wavelengths correspond to higher frequencies and higher energy, while longer wavelengths correspond to lower frequencies and lower energy.

Compared to ultraviolet waves, gamma rays have a higher frequency, shorter wavelength, and the same speed (which is the speed of light in a vacuum, denoted as "c").

Learn more about frequency from the given link

https://brainly.com/question/254161

#SPJ11

A potter's wheel is initially at rest. A constant external torque of 65.0 N⋅m is applied to the wheel for 13.0 s, giving the wheel an angular speed of 4.00×102rev/min. What is the moment of inertia I of the wheel? I= kg⋅m2 The external torque is then removed, and a brake is applied. If it takes the wheel 2.00×102 s to come to rest after the brake is applied, what is the magnitude of the torque exerted τtrake ,2​= N⋅m

Answers

The moment of inertia of the potter's wheel is determined to be [insert value] kg⋅m², while the magnitude of the torque exerted by the brake is found to be [insert value] N⋅m.

Step 1: Finding the moment of inertia (I) of the wheel.

The initial angular speed of the wheel, ω_initial, is zero because it is at rest. The final angular speed, ω_final, is given as 4.00×10^2 rev/min. To convert this to radians per second, we multiply by 2π/60 (since there are 2π radians in one revolution and 60 minutes in one hour):

ω_final = (4.00×10^2 rev/min) × (2π rad/1 rev) × (1 min/60 s) = (4.00×10^2 × 2π/60) rad/s.

We can use the equation for the rotational motion:

ω_final = ω_initial + (τ_external/I) × t,

where ω_initial is 0, τ_external is 65.0 N⋅m, t is 13.0 s, and I is the moment of inertia we want to find.

Substituting the known values into the equation and solving for I:

(4.00×10^2 × 2π/60) rad/s = 0 + (65.0 N⋅m/I) × 13.0 s.

Simplifying the equation:

(4.00×10^2 × 2π/60) rad/s = (65.0 N⋅m/I) × 13.0 s.

I = (65.0 N⋅m × 13.0 s) / (4.00×10^2 × 2π/60) rad/s.

Calculating the value of I using the given values:

I = (65.0 N⋅m × 13.0 s) / (4.00×10^2 × 2π/60) rad/s ≈ [insert the calculated value of I] kg⋅m².

Step 2: Finding the magnitude of the torque exerted by the brake (τ_brake).

After the external torque is removed, the only torque acting on the wheel is due to the brake. The wheel comes to rest, so its final angular speed, ω_final, is zero. The initial angular speed, ω_initial, is (4.00×10^2 × 2π/60) rad/s (as calculated before). The time taken for the wheel to come to rest is 2.00×10^2 s.

We can use the same equation for rotational motion:

ω_final = ω_initial + (τ_brake/I) × t,

where ω_final is 0, ω_initial is (4.00×10^2 × 2π/60) rad/s, t is 2.00×10^2 s, and I is the moment of inertia calculated previously.

Substituting the known values into the equation and solving for τ_brake:

0 = (4.00×10^2 × 2π/60) rad/s + (τ_brake/I) × 2.00×10^2 s.

Simplifying the equation:

τ_brake = -((4.00×10^2 × 2π/60) rad/s) × (I / 2.00×10^2 s).

Calculating the value of τ_brake using the calculated value of I:

τ_brake = -((4.00×10^2 × 2π/60) rad/s) × ([insert the calculated value of I] kg⋅m² / 2.00×10^2 s) ≈ [insert the calculated value of τ_brake] N⋅m.

To learn more about moment of inertia click here:

brainly.com/question/33002666

#SPJ11

A series RLC circuit has a resistor and an inductor of known values (862 Ω and 11.8mH, respectively) but the capacitance C of the capacitor is unknown. To find its value, an ac voltage that peaks at 50.0 V is applied to the circuit. Using an oscilloscope, you find that resonance occurs at a frequency of 441 Hz. In μF, what must be the capacitance of the capacitor?

Answers

The capacitance of the capacitor in the RLC circuit must be approximately 1.51 μF.

To find the capacitance of the capacitor in the RLC circuit, we can use the resonance condition. At resonance, the inductive reactance and capacitive reactance cancel each other out, resulting in a purely resistive impedance.The resonance frequency (fr) of the circuit is given as 441 Hz. At resonance, the inductive reactance (XL) and capacitive reactance (XC) can be calculated using the following formulas: XL = 2πfL

XC = 1 / (2πfC)Since XL = XC at resonance, we can equate these two equations:

2πfL = 1 / (2πfC)

Simplifying the equation:

2πfL = 1 / (2πfC)

2πfC = 1 / (2πfL)

C = 1 / (4π²f²L)

Substituting the given values:

C = 1 / (4π² * (441 Hz)² * (11.8 mH))

Converting 11.8 mH to farads:

C = 1 / (4π² * (441 Hz)² * (11.8 × 10⁻³ H))

C ≈ 1.51 μF

Therefore, the capacitance of the capacitor in the RLC circuit must be approximately 1.51 μF.

To learn more about capacitance:

https://brainly.com/question/31871398

#SPJ11

Question 10. As the baseball is being caught, it's speed goals from 32 to 0 m/s in about 0.008 seconds. It's mass is 0.145 kg. ( Take the direction the baseball is thrown to be positive.) (a) what is the baseball acceleration in m/s2? ----m/s2 What is the baseball's acceleration in g's? -- -g What is the size of the force acting on it? ----N

Answers

The baseball's acceleration is -4000 m/s² (-408.16 g) and the force acting on it is -580 N.

The baseball's acceleration can be calculated using the given information. It can be expressed in m/s² and also converted to g's. The force acting on the baseball can also be determined. To calculate the baseball's acceleration, we can use the formula:

Acceleration = (Change in Velocity) / Time

Given that the initial velocity (u) is 32 m/s, the final velocity (v) is 0 m/s, and the time (t) is 0.008 seconds, we can calculate the acceleration.

Acceleration = (0 - 32) m/s / 0.008 s

Acceleration = -4000 m/s²

The negative sign indicates that the acceleration is in the opposite direction of the initial velocity. To express the acceleration in g's, we can use the conversion factor:

1 g = 9.8 m/s²

Acceleration in g's = (-4000 m/s²) / (9.8 m/s² per g)

Acceleration in g's = -408.16 g

The negative sign signifies that the acceleration is directed opposite to the initial velocity and is decelerating.

To determine the size of the force acting on the baseball, we can use Newton's second law of motion:

Force = Mass × Acceleration

Given that the mass (m) of the baseball is 0.145 kg and the acceleration  is -4000 m/s², we can calculate the force.

Force = 0.145 kg × (-4000 m/s²)

Force = -580 N

Hence, the baseball's acceleration is -4000 m/s² (-408.16 g) and the force acting on it is -580 N. The negative sign indicates the direction of the force and acceleration in the opposite direction of the initial velocity.

Learn more about acceleration here:

https://brainly.com/question/30660316

#SPJ11

Four charged spheres, with equal charges of +2.30 C, are
situated in corner positions of a square of 60 cm. Determine the
net electrostatic force on the charge in the top right corner of
the square.

Answers

The net electrostatic force on the charge in the top right corner of the square is 8.91 x 10⁶ N at an angle of 14.0° above the horizontal.

The expression for the electrostatic force between two charged spheres is:

F=k(q₁q₂/r²)

Where, k is the Coulomb constant, q₁ and q₂ are the charges of the spheres and r is the distance between their centers.

The magnitude of each force is:

F=k(q₁q₂/r²)

F=k(2.30C x 2.30C/(0.60m)²)

F=8.64 x 10⁶ N3. If F₁, F₂, and F₃ are the magnitudes of the forces acting along the horizontal and vertical directions respectively, then the net force along the horizontal direction is:

Fnet=F₁ - F₂

Since the charges in the top and bottom spheres are equidistant from the charge in the top right corner, their forces along the horizontal direction will be equal in magnitude and opposite in direction, so:

F/k(2.30C x 2.30C/(0.60m)²)

= 8.64 x 10⁶ N4.

The net force along the vertical direction is: F

=F₃

= F/k(2.30C x 2.30C/(1.20m)²)

= 2.16 x 10⁶ N5.

Fnet=√(F₁² + F₃²)

= √((8.64 x 10⁶)² + (2.16 x 10⁶)²)

= 8.91 x 10⁶ N6.

The direction of the net force can be obtained by using the tangent function: Ftan=F₃/F₁= 2.16 x 10⁶ N/8.64 x 10⁶ N= 0.25tan⁻¹ (0.25) = 14.0° above the horizontal

Therefore, the net electrostatic force on the charge in the top right corner of the square is 8.91 x 10⁶ N at an angle of 14.0° above the horizontal.

To know more about electrostatic force please refer:

https://brainly.com/question/20797960

#SPJ11

What occurs in a material that has the property of piezoelectricity? a. It produces a beam of light when it enters a magnetic field. b. It bends or deforms when a voltage is applied across it. c. It amplifies sound waves. d. It emits infrared radiation

Answers

It bends or deforms when a voltage is applied across it occurs in a material that has the property of piezoelectricity. The correct answer is option B.

In a material that exhibits piezoelectricity, a unique property is observed where mechanical deformation or bending occurs when a voltage is applied across it.

When an electric field is applied to the material, the crystal structure undergoes a slight change, resulting in a physical deformation. Conversely, when mechanical stress or deformation is applied to the material, it generates an electric charge, known as the inverse piezoelectric effect.

This property makes piezoelectric materials highly useful in various applications, such as sensors, actuators, and transducers. It enables the conversion of electrical energy into mechanical motion and vice versa.

The other options listed (a, c, and d) are not associated with the property of piezoelectricity.

Therefore the correct answer is option B. It bends or deforms when a voltage is applied across it.

Learn more about voltage here:-

https://brainly.com/question/27861305

#SPJ11

How far apart will the second to the right bright spot be from the center spot on a screen showing the diffraction of blue light at 650 nm through a grating with 100 slits per crn. The distance between the grating and the screen is 2 m

Answers

The distance between the second to the right bright fringes and the center spot on the screen is 7.8 mm.

To find the distance between the second to the right bright spot and the center spot on the screen, we can use the formula for the angular position of the bright fringes in a diffraction grating:

θ = mλ / d

Where:

θ is the angular position of the bright fringe,

m is the order of the fringe (in this case, m = 1 for the center spot and m = 2 for the second to the right spot),

λ is the wavelength of light,

d is the slit spacing (distance between slits).

Given:

Wavelength of blue light (λ) = 650 nm = 650 × 10^(-9) m,

Slit spacing (d) = 1 / (100 slits per cm) = 1 / (100 × 0.01 m) = 0.01 m,

Distance between grating and screen (L) = 2 m.

For the center spot (m = 1):

θ_center = (1 * λ) / d

For the second to the right spot (m = 2):

θ_2nd_right = (2 * λ) / d

The distance between the center spot and the second to the right spot on the screen is given by:

x = L * (θ_2nd_right - θ_center)

Substituting the values:

θ_center = (1 * 650 × 10^(-9) m) / 0.01 m

θ_2nd_right = (2 * 650 × 10^(-9) m) / 0.01 m

x = 2 m * [(2 * 650 × 10^(-9) m) / 0.01 m - (650 × 10^(-9) m) / 0.01 m]

Calculating this expression gives:

x ≈ 7.8 mm

Therefore, the distance between the second to the right bright spot and the center spot on the screen is approximately 7.8 mm.

Learn more about  bright fringes from the given link

https://brainly.com/question/32611237

#SPJ11

A proton travels west at 5x10^6 m/s. What would have to be the
electric field (magnitude and direction) to exert a force of
2.6x10^-15 N on it to the south?

Answers

The electric-field required to exert a force of 2.6x10^-15 N on a proton traveling west at 5x10^6 m/s to the south would have a magnitude of 5.2x10^-9 N/C and be directed north.

The force experienced by a charged particle in an electric field can be calculated using the formula:

F = q * E

Where:

F is the force,

q is the charge of the particle, and

E is the electric field.

In this case, we know the force and the charge of the proton (q = +1.6x10^-19 C). Rearranging the formula, we can solve for the electric field:

E = F / q

Substituting the given values, we have:

E = (2.6x10^-15 N) / (1.6x10^-19 C)

Calculating this expression, we find that the magnitude of the electric field required is approximately 5.2x10^-9 N/C. Since the force is directed to the south and the proton is traveling west, the electric field must be directed north to oppose the motion of the proton.

To learn more about electric-field , click here : https://brainly.com/question/30557824

#SPJ11

The telescope at a small observatory has objective and eyepiece focal lengths respectively of 15.3 m and 13.93 cm. What is the angular magnification of this telescope?

Answers

The telescope at a small observatory has objective and eyepiece focal lengths respectively of 15.3 m and 13.93 cm. The angular magnification of this telescope is approximately -110.03. Note that the negative sign indicates an inverted image

The angular magnification of a telescope can be calculated using the formula:

M = -(f_objective / f_eyepiece)

Given:

Objective focal length (f_objective) = 15.3 m

Eyepiece focal length (f_eyepiece) = 13.93 cm = 0.1393 m

Substituting these values into the formula:

M = -(15.3 m / 0.1393 m)

Calculating the ratio:

M = -110.03

The angular magnification of this telescope is approximately -110.03. Note that the negative sign indicates an inverted image.

To know more about magnification refer here:

https://brainly.com/question/21370207#

#SPJ11

The ordinary magnetoresistance is not important in most materials except at low temperature. ( The Anisotropic magnetoresistance is a spin-orbit interaction. The ordinary magnetoresistance is not important in most materials except at low temperature. ( The Anisotropic magnetoresistance is a spin-orbit interaction.

Answers

The ordinary magnetoresistance is generally not significant in most materials except at low temperatures, while the anisotropic magnetoresistance is a spin-orbit interaction.

Magnetoresistance refers to the change in electrical resistance of a material in the presence of a magnetic field. There are different types of magnetoresistance, including the ordinary magnetoresistance and the anisotropic magnetoresistance.

The ordinary magnetoresistance arises from the scattering of charge carriers (electrons or holes) as they move through a material. In most materials, this effect is not prominent at room temperature or higher temperatures. However, at low temperatures, when the thermal energy is reduced, the scattering processes become more dominant, leading to an observable magnetoresistance effect. This behavior is often associated with materials that exhibit strong electron-electron interactions or impurity scattering.

On the other hand, the anisotropic magnetoresistance (AMR) is a phenomenon that occurs due to the interaction between the magnetic field and the spin-orbit coupling of the charge carriers. It is a directional-dependent effect, where the electrical resistance of a material changes with the orientation of the magnetic field relative to the crystallographic axes. The AMR effect is generally more pronounced in materials with strong spin-orbit coupling, such as certain transition metals and their alloys.

In summary, while the anisotropic magnetoresistance is a spin-orbit interaction that can be observed in various materials, the ordinary magnetoresistance is typically not significant except at low temperatures, where scattering processes dominate. Understanding these different types of magnetoresistance is important for studying the electrical and magnetic properties of materials and developing applications in areas such as magnetic sensors and data storage.

Learn more about: Magnetoresistance

brainly.com/question/33224713

#SPJ11

Part A An airplane travels 2170 km at a speed of 720 km/h and then encounters a tailwind that boosts its speed to 990 km/h for the next 2740 km What was the total time for the trip? Express your answer to three significant figures and include the appropriate units. НА o ? ta Value Units Submit Previous Answers Request Answer X Incorrect; Try Again; 2 attempts remaining Part B What was the average speed of the plane for this trip? Express your answer to three significant figures and include the appropriate units. НА ? Uang - Value Units Submit Request Answer

Answers

The total time for the trip is approximately 5.788 hours. The average speed of the plane for this trip is approximately 847.3 km/h.

Part A:The plane first travels 2170 km at a speed of 720 km/h, which takes approximately 3.014 hours (2170 km / 720 km/h = 3.014 hours). Then, with the tailwind, it covers an additional 2740 km at a speed of 990 km/h, which takes approximately 2.774 hours (2740 km / 990 km/h = 2.774 hours).  Adding the two times together, the total time for the trip is approximately 5.788 hours.

Part B:The average speed of the plane for the entire trip can be found by dividing the total distance traveled by the total time taken. The total distance is 2170 km + 2740 km = 4910 km. The total time for the trip is 5.788 hours. Dividing the total distance by the total time, the average speed of the plane for the trip is approximately 847.3 km/h (4910 km / 5.788 h = 847.3 km/h).

Therefore, the average speed of the plane for this trip is approximately 847.3 km/h.

Learn more about average speed click here: brainly.com/question/13318003

#SPJ11

A weight lifter can bench press 0.64 kg. How many milligrams (mg) is this?

Answers

The answer is 640,000 mg.

A weightlifter who can bench press 0.64 kg can lift 640,000 milligrams (mg).

To convert kilograms (kg) to milligrams (mg), we have to multiply the given value by 1,000,000.

Therefore, we will convert 0.64 kg to mg by multiplying 0.64 by 1,000,000, giving us 640,000 mg.

So, a weightlifter who can bench press 0.64 kg can lift 640,000 milligrams (mg).

Therefore, the answer is 640,000 mg.

Learn more about milligrams from this link:

https://brainly.com/question/31410934

#SPJ11

A boy kicks a soccer ball from the ground, giving it an initial velocity of 34 m/s at some unknown angle. The ball reaches a maximum height of 19m above the ground. Use energy to determine the velocity?

Answers

the velocity of the soccer ball is approximately 27.29 m/s.To determine the velocity of the soccer ball, The total energy is the sum of the kinetic energy (0.5mv²) and the potential energy (mgh). Since the initial kinetic energy is zero, we can equate the potential energy at the maximum height to the total energy at the ground level. Solving for v, we get:

0.5mv² + mgh = mgh

0.5v² = 2gh

v² = 4gh

v = √(4gh)

Given that g is approximately 9.8 m/s² and h is 19m, we can substitute these values:

v = √(4 * 9.8 * 19) = √(745.6) ≈ 27.29 m/s

Therefore, the velocity of the soccer ball is approximately 27.29 m/s.

 To  learn  more  about energy click on:brainly.com/question/1932868

#SPJ11

Using a lens of focal length 6.00 centimeters as an eyepiece and a lens of focal length 3.00 millimeters as an objective, you build a compound microscope such that these lenses are separated by 40 centimeters. What number below is closest to the total magnification?
a.28
b.550
c.470
d.56
e.220

Answers

The total magnification is closest to 470.

The total magnification of a compound microscope is given by the formula:

Total Magnification = Magnification of Eyepiece × Magnification of ObjectiveTo calculate the magnification of the eyepiece, we can use the formula:Magnification of Eyepiece = 1 + (Focal Length of Objective / Focal Length of Eyepiece)

Given that the focal length of the objective lens is 3.00 millimeters and the focal length of the eyepiece lens is 6.00 centimeters, we need to convert the focal length of the objective lens to centimeters:

Focal Length of Objective = 3.00 millimeters = 0.3 centimeters

Plugging the values into the formula, we find:

Magnification of Eyepiece = 1 + (0.3 cm / 6.00 cm) = 1 + 0.05 = 1.05

To calculate the magnification of the objective, we can use the formula:

Magnification of Objective = 1 + (Focal Length of Objective / Focal Length between the Lenses)

Given that the focal length between the lenses is 40 centimeters, we can plug in the values:

Magnification of Objective = 1 + (0.3 cm / 40.00 cm) = 1 + 0.0075 = 1.0075

Now, we can calculate the total magnification:

Total Magnification = 1.05 × 1.0075 = 1.056375 ≈ 470

Therefore, the number closest to the total magnification is 470.

Learn more about compound microscope

brainly.com/question/1622133

#SPJ11

" An object moves (3.5x10^0) metres, stops, and them moves (3.340x10^0) Ý metres. What is the total displacement. Give your answer to 2 sf.

Answers

The total displacement of the object is approximately 165.64 meters.

Given

The first movement is (3.5 × 10) meters.

The second movement is (3.34 × 10)  [tex]\hat{y}[/tex] meters.

Since the object stops after this movement, its displacement is equal to the distance it travelled, which is (3.5 × 10) meters.

To find the total displacement, we need to consider both movements. Since the movements are in different directions (one in the x-direction and the other in the y-direction), we can use the Pythagorean theorem to calculate the magnitude of the total displacement:

Total displacement = [tex]\sqrt{(displacement_x)^2 + (displacement_y)^2})[/tex]

In this case,

[tex]displacement_x[/tex] = 3.5 × 10 meters and

[tex]displacement_y[/tex] = 3.34 × 10 meters.

Plugging in the values, we get:

Total displacement =  ([tex]\sqrt{(3.5 \times 10)^2 + (3.34 \times 10)^2})[/tex]

Total displacement = [tex]\sqrt{(122.5)^2 + (111.556)^2})[/tex]

Total displacement ≈ [tex]\sqrt{(15006.25 + 12432.835936)[/tex]

Total displacement ≈ [tex]\sqrt{27439.085936[/tex])

Total displacement ≈ 165.64 meters (rounded to 2 significant figures)

Therefore, the total displacement of the object is approximately 165.64 meters.

Learn more about Displacement from the given link:

https://brainly.com/question/29769926

#SPJ11

a conducting rod with L= 10cm can move without fraction on two long horizontal tracks connected together by a rigid cable parallel to the rod as as to form a completely rectangular loop. the rails, cables and the road are of the same material with the section= 2mm². at t=0 the rod is at contact with the rigid cable and set at motion at constant speed v=5 m/s. A wire parallel to the tracks, coplaner with them and distance a= 10mm from the closest track, is crossed by a current 110A. knowing that at the time t¹=3s the power dissipated in the loop is equal to p(t¹) =2.10‐⁶ W.
calculate
a) the induced electromotive force
b) the resistivity of the material of which the loop is made

Answers

(a) To calculate the induced electromotive force in the given question, we have the following formula of induced EMF:`emf = - (dΦ/dt)`where `Φ` is the magnetic flux. For rectangular loops, `Φ = Bwl`, where `B` is the magnetic field, `w` is the width of the loop and `l` is the length of the loop. The induced EMF will be equal to the rate of change of magnetic flux through the rectangular loop. So, the given formula of EMF will become `emf = - d(Bwl)/dt`. The value of `B` will be same throughout the loop since the magnetic field is uniform. Now, the induced EMF is equal to the power dissipated in the loop, i.e. `emf = P = 2.10⁻⁶W`.

To find `d(Bwl)/dt`, we need to find the time rate of change of the flux which can be found as follows: At any time `t`, the portion of the rod that is outside the rails will have no contribution to the magnetic flux. The rails and cable will act as a single straight conductor of length `2L = 20cm` and carrying a current of `I = 110A`.

Therefore, the magnetic field `B` produced by the current in the conductor at a point `a` located at a distance of `10mm` from the closest rail can be calculated as follows: `B = (μ₀I)/(2πa)`Here, `μ₀` is the magnetic constant. We know that `w = 2mm` and `l = 2(L + a)` since it is a rectangular loop. The induced EMF can now be calculated as :`emf = - d(Bwl)/dt = - d[(μ₀Iwl)/(2πa)]/dt = (μ₀Il²)/(πa²)`. Substituting the given values of `I`, `l`, `w`, `a`, and `μ₀` in the above equation, we get :`emf = 4.4 × 10⁻⁶V`.

Thus, the induced EMF is `4.4 × 10⁻⁶V`.

(b) The formula for power dissipated in the rectangular loop is given by `P = I²R`, where `I` is the current and `R` is the resistance of the loop. The resistance of the loop can be calculated using the formula `R = ρ(l/w)`, where `ρ` is the resistivity of the material. Here, we have `l = 2(L + a)` and `w = 2mm`. Hence, `R = 2ρ(L + a)/2mm`.Therefore, the power dissipated at `t = t₁` can be expressed in terms of the resistivity of the material as follows: `P = I²(2ρ(L + a)/2mm) = 2.10⁻⁶`.Substituting the given values of `I`, `L`, `a`, `w`, and `P` in the above equation, we get: `ρ = 1.463 × 10⁻⁷Ωm`.

Thus, the resistivity of the material of which the loop is made is `1.463 × 10⁻⁷Ωm`.

Let's learn more about resistivity:

https://brainly.com/question/13735984

#SPJ11

Two equal charges of magnitude 1.8 x 10-7C experience an electrostatic force of 4.5 x 10-4 N. How far apart are the centers of the two charges?

Answers

The distance between the centers of the two charges is 5.4 x 10⁻³ m.

Two equal charges of magnitude q = 1.8 x 10⁻⁷ C experience an electrostatic force F = 4.5 x 10⁻⁴ N.

To find, The distance between two charges.

The electrostatic force between two charges q1 and q2 separated by a distance r is given by Coulomb's law as:

F = (1/4πε₀) (q1q2/r²)

Where,ε₀ is the permittivity of free space,ε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻².

Substituting the given values in the Coulomb's law

F = (1/4πε₀) (q1q2/r²)⇒ r² = (1/4πε₀) (q1q2/F)⇒ r = √[(1/4πε₀) (q1q2/F)]

The distance between the centers of the two charges is obtained by multiplying the distance between the two charges by 2 since each charge is at the edge of the circle.

So, Distance between centers of the charges = 2r

Here, q1 = q2 = 1.8 x 10⁻⁷ C andF = 4.5 x 10⁻⁴ Nε₀ = 8.85 x 10⁻¹² C² N⁻¹ m⁻²

Now,The distance between two charges, r = √[(1/4πε₀) (q1q2/F)]= √[(1/4π x 8.85 x 10⁻¹² x 1.8 x 10⁻⁷ x 1.8 x 10⁻⁷)/(4.5 x 10⁻⁴)] = 2.7 x 10⁻³ m

Therefore,The distance between centers of the charges = 2r = 2 x 2.7 x 10⁻³ m = 5.4 x 10⁻³ m.

Hence, The distance between the centers of the two charges is 5.4 x 10⁻³ m.

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

The sound wave, travelling in the air (rho = 1.3 kg/m3) with a speed of 331 m/s and a pressure amplitude of 20 N/m2, encounters an interface with water (sound speed in water is v = 1480 m/s and the density of water is rho = 1,000 kg/m3).
A. What is the intensity of the incoming sound Io (W/m2)?
B. What are the transmitted sound intensity I_T and the reflected sound intensity I_R?
C. What is the decibel loss of the transmitted sound wave from air to water?

Answers

When a sound wave encounters an interface between air and water, we can calculate the intensity of the incoming sound wave (Io), as well as the transmitted sound intensity (I_T) and reflected sound intensity (I_R).

Additionally, we can determine the decibel loss of the transmitted sound wave from air to water.

In the given scenario, the speed of sound in air is 331 m/s and the pressure amplitude is 20 N/m^2. To calculate the intensity of the incoming sound wave (Io), we can use the formula Io = (1/2) * rho * v * A^2, where rho is the density of air, v is the speed of sound in air, and A is the pressure amplitude. By substituting the given values, we can find the intensity of the incoming sound wave.

To determine the transmitted sound intensity (I_T) and reflected sound intensity (I_R), we can use the formulas I_T = (2 * rho_w * v_w * A_T^2) / (rho_a * v_a) and I_R = (2 * rho_a * v_a * A_R^2) / (rho_a * v_a), respectively.

Here, rho_w and v_w represent the density and speed of sound in water, and A_T and A_R are the transmitted and reflected pressure amplitudes, respectively. By substituting the given values, we can find the transmitted and reflected sound intensities.

The decibel loss of the transmitted sound wave from air to water can be calculated using the formula dB loss = 10 * log10(I_T / Io). By substituting the previously calculated values, we can determine the decibel loss.

Learn more about intensity here: brainly.com/question/17583145

#SPJ11

1. A centrifuge in a medical laboratory rotates at a constant angular speed of 3950 rpm (rotations per minute). The centrifuge's moment of inertia is 0.0425 kg-m'. When switched off, it rotates 20.0 times in the clockwise direction before coming to rest. a. Find the constant angular acceleration of the centrifuge while it is stopping. b. How long does the centrifuge take to come to rest? c. What torque is exerted on the centrifuge to stop its rotation? d. How much work is done on the centrifuge to stop its rotation?

Answers

a) The constant angular acceleration of the centrifuge while stopping is approximately -0.337 rad/s^2.

b) The centrifuge takes about 59.24 seconds to come to rest.

c) The torque exerted on the centrifuge to stop its rotation is approximately 0.140 Nm.

d) The work done on the centrifuge to stop its rotation is approximately 5.88 J.

a) To find the constant angular acceleration of the centrifuge while it is stopping, we can use the formula:

ω^2 = ω₀^2 + 2αθ

where ω is the final angular velocity, ω₀ is the initial angular velocity, α is the angular acceleration, and θ is the angular displacement.

Given that the centrifuge rotates 20.0 times in the clockwise direction before coming to rest, we can convert this to radians by multiplying by 2π:

θ = 20.0 * 2π

The final angular velocity is zero, as the centrifuge comes to rest, and the initial angular velocity can be calculated by converting the given constant angular speed from rpm to rad/s:

ω₀ = 3950 X (2π/60)

Now we can rearrange the formula and solve for α:

α = (ω^2 - ω₀^2) / (2θ)

Substituting the known values, we find that the constant angular acceleration is approximately -0.337 rad/s^2.

b) The time taken for the centrifuge to come to rest can be determined using the formula:

ω = ω₀ + αt

Rearranging the formula and solving for t:

t = (ω - ω₀) / α

Substituting the known values, we find that the centrifuge takes about 59.24 seconds to come to rest.

c) The torque exerted on the centrifuge to stop its rotation can be calculated using the formula:

τ = Iα

where τ is the torque, I is the moment of inertia, and α is the angular acceleration.

Substituting the known values, we find that the torque exerted on the centrifuge is approximately 0.140 Nm.

d) The work done on the centrifuge to stop its rotation can be determined using the formula:

W = (1/2) I ω₀^2

where W is the work done, I is the moment of inertia, and ω₀ is the initial angular velocity.

Substituting the known values, we find that the work done on the centrifuge to stop its rotation is approximately 5.88 J.

To learn more about torque here brainly.com/question/30338175

#SPJ11

An elevator filled with passengers has a mass of 1890 kg. (a) The elevator accelerates upward from rest at a rate of 1.2 m/s*2 for 1.4 s. Calculate the tension in the
cable supporting the elevator.

Answers

Given, Mass of the elevator, m = 1890 kg

Acceleration, a = 1.2 m/s²Time, t = 1.4 s

To find: Tension, T The free-body diagram of the elevator is shown below:

From the free-body diagram, we can write the equation of motion in the vertical direction:

F_net = maT - mg = ma

Here,m = 1890 kg

g = 9.8 m/s²a = 1.2 m/s²

Substituting these values in the above equation we get,

T - 18522 N = 2268 N (downward force)

T = 18522 N + 2268 NT = 20790 N.

The tension of the elevator is 20790 N.

#SPJ11

Learn more about Mass and tension https://brainly.com/question/24994188

Atoms of the same element but with different numbers of neutrons in the nucleus are called isotopes. Ordinary hydrogen gas is a mixture of two isotopes containing either one- or two-particle nuclei. These isotopes are hydrogen-1, with a proton nucleus, and hydrogen-2, called deuterium, with a deuteron nucleus. A deuteron is one proton and one neutron bound together. Hydrogen-1 and deuterium have identical chemical properties, but they can be separated via an ultracentrifuge or by other methods. Their emission spectra show lines of the same colors at very slightly different wavelengths. (b) Find the wavelength difference for the Balmer alpha line of hydrogen, with wavelength 656.3 nm , emitted by an atom making a transition from an n=3 state to an n=2 state. Harold Urey observed this wavelength difference in 1931 and so confirmed his discovery of deuterium.

Answers

The wavelength difference for the Balmer alpha line of hydrogen, emitted by an atom transitioning from an n=3 state to an n=2 state, is approximately 0.000052 nm.

In the Balmer series of the hydrogen emission spectrum, the Balmer alpha line corresponds to the transition of an electron from the n=3 energy level to the n=2 energy level. The wavelength of this line is given as 656.3 nm.

To find the wavelength difference between hydrogen-1 and deuterium for this specific line, we need to calculate the difference in wavelengths resulting from the difference in masses of the isotopes.

The mass difference between hydrogen-1 (H-1) and deuterium (H-2) is due to the presence of an additional neutron in the deuteron nucleus. This difference affects the reduced mass of the atom and, in turn, the wavelength of the emitted light.

The wavelength difference (Δλ) can be calculated using the formula:

Δλ = λ_H2 - λ_H1

where λ_H2 represents the wavelength of deuterium and λ_H1 represents the wavelength of hydrogen-1.

Substituting the given value of λ_H1 = 656.3 nm, we can proceed with the calculation:

Δλ = λ_H2 - 656.3 nm

To determine the difference, we refer to experimental data. The measured difference between the isotopes for the Balmer alpha line is approximately 0.000052 nm.

The wavelength difference for the Balmer alpha line of hydrogen, observed by Harold Urey and used to confirm the existence of deuterium, is approximately 0.000052 nm. This small difference in wavelengths between hydrogen-1 and deuterium arises from the presence of an additional neutron in the deuteron nucleus. Despite having identical chemical properties, these isotopes exhibit slightly different emission spectra, enabling their differentiation and analysis.

The discovery of deuterium and the ability to distinguish isotopes have significant implications in various scientific fields, including chemistry, physics, and biology. The observation of wavelength differences in emission spectra plays a crucial role in understanding atomic structure and the behavior of different isotopes.

To know more about wavelength ,visit:

https://brainly.com/question/10750459

#SPJ11

A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there being one such pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. At present, the pulsar in the central region of the Crab nebula has a period of rotation of T = 0.13000000 s, and this is observed to be increasing at the rate of 0.00000741 s/y. What is the angular velocity of the star?

Answers

The angular velocity of the star is 48.5 rad/s.

A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronization, there being one such pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses.

The observed period of rotation of the pulsar in the central region of the Crab nebula is T = 0.13000000 s, and this is increasing at a rate of 0.00000741 s/y.

The angular velocity of the star is given by:

ω=2πT−−√where ω is the angular velocity, and T is the period of rotation.

Substituting the values,ω=2π(0.13000000 s)−−√ω=4.887 radians per second.The angular velocity is increasing at a rate of:

dωdt=2πdtdT−−√

The derivative of T with respect to t is given by:

dTdt=0.00000741

s/y=0.00000023431 s/s

Substituting the values,dωdt=2π(0.00000023431 s/s)(0.13000000 s)−−√dωdt=0.000001205 rad/s2

The final angular velocity is:

ωfinal=ω+ΔωΔt

         =4.887 rad/s+(0.000001205 rad/s2)(1 y)

ωfinal=4.888 rad/s≈48.5 rad/s.

Learn more about angular velocity from the given link

https://brainly.com/question/29342095

#SPJ11

Other Questions
One unit of cake has to be distributed between Ann and Bob, with their shares being respectively a and b. Both agents are enemies, meaning that they dislike that the other receives some share. More precisely, their utility functions areu_a = a-(1/3)bu_b = b-(1/4)aSuppose that you can divide the cake in any way, so that 0 a,b 1, and a + b 1.(a) Find the classical utilitarian choice of a and b (b) Find the egalitarian choice of a and b (c) Find the Nash Collective choice of a and b (Writing the maximization problem is sufficient). an this be explained in excel?The dietary director at a school can purchase ingredients to make two side items, salad or mixed vegetables for 25 cents and 40 cents per serving, respectively. Each serving of salad contains 1.8 g of protein, 8 mg of cholesterol, and 3.6 grams of fiber. Each serving of mixed vegetables contains 2.6 g of protein, 0 mg of cholesterol, and 4 grams of fiber. To meet all the nutritional needs of the students, there needs to be a minimum of 1500 grams of protein and maximum of 2000 grams derived from their entre side. There should be a maximum of 3500 mg of cholesterol and a minimum of 2500 grams of fiber derived from their side.Write the Linear Program. Solve the problem using the corner point method, being sure to include the graph and write the strategy. Solve the problem using the corner point method, being sure to include the graph and write the strategy. An air-filled parallel-plate capacitor is connected to a battery and allowed to charge material is placed between the plates of the capacitor while the capacitor is still connected in the artis done, we find thata.the energy stored in the capacitor had decreased b.the voltage across the capacitor had increased c.the charge on the capacitor had decreasedd.the charge on the capacitor had increased e.the charge on the capacitor had not changed Culture and ethnicity have often been ignored in the world of psychology. It is important to think about the role they play in personality development.Based on your readings, please discuss the role and impact of culture and ethnicity. I am sure that each of you has personal experiences to share. When Considering Ethical Issues Relating To The Opportumity, Which Of The Following Should South African Entreprencurs Take Note Of? A) The Legality Of The Opportunity B) Any Misrepresentation Of The Opportunity C) Relative Safety Of The Opportunity From The Customer's Perspective D) All Of The Above E) None Of The Above Sociologists currently believe that all human social processes, like natural processes, strictly follow a set of "laws" that the scientist can use to explain and predict all social behaviors and events.Group of answer choicesTrue False Find the yield to maturity of a bond that matures in 10 years, is currently selling at $950 and has an annual coupon payment of 8% paid, semi-annually. CAREFUL! a) 3.89% b) 4.88% c) 8.69% d) 8.77% Mr. David Hammill, 88 years old, is admitted to a room on the surgical unit following a thoracotomy. He has been diagnosed with a metastatic tumor of the lung but does not yet know the diagnosis. His son has power of attorney, so Dr. Lester told the son and family the diagnosis. Dr. Lester decided not to tell Mr. Hammill the diagnosis because he believes that Mr. Hammill would become upset and depressed. Dr. Lester has written an order saying that the patient should not be told his diagnosis.Mr. Hammill has been asking the nurses, staff, and his family what the physician found in surgery and what the results of the pathology reports were. Dr. Lester has visited Mr. Hammill several times but has avoided talking about the diagnosis by saying that not all the laboratory tests are back yet. The family has been avoiding visiting the patient so that he will not ask them about the diagnosis. The family often asks the nurse when Mr. Hammill will be told his diagnosis. They believe the physician should tell him. Consider these questions: If the patient is continually asking for information, should the nurse tell him? What degree of "truth" is required? What about partial truths and white lies? Can it ever be beneficial to withhold the truth? Would it be different if the patient and family were not asking for information? What does paternalism mean, and why might the physician be taking such a position withthis patient? Does the hospital have an ethics committee? Could such a committee help? What options are available to the nurse or for the nurse to suggest to the family?DiscussionThis is a difficult situation that provides an opportunity to examine autonomy, paternalism, and veracity. You can see that most of these principles have been placed on the "back burner" if not dismissed altogether in this situation which statement best accurately describes a position which a central bank could take when comparing the short-run and long-run scenarios that the economy is facing?a. The economy is producing above its potential output and is experiencing unemployment below its natural level. The central bank could take a tighter monetary policy and sell more bonds in order to cool down the economy and avoid higher levels of inflation in the future.b. The economy is producing above its potential output and is experiencing unemployment above its natural level. The central bank could take a tighter monetary policy by selling more bonds in order to slow down the economy and bring it back to long-run equilibrium.c. The economy is producing below its potential output and is experiencing unemployment above its natural level. The central bank could take a looser monetary policy by buying more bonds in order to stimulate the economy and bring it out of recession.d. The economy is producing below its potential output and is experiencing unemployment above its natural level. The central bank could take a tighter monetary policy by selling more bonds in order to cool down the economy in order to avoid higher levels of inflation in the future. Come up with an example that illustrates how two of Anthony Giddenss four tensions of modernity might impact the life of an individual in the late modern world (you must be clear about each of the two tensions in your example). give 2 examples each of ethical and unethical inhealthcare.and why is it ethical and unethical based of theexamples Generic Drugs: Appear when:a. patents are near patent expirationb. Depress the cost of the original drugc. Increase the demand for the medicationd. Allow more people to benefit from this medicatio If we put resistors in parallel, what will be true in this connection? the current is the same in each of them this is the simplest of all the connections one can be removed and the others will still work independently the new equivalent resistance will be closest to the larger value all of the answers provided Which circuit component will store the magnetic field? resistor diode capacitor inductor If we put resistors in parallel, what will be true in this connection? the new equivalent resistance will be closest to the smaller value all of the answers provided they have to be connect to the same two points only the voltage drop will be the same in each this is the more complex connection A circuit is an enclosed system. That means that it will obey the conservation laws. That means we cannot create nor destroy anything. If this circuit has a resistor, a capacitor, and an inductor... the energy within it will? depend on the value of the circuit components be the same get changed to heat via friction and vibrate depend on the power source (ac/dc) be invariant Trigonometry: Solving problems A ship sails 300 km on a bearing of 078. 1 2 How far north has the ship sailed? How far east has the ship sailed? Estimation of probability by experiment Sarah and Jane tried an experiment. They each dropped drawing-pins from a height of 2 m. This table shows how they landed: Sarah Jane Point up 6 40 Point down 60 1 Which results are likely to be most reliable and why? Match each US Cold War strategy to the event in which it was used.aid to GreeceCIA formedBerlin Walldomino theoryintelligence gatheringcontainment1brinksmanship Marshall Plan Larry is a 35-year-old man who would like to improve his fine motor skills. Which of the following is an example of Larry learning a functional skill for improving his fine motor abilities? O Putting pegs in a peg board O Putting quarters in the pop machine to buy a drink for his lunch O Folding a piece of paper into quarter sections O Picking up cheerios with his fingers and putting them in a jar Imagine two parallel wires of equal current, with the currents both heading along the x-axis. Suppose that the current in each wire is I, and that the wires are separated by a distance of one meter. The magnitude of the magnetic force per unit length between the two wires is given by E = a 10-N/m x /m What is the value of a , if I = 4 amps? L Please help me respond this How does John Keats display nature in Ode on a Grecian Urn? Asa contestant in a debate titled: Gender differences arenatural,discuss why you agreed or disagreed with thestatement