a. The acceleration of the electric cart is 2 m/s².
b. The average velocity of the electric cart is 12 m/s.
a. To calculate the acceleration, we can use the formula:
acceleration = change in velocity / time
Given that the initial velocity (u) is 8 m/s, the final velocity (v) is unknown, and the time (t) is 5 seconds, we can rearrange the formula as:
acceleration = (v - u) / t
Substituting the values, we have:
acceleration = (v - 8 m/s) / 5 s
To find the final velocity, we need additional information. If we assume that the cart's acceleration is constant over the entire 5-second period, we can use the formula:
distance = initial velocity * time + (1/2) * acceleration * time²
Given that the distance is 50 m and the time is 5 s, we can rearrange the formula to solve for the final velocity:
50 m = 8 m/s * 5 s + (1/2) * acceleration * (5 s)²
Simplifying the equation, we have:
50 m = 40 m + (1/2) * acceleration * 25 s²
10 m = (1/2) * acceleration * 25 s²
Dividing both sides by 25 s² and multiplying by 2, we get:
acceleration = 2 m/s²
Therefore, the acceleration of the electric cart is 2 m/s².
b. The average velocity can be calculated using the formula:
average velocity = total displacement / total time
Since the cart is accelerating, its velocity is not constant. However, the average velocity can still be calculated by considering the initial and final velocities.
Using the formula:
average velocity = (initial velocity + final velocity) / 2
Substituting the values, we have:
average velocity = (8 m/s + v) / 2
To find the final velocity, we can use the equation derived in part a:
50 m = 8 m/s * 5 s + (1/2) * 2 m/s² * (5 s)²
50 m = 40 m + 25 m
The total displacement is 50 m.
Substituting the displacement into the average velocity formula, we have:
average velocity = (8 m/s + v) / 2 = 50 m / 5 s = 10 m/s
Simplifying the equation, we get:
8 m/s + v = 20 m/s
v = 20 m/s - 8 m/s
v = 12 m/s
Therefore, the average velocity of the electric cart is 12 m/s.
To know more about acceleration refer here:
https://brainly.com/question/30660316#
#SPJ11
A spider spins a web with silk threads of mass density μ = 9.18 × 10−9 kg/m. A typical tension in the long radial threads of such a web is 0.007 N. Suppose a fly hits the web, sending a wave pulse down a radial thread toward a spider sitting 0.5 m away from the point of impact. How long does the wave pulse take to reach the spider?
The time taken for the wave pulse to reach the spider is 1.667 × 10^-6 s or 1.67 microseconds. The speed of the wave pulse is 299729.6376 m/s
The time taken for a wave pulse to travel down a radial thread from the point of impact to the spider can be determined using the formula;
t= L/v
where t is the time, L is the length of the radial thread, and v is the speed of the wave pulse.The mass density of silk threads is given as;μ = 9.18 × 10−9 kg/m.
Typical tension in the long radial threads of such a web is 0.007 N.A radial thread transmits a wave pulse after a fly hits the web to the spider sitting 0.5 m away from the point of impact.
Therefore, the length of the radial thread is equal to 0.5 m. We can also calculate the speed of the wave pulse using the formula;
v = √(T/μ) where T is the tension in the radial thread.
The tension in the radial thread is given as 0.007 N.
Substituting the value of T and μ in the formula for v,
v = √(T/μ)
= √(0.007/9.18 × 10−9)
= 299729.6376 m/s
Therefore, the speed of the wave pulse is 299729.6376 m/s.
The time taken for the wave pulse to reach the spider can be calculated as;t=
L/v= 0.5/299729.6376
= 1.667 × 10^-6 s
Therefore, the time taken for the wave pulse to reach the spider is 1.667 × 10^-6 s or 1.67 microseconds (approximately).
To learn more about wave visit;
brainly.com/question/3045247
#SPJ11
A 2.00-nF capacitor with an initial charge of 5.32μC is discharged through a 1.22-k Ω resistor. (a) Calculate the magnitude of the current in the resistor 9.00μ after the resistor is connected across the terminals of the capacitor. mA (b) What charge remains on the capacitor after 8.00μs ? μC (c) What is the maximum current in the resistor? A
The maximum current in the resistor is 2.18 A.
Capacitance of capacitor, C = 2.00 n
F = 2.00 × 10⁻⁹ F
Resistance, R = 1.22 kΩ = 1.22 × 10³ Ω
Time, t = 9.00 μs = 9.00 × 10⁻⁶ s
(a) The magnitude of the current in the resistor 9.00 μs after the resistor is connected across the terminals of the capacitor can be determined using the formula for current,
i = (Q₁ - Q₂)/RCQ₁
= 5.32 μCQ₂
= Q₁ - iRC
Time constant, RC = 2.44 μsRC is the time required for the capacitor to discharge to 36.8% of its initial charge. Substitute the known values in the equation to find the current;
i = (Q₁ - Q₂)/RC
=> i
= (5.32 - Q₂)/2.44 × 10⁻⁶
The current in the resistor 9.00 μs after the resistor is connected across the terminals of the capacitor is, i = 2.10 mA
(b) The charge remaining on the capacitor after 8.00 μs can be calculated using the formula,
Q = Q₁ × e⁻ᵗ/RC
Where, Q = charge on capacitor at time t, Q₁ = Initial charge on capacitor, t = time, RC = time constant
Substitute the known values to find the charge on capacitor after 8.00 μs;
Q = Q₁ × e⁻ᵗ/RC
=> Q
= 5.32 × e⁻⁸/2.44 × 10⁻⁶
=> Q
= 1.28 μC
Therefore, the charge that remains on the capacitor after 8.00 μs is,
Q₂ = 1.28 μC
(c) The maximum current in the resistor can be calculated using the formula, i = V/R
Where, V = maximum potential difference across the resistor, R = resistance of resistor
The potential difference across the resistor will be equal to the initial voltage across the capacitor which is given by V = Q₁/C
Substitute the known values to find the maximum current in the resistor;
i = V/R
=> i
= Q₁/RC
=> i = 2.18 mA
Therefore, the maximum current in the resistor is 2.18 A (Answer in Amperes)
A quicker way to find the maximum current in the resistor would be to use the formula,
i = Q₁/(RC)
= V/R,
where V is the initial voltage across the capacitor and is given by V = Q₁/C.
To know more about current visit:
https://brainly.com/question/15141911
#SPJ11
Young's modulus of the material of a wire is 9.68 x 101°N/m?. A wire of this material of diameter 0.85 mm is stretched by applying a certain force. What should be the limit of this force if the strain is not
to exceed 1 in 1000?
[2]
A. 54.93 N
B. 68.62 N
C. 83.49 N
D. 96.10 N
The maximum force that can be applied to the wire so that the strain doesn't exceed 1 in 1000 is 68.62 N, which is option B.Young's modulus of the material of a wire is 9.68 x 101°N/m², diameter d = 0.85 mm = 0.85 × 10⁻³ m.
Strain = ε = 1/1000 = 0.001Limiting stress = σ = Y ε (Young's modulus Y multiplied by strain ε).
The formula for Young's modulus is:Y = (F/A) / (ΔL/L) where F is force, A is area, ΔL is change in length, and L is original length. Here, we have Y = 9.68 × 10¹⁰ N/m², d = 0.85 × 10⁻³ m, and we want to find F.
Using the formula for stress,
σ = (F/A)
= Y ε,
σ = (F/πr²)
= Y
εσ = (F/(π/4)d²)
= Y εF
= σ (π/4)d²/F
= (Y ε)(π/4)d²F
= (9.68 × 10¹⁰ N/m²) (0.001) (π/4)(0.85 × 10⁻³ m)²
F = 68.62 N (approx)
Therefore, the maximum force that can be applied to the wire so that the strain doesn't exceed 1 in 1000 is 68.62 N, which is option B.
To know more about Young's modulus visit-
brainly.com/question/13257353
#SPJ11
A2.31 kg rope is stretched between supports that are 104 m apart, and has a tension on t of 530 N f one end of the mpe sighly tweaked how long wild take the ring 0 0.639 O 66731 O 0.592 2.6.600s
A rope of 2.31 kg is stretched between supports that are 104 m apart and has a tension of 530 N on it. If one end of the rope is slightly tweaked, the long wild take the ring is B. 0.66731
We need to determine how long it will take the resulting wave to travel from one end of the rope to the other. The wave speed formula is given as V = √(T/μ), where V is the wave speed, T is the tension on the rope, and μ is the mass per unit length.
Here, mass per unit length μ is equal to 2.31 kg/104 m = 0.0222 kg/m.
Putting the given values in the formula, we get: V = √(530 N / 0.0222 kg/m)V = √(23874.77) V = 154.41 m/s
To find the time taken by the wave to travel the length of the rope, we need to use the formula t = L/V, where t is the time, L is the length of the rope, and V is the wave speed.
Putting the given values in the formula, we get: t = 104 m/154.41 m/s ≈ 0.673 s.
Therefore, the time taken by the wave to travel the length of the rope is approximately 0.673 seconds.
Learn more about speed at:
https://brainly.com/question/29058152
#SPJ11
A helium balloon is rising straight upward with a constant speed of 6 m/s. When the basket of the balloon is 20 m above the ground a bag of sand is dropped by a crew. How long is the bag in the air before it hits the ground? 2.7 s 1.9 s 4.9 s 3.4 s
We found that the time taken by the bag to reach the ground is 2.03 seconds which is closest to 1.9 seconds, hence the answer is (b) 1.9 seconds.
A helium balloon is rising straight upward with a constant speed of 6 m/s. When the basket of the balloon is 20 m above the ground a bag of sand is dropped by a crew.We are given,Initial velocity, u = 0 (As bag is dropped). Acceleration, a = 9.8 m/s² (As it is falling). Displacement, s = 20 m. We need to find the time it takes to reach the ground, t. We can use the kinematic equation for the motion of the bag of sand which is given as, s = ut + (1/2)at². Here, u = 0. So, s = (1/2) at² => 20 = (1/2) x 9.8 x t². Simplifying this, we get t² = 20 / 4.9 => t = √(20 / 4.9)≈ 2.03 s. The time taken by the bag to reach the ground is 2.03 seconds.Thus, the correct option is (b) 1.9 seconds.
To know more about Acceleration visit:
brainly.com/question/2303856
#SPJ11
The same train ordinarily decelerates at a rate of 1.95 m/s2. how long (in s) does it take to come to a stop from its top speed?
(a) It takes approximately 43.70 seconds for the light-rail commuter train to reach its top speed of 80.0 km/h, starting from rest.
(b) It takes approximately 48.48 seconds for the same train to come to a stop from its top speed.
(c) The emergency deceleration of the train is approximately 9.64 m/s².
(a) To find the time it takes for the train to reach its top speed, we can use the equation of motion:
v = u + at
where:
v is the final velocity (80.0 km/h),
u is the initial velocity (0 m/s since the train starts from rest),
a is the acceleration rate (1.35 m/s²),
and t is the time.
First, we need to convert the final velocity from km/h to m/s:
80.0 km/h = 80.0 × (1000/3600) m/s = 22.22 m/s
Now we can rearrange the equation to solve for time:
t = (v - u) / a = (22.22 - 0) / 1.35 ≈ 43.70 s
(b) To find the time it takes for the train to come to a stop from its top speed, we can use the same equation of motion:
v = u + at
where:
v is the final velocity (0 m/s),
u is the initial velocity (the top speed of the train, which is 22.22 m/s),
a is the deceleration rate (-1.65 m/s² since it's decelerating),
and t is the time.
Now we can rearrange the equation to solve for time:
t = (v - u) / a = (0 - 22.22) / (-1.65) ≈ 48.48 s
(c) To find the emergency deceleration of the train, we can use the equation of motion again:
v = u + at
where:
v is the final velocity (0 m/s),
u is the initial velocity (the top speed of the train, which is 22.22 m/s),
a is the deceleration rate (to be determined),
and t is the time (8.30 s).
Rearranging the equation, we can solve for the deceleration:
a = (v - u) / t = (0 - 22.22) / 8.30 ≈ -2.67 m/s²
The negative sign indicates deceleration, and the magnitude of the deceleration is approximately 2.67 m/s².
Complete question-
a) A light-rail commuter train accelerates at a rate of 1.35 m/s2 . How long does it take to reach its top speed of 80.0 km/h, starting from rest? (b) The same train ordinarily decelerates at a rate of 1.65 m/s2 . How long does it take to come to a stop from its top speed? (c) In emergencies the train can decelerate more rapidly, coming to rest from 80.0 km/h in 8.30 s. What is its emergency deceleration in m/s2 ?
To know more about velocity , click here-
brainly.com/question/80295
#SPJ11
The magnetic flux through a coil containing 10 loops changes
from 20W b to −20W b in 0.03s. Find the induced voltage .
The induced voltage in the coil is approximately 13333.33 volts. The induced voltage in a coil can be determined using Faraday's law of electromagnetic induction.
The induced voltage in a coil can be determined using Faraday's law of electromagnetic induction, which states that the induced voltage is equal to the rate of change of magnetic flux through the coil. The formula to calculate the induced voltage is:
V = -NΔΦ/Δt where V is the induced voltage, N is the number of loops in the coil, ΔΦ is the change in magnetic flux, and Δt is the time interval over which the change occurs.
In this case, the coil contains 10 loops, and the change in magnetic flux is from 20 Wb to -20 Wb. The time interval over which this change occurs is 0.03 s. Substituting these values into the formula, we have:
V = -10 (-20 - 20) / 0.03
Simplifying the calculation, we find: V = 13333.33 volts
Therefore, the induced voltage in the coil is approximately 13333.33 volts.
Learn more about Faraday's law here:
https://brainly.com/question/11903316
#SPJ11
Solve the following word problems showing all the steps
math and analysis, identify variables, equations, solve and answer
in sentences the answers.
Three resistors, R1 = 5, R2 = 8, and R3 = 12 are connected in parallel.
a. Draw the circuit with a 5V Voltage source.
b. Determine the Total Resistance.
c. Determine the current flowing in the circuit with that 5V voltage.
The formula for calculating the total resistance of a parallel circuit is:Total Resistance= 1/R1+1/R2+1/R3.The values of R1, R2, and R3 are given as follows:R1 = 5Ω,R2 = 8Ω,R3 = 12Ω.
Substituting the values of R1, R2, and R3 in the formula we get; Total Resistance= 1/5 + 1/8 + 1/12. Total Resistance= 0.52 Ω
The formula to find the current flowing in the circuit with 5V voltage is: I = V/R.Substituting the values of V and R in the formula we get;I = 5/0.52I = 9.6A.Therefore, the total resistance of the circuit is 0.52 Ω, and the current flowing in the circuit with the 5V voltage is 9.6A.
Learn more about resistance:
brainly.com/question/28135236
#SPJ11
Structures on a bird feather act like a diffraction grating having 8500 lines per centimeter. What is the angle of the first-order
maximum for 602 nm light shone through a feather?
The angle of the first-order maximum for 602 nm light shone through the feather is 2.91 degrees.
The light wavelength = 602 nm = [tex]602 * 10^{(-9)} m[/tex]
Number of lines per every centimeter (N) = 8500 lines/cm
The space between the diffracting elements is
d = 1 / N
d = 1 / (8500 lines/cm)
d = [tex]1.176 * 10^{(-7)} m[/tex]
The angular position of the diffraction maxima cab ve calculated as:
sin(θ) = m * λ / d
sin(θ) = m * λ / d
sin(θ) = [tex](1) * (602 * 10^{(-9)} m) / (1.176 * 10^{(-7)} m)[/tex]
θ = arcsin[[tex](602 * 10^{(-9)} m[/tex]]) / ([tex]1.176 * 10^{(-7)} m[/tex])]
θ = 0.0507 radians
The theta value is converted to degrees:
θ (in degrees) = 0.0507 radians * (180° / π)
θ = 2.91°
Therefore, we can conclude that the feather is 2.91 degrees.
To learn more about the first-order maximum
https://brainly.com/question/17313862
#SPJ4
Consider a sum J = L +5 of two angular momenta I and S. Consider a state J,m, with the maximal possible total angular momentum quantum number Jmax = L + S and m; = -Jmax. With the help of the rising ladder operator find the wave function Jmaz;-Jmaz+1, i.e. for the state with mj = - Jmax +1.
The wave function for the state J, m; = -Jmax + 1, where Jmax = L + S, can be obtained using the rising ladder operator.
The rising ladder operator, denoted as J+, is used to raise the value of the total angular momentum quantum number J by one unit. It is defined as J+|J, m> = √[J(J+1) - m(m+1)] |J, m+1>.
In this case, we are considering the state J, m; = -Jmax. To find the wave function for the state with m; = -Jmax + 1, we can apply the rising ladder operator once to this state.
Using the rising ladder operator, we have:
J+|J, m;> = √[J(J+1) - m(m+1)] |J, m; + 1>
Substituting the values, we get:
J+|-Jmax> = √[J(J+1) - (-Jmax)(-Jmax + 1)] |-Jmax + 1>
Since m; = -Jmax, the expression simplifies to:
J+|-Jmax> = √[J(J+1) - (-Jmax)(-Jmax + 1)] |-Jmax + 1>
We can express Jmax in terms of L and S:
Jmax = L + S
Substituting this into the equation, we have:
J+|-Jmax> = √[(L + S)(L + S + 1) - (-Jmax)(-Jmax + 1)] |-Jmax + 1>
Finally, we have the wave function for the state with m; = -Jmax + 1:
Jmaz;-Jmaz+1 = √[(L + S)(L + S + 1) - (-Jmax)(-Jmax + 1)] |-Jmax + 1>
Therefore, the wave function for the state with m; = -Jmax + 1 is given by Jmaz;-Jmaz+1 = √[(L + S)(L + S + 1) - (-Jmax)(-Jmax + 1)] |-Jmax + 1>.
For more such questions on wave function, click on:
https://brainly.com/question/30903926
#SPJ8
A converging lens has a focal length of 20.0 cm. Locate the images for each of the following object distances. (Enter 'infinity' for the image distance if necessary.) For each case, state whether the image is real or virtual and upright or inverted. Find the magnification. (If there is no answer for a blank enter N/A.) (a) 40.0 cm cm --location of the image-- O real, inverted O virtual, inverted O no image formed O real, upright O virtual, upright X cm --location of the image-- O no image formed O real, inverted O real, upright O virtual, inverted O virtual, upright X cm --location of the image-- magnification (b) 20.0 cm magnification (c) 10.0 cm O inverted, real O inverted, virtual O erect, virtual O erect, real O no image formed
To locate the images for each object distance and determine their characteristics, we can use the lens formula, magnification formula, and sign conventions.
Given:
Focal length (f) = 20.0 cm
(a) Object distance = 40.0 cm
Using the lens formula:
1/f = 1/v - 1/u
where f is the focal length, v is the image distance, and u is the objectdistance.
Plugging in the values:
1/20 cm = 1/v - 1/40 cm
Simplifying:
1/v = 1/20 cm + 1/40 cm
1/v = (2 + 1) / (40 cm)
1/v = 3 / 40 cm
Taking the reciprocal:
v = 40 cm / 3
v ≈ 13.33 cm
The image distance is approximately 13.33 cm.
The magnification (m) is given by:
m = -v/u
Plugging in the values:
m = -(13.33 cm) / (40 cm)
m = -0.333
The negative sign indicates an inverted image.
Therefore, for an object distance of 40.0 cm, the location of the image is approximately 13.33 cm, the image is real and inverted, and the magnification is approximately -0.333.
(b) Object distance = 20.0 cm
Using the lens formula with u = 20.0 cm:
1/20 cm = 1/v - 1/20 cm
Simplifying:
1/v = 1/20 cm + 1/20 cm
1/v = (1 + 1) / (20 cm)
1/v = 2 / 20 cm
Taking the reciprocal:
v = 20 cm / 2
v = 10 cm
The image distance is 10.0 cm.
The magnification for an object at the focal length is undefined (m = infinity) according to the magnification formula. Therefore, the magnification is N/A.
The location of the image for an object distance of 20.0 cm is 10.0 cm. The image is real and inverted.
(c) Object distance = 10.0 cm
Using the lens formula with u = 10.0 cm:
1/20 cm = 1/v - 1/10 cm
Simplifying:
1/v = 1/20 cm + 2/20 cm
1/v = 3 / 20 cm
Taking the reciprocal:
v = 20 cm / 3
v ≈ 6.67 cm
The image distance is approximately 6.67 cm.
The magnification for an object distance less than the focal length (10.0 cm) is given by:
m = -v/u
Plugging in the values:
m = -(6.67 cm) / (10.0 cm)
m = -0.667
The negative sign indicates an inverted image.
Therefore, for an object distance of 10.0 cm, the location of the image is approximately 6.67 cm, the image is real and inverted, and the magnification is approximately -0.667.
To summarize:
(a) Object distance: 40.0 cm
Location of the image: 13.33 cm
Image characteristics: Real and inverted
Magnification: -0.333
(b) Object distance: 20.0 cm
Location of the image: 10.0 cm
Image characteristics: Real and inverted
Magnification: N/A
(c) Object distance: 10.0 cm
Location of the image: 6.67 cm
Image characteristics: Rea
Learn more about magnification here
brainly.com/question/28350378
#SPJ11
Louis de Broglie's bold hypothesis assumes that it is possible to assign a wavelength λ to every particle possessing some momentum p by the relationship λ=ph, where h is Planck's constant (h=6.626×10−34 J⋅S). To help you develop some number sense for what this relationship means, try below calculations. You may find these two constants useful: Planck's constant h=6.626×10−34 J⋅s and electron mass 9.109×10−31 kg. a. The de Broglie wavelength of an electron moving at speed 4870 m/s is nm. (This speed corresponds to thermal speed of an electron that has been cooled down to about 1 kelvin.) b. The de Broglie wavelength of an electron moving at speed 610000 m/s is nm. (This speed corresponds to the speed of an electron with kinetic energy of about 1eV.) c. The de Broglie wavelength of an electron moving at speed 17000000 m/s is nm. (At speeds higher than this, we will need to start accounting for effects of specialurelativity to avoid significant (greater than a few percents) errors in calculation.) Question Help: buis de Broglie's bold hypothesis assumes that it is possible to assign a wavelength λ every particle possessing some momentum p by the relationship λ=ph, where h Planck's constant (h=6.626×1034 J⋅s). This applies not only to subatomic articles like electrons, but every particle and object that has a momentum. To help ou develop some number sense for de Broglie wavelengths of common, everyday bjects, try below calculations. Use Planck's constant h=6.626×10−34 J⋅s; other necessary constants will be given below. To enter answers in scientific notation below, use the exponential notation. For example, 3.14×10−14 would be entered as "3.14E-14". a. Air molecules (mostly oxygen and nitrogen) move at speeds of about 270 m/s. If mass of air molecules are about 5×10−26 kg, their de Broglie wavelength is m. b. Consider a baseball thrown at speed 50 m/s. If mass of the baseball is 0.14 kg, its de Broglie wavelength is c. The Earth orbits the Sun at a speed of 29800 m/s. Given that the mass of the Earth is about 6.0×1024 kg, its de Broglie wavelength is Yes, many of these numbers are absurdly small, which is why I think you should enter the powers of 10. Question Help: □ Message instructor
a. The de Broglie wavelength of an electron moving at a speed of 4870 m/s is approximately 2.72 nanometers (2.72 nm).
b. The de Broglie wavelength of an electron moving at a speed of 610,000 m/s is approximately 0.022 nanometers (0.022 nm).
c. The de Broglie wavelength of an electron moving at a speed of 17,000,000 m/s is approximately 0.00077 nanometers (0.00077 nm).
To calculate the de Broglie wavelength using Louis de Broglie's hypothesis, we can use the formula λ = h/p, where λ is the wavelength, h is Planck's constant, and p is the momentum of the particle.
a. For an electron moving at a speed of 4870 m/s:
Given:
Speed of the electron (v) = 4870 m/s
To find the momentum (p) of the electron:
Momentum (p) = mass (m) * velocity (v)
Given:
Mass of the electron (m) = 9.109×10^−31 kg
Substituting the values:
p = (9.109×10^−31 kg) * (4870 m/s)
Using the de Broglie wavelength formula:
λ = h/p
Substituting the values:
λ = (6.626×10^−34 J·s) / [(9.109×10^−31 kg) * (4870 m/s)]
Calculating the de Broglie wavelength:
λ ≈ 2.72 × 10^−9 m ≈ 2.72 nm
b. For an electron moving at a speed of 610,000 m/s:
Given:
Speed of the electron (v) = 610,000 m/s
To find the momentum (p) of the electron:
Momentum (p) = mass (m) * velocity (v)
Given:
Mass of the electron (m) = 9.109×10^−31 kg
Substituting the values:
p = (9.109×10^−31 kg) * (610,000 m/s)
Using the de Broglie wavelength formula:
λ = h/p
Substituting the values:
λ = (6.626×10^−34 J·s) / [(9.109×10^−31 kg) * (610,000 m/s)]
Calculating the de Broglie wavelength:
λ ≈ 2.2 × 10^−11 m ≈ 0.022 nm
c. For an electron moving at a speed of 17,000,000 m/s:
Given:
Speed of the electron (v) = 17,000,000 m/s
To find the momentum (p) of the electron:
Momentum (p) = mass (m) * velocity (v)
Mass of the electron (m) = 9.109×10^−31 kg
Substituting the values:
p = (9.109×10^−31 kg) * (17,000,000 m/s)
Using the de Broglie wavelength formula:
λ = h/p
Substituting the values:
λ = (6.626×10^−34 J·s) / [(9.109×10^−31 kg) * (17,000,000 m/s)]
Calculating the de Broglie wavelength:
λ ≈ 7.7 × 10^−13 m ≈ 0.00077 nm
The de Broglie wavelength of an electron moving at
To know more about de Broglie wavelength ,visit:
https://brainly.com/question/30404168
#SPJ11
A helicopter travels at a velocity of 62 m/s [N] with respect to the air. Calculate the velocity of the helicopter with respect to Earth when the wind velocity is as follows: a. 18 m/s [N]
b. 18 m/s [S]
c. 18 m/s [W]
d. 18 m/s [N 42deg W]
The velocity of the helicopter with respect to Earth can be calculated by adding or subtracting the wind velocity vector from the velocity of the helicopter with respect to the air.
a. When the wind velocity is 18 m/s [N], the resultant velocity of the helicopter with respect to Earth will be 80 m/s [N]. This is because the wind is blowing in the same direction as the helicopter's velocity, so the vectors add up.
b. When the wind velocity is 18 m/s [S], the resultant velocity of the helicopter with respect to Earth will be 44 m/s [N]. In this case, the wind is blowing in the opposite direction to the helicopter's velocity, so the vectors subtract.
c. When the wind velocity is 18 m/s [W], the resultant velocity of the helicopter with respect to Earth will be 62 m/s [N] because the wind is blowing perpendicular to the helicopter's velocity, and there is no effect on the magnitude of the resultant velocity.
d. When the wind velocity is 18 m/s [N 42deg W], the resultant velocity of the helicopter with respect to Earth will depend on the angle between the wind and helicopter's velocity. Using vector addition, we can find the resultant velocity to be approximately 70.3 m/s [N 23.3deg W].
The velocity of the helicopter with respect to Earth varies based on the wind velocity. When the wind blows in the same direction as the helicopter's velocity, the resultant velocity increases. When the wind blows in the opposite direction, the resultant velocity decreases. When the wind blows perpendicular to the helicopter's velocity, there is no change in the resultant velocity. The angle between the wind and helicopter's velocity affects the direction of the resultant velocity.
Learn more about velocity here: brainly.com/question/24259848
#SPJ11
In the figure below all the resistors have resistance 50 Ohms and all the capacitors have capacitance 19 F. Calculate the time constant of the circuit (in s).
The time constant of the circuit is 950 Ohms·F. The time constant of an RC circuit is a measure of how quickly the circuit responds to changes.
It is determined by the product of the resistance (R) and the capacitance (C) in the circuit. In this particular circuit, all the resistors have a resistance of 50 Ohms, and all the capacitors have a capacitance of 19 F. By multiplying these values, we find that the time constant is 950 Ohms·F. The time constant represents the time it takes for the voltage or current in the circuit to reach approximately 63.2% of its final value in response to a step input or change. In other words, it indicates the rate at which the circuit charges or discharges. A larger time constant implies a slower response, while a smaller time constant indicates a faster response. In this case, with a time constant of 950 Ohms·F, the circuit will take a longer time to reach 63.2% of its final value compared to a circuit with a smaller time constant. The time constant is an important parameter for understanding the behavior and characteristics of RC circuits, and it can be used to analyze and design circuits for various applications.
To learn more about time constant of an RC circuit, Click here:
https://brainly.com/question/31038596
#SPJ11
M Romeo (77.0kg) entertains Juliet (55.0kg) by playing his guitar from the rear of their boat at rest in still water, 2.70m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek. How far does the 80.0 -kg boat move toward the shore it is facing?
Since the final momentum is zero, the velocity of the boat must also be zero. This means the boat does not move towards the shore.
Therefore, the boat does not move towards the shore as Juliet moves to the rear to kiss Romeo.
The distance the boat moves towards the shore can be determined by using the principle of conservation of momentum.
Initially, the total momentum of the system (boat + Romeo + Juliet) is zero since the boat is at rest. After Juliet moves to the rear of the boat, the boat and Juliet's combined momentum will still be zero.
We can calculate the initial momentum of Romeo by multiplying his mass (77.0 kg) by his velocity, which is zero since he is stationary. This gives us a momentum of zero for Romeo.
(initial momentum of Romeo + initial momentum of Juliet) = (final momentum of boat)
Since Romeo's initial momentum is zero, the equation simplifies to:
initial momentum of Juliet = final momentum of boat
Since the mass of the boat is 80.0 kg, we can rearrange the equation to solve for the distance the boat moves towards the shore:
(final momentum of boat) = (mass of boat) x (velocity of boat)
0 = 80.0 kg x (velocity of boat)
To know more about velocity visit:
https://brainly.com/question/24259848
#SPJ11
c) The electric field lines are:
i) parallel to equipotential lines ii) point charges iii)
electric force magnitudes iv) magnetic field lines v) none of the
above.
Electric field lines are parallel to equipotential lines. The correct answer is option i).
It is a physical model used to visualize and map electric fields. If the electric field is a vector field, electric field lines show the direction of the field vectors at each point.
A contour line along which the electric potential is constant is called an equipotential line. It's the equivalent of a contour line on a topographic map that connects points of similar altitude.
Equipotential lines are always perpendicular to electric field lines because electric potential is constant along a line that is perpendicular to the electric field.
For a point charge, electric field lines extend radially outwards, indicating the direction of the electric field. The strength of the electric field is proportional to the density of the field lines at any point in space.
So, the correct answer is option i) parallel to equipotential lines.
Learn more about the electric field here:
https://brainly.com/question/19878202
#SPJ11
3. You are standing 50 feet from a building and throw a ball through a window that is 26 feet above the ground. Your release point is 6 feet off of the ground (hint: you are only concerned with Δy ). You throw the ball at 30ft/sec. At what angle from the horizontal should you throw the ball? (hint: this is your launch angle) (2pts)
The angle from the horizontal to throw the ball is 37. 03 degrees
How to determine the valueFirst, let us use the equation;
Δy = Vyt + (1/2)gt²
Substitute the values, we have;
32 = 0× t + (1/2)32t²
t² = 2
Find the square root
t = 1.414 seconds.
The formula for distance (d) is d = Vx× t
Substitute the values, we have;
d = 30 × 1.414
d = 42.42 feet.
The angle is determined with the tangent identity
tan θ = Δy / d.
Substitute the values, we have
tan θ = 32 / 42.42
Divide the values
tan θ = 0. 7544
Take the tangent inverse
θ = 37. 03 degrees
Learn more about distance at: https://brainly.com/question/4931057
#SPJ4
Explain whether the following transition is allowed or prohibited: (2, 1, 1, 1/2)-> (4,2,1, 1/2)
The given transition (2, 1, 1, 1/2)-> (4,2,1, 1/2) is allowed because the baryon number, lepton number, and strangeness of the transition are conserved.
Baryon number conservation: Here, the initial state has 2 baryons and the final state also has 2 baryons. Thus, the baryon number is conserved.Lepton number conservation: The initial state has no leptons and the final state also has no leptons. Thus, the lepton number is conserved. Strangeness conservation: The strangeness of the initial state is (-1) + (-1/2) + (1/2) = -1The strangeness of the final state is (-1) + (-1) + (1) = -1Thus, the strangeness is also conserved.
Therefore, the given transition is allowed.
Hence, The given transition (2, 1, 1, 1/2)-> (4,2,1, 1/2) is allowed because the baryon number, lepton number, and strangeness of the transition are conserved.
To know more about baryon number visit
https://brainly.com/question/32572008
#SPJ11
A coin is at the bottom of a tank of fluid 96.5 cm deep having index of refraction 2.13. Calculate the image distance in cm as seen from directly above. [Your answer should be negative!]
A coin is at the bottom of a tank of fluid 96.5 cm deep having index of refraction 2.13.
Given,,depth of the fluid, h = 96.5 cm
Index of refraction, n = 2.13
To find the image distance, let's use the formula of apparent depth.
The apparent depth of the coin in the liquid is given by;[tex]`1/v - 1/u = 1/[/tex]
Let's calculate the focal length of the water using the given data.
The refractive index of water is 1.33, so we can write the formula for the focal length of the water.`1/f = (n2 − n1)/R
`Where,`n1` = refractive index of air, `n1 = 1``n2` = refractive index of the water, `n2 = 1.33`R = radius of curvature of the surface = infinity (since it is a flat surface)
Substitute the values
focal length.[tex]`1/f = (1.33 - 1)/∞``1/f = 0.33/∞`[/tex]1/f = infinity
``f = 0`
The focal length of the water is zero
.As we know that [tex]`f = (r/n − r)`[/tex]
Here,`r` is the radius of the coin,
so `r = 0.955 cm` and`n` is the refractive index of the fluid, `n = 2.13`
image distance.`[tex]1/v - 1/u = 1/f`[/tex]
Putting the values[tex],`1/v - 1/96.5 = 1/0``1/v[/tex] = -1/96.5`
`v = -96.5 cm`
The image distance as seen from directly above is -96.5 cm.
To know more about refraction visit:
https://brainly.in/question/5152771
#SPJ11
The resonant frequency of an RLC series circuit is 1.5 x 10^3 Hz. If the self-inductance in the circuit is 2.5 mH, what is the capacitance in the circuit?
The capacitance in the RLC series circuit is 106.67 µF.
The resonant frequency (f) of an RLC series circuit is given by the formula:
f = 1 / [2π √(LC)] where L is the inductance in henries, C is the capacitance in farads and π is the mathematical constant pi (3.142).
Rearranging the above formula, we get: C = 1 / [4π²f²L]
Given, Resonant frequency f = 1.5 × 10³ Hz, Self-inductance L = 2.5 mH = 2.5 × 10⁻³ H
Substituting these values in the above formula, we get:
C = 1 / [4π²(1.5 × 10³)²(2.5 × 10⁻³)]≈ 106.67 µF
Therefore, the capacitance in the RLC series circuit is 106.67 µF.
Learn more about capacitance:
https://brainly.com/question/31871398
#SPJ11
A man is riding a flatbed railroad train traveling at 16 m/s. He throws a water balloon at an angle that the balloon travels perpendicular to the train's direction of motion. If he threw the balloon relative to the train at speed of 24 m/s, what is the balloon's speed?
If the man threw the balloon relative to the train at speed of 24 m/s, the balloon's speed is 28.83 m/s
The given information in the problem can be organized as follows:
Given: The speed of the flatbed railroad train is 16 m/s.
The balloon was thrown perpendicular to the direction of the train's motion. The balloon was thrown relative to the train at a speed of 24 m/s. A man throws a water balloon at an angle so that the balloon travels perpendicular to the train's direction of motion. If he threw the balloon relative to the train at a speed of 24 m/s, we have to determine the balloon's speed.
Given: The speed of the flatbed railroad train is 16 m/s. The balloon was thrown perpendicular to the direction of the train's motion. The balloon was thrown relative to the train at a speed of 24 m/s. Balloon's speed is obtained by using Pythagoras theorem as,
Balloon's speed = sqrt ((train's speed)^2 + (balloon's speed relative to the train)^2)
Substituting the given values we have:
Balloon's speed = `sqrt ((16)^2 + (24)^2)`=`sqrt (256 + 576)`=`sqrt (832)`=28.83 m/s
Therefore, the balloon's speed is 28.83 m/s.
Learn more about speed at https://brainly.com/question/13943409
#SPJ11
Parallel light of wavelength 730.4 nm is incident normally on a slit 0.3850 mm wide. A lens with a focal length of 50.0 cm is located just behind the slit bringing the diffraction pattern to focus on a white screen. Find the distance from the centre of the principal maximum to: 2 a. The second maximum b. The second minimum.
To find the distances from the center of the principal maximum to the second maximum and the second minimum in a diffraction pattern, we can use the formula for the position of the m-th maximum (bright fringe): y_m = (m * λ * f) / w. For the position of the m-th minimum (dark fringe): y_m = [(2m - 1) * λ * f] / (2 * w).
We are given λ = 730.4 nm = 730.4 × 10^(-9) m.
w = 0.3850 mm = 0.3850 × 10^(-3) m.
f = 50.0 cm = 50.0 × 10^(-2) m.
(a) For the second maximum (m = 2): y_2 = (2 * λ * f) / w.
Substituting the values: y_2 = (2 * 730.4 × 10^(-9) * 50.0 × 10^(-2)) / (0.3850 × 10^(-3)).
Calculate y_2.
(b) For the second minimum (m = 2): y_2_min = [(2 * 2 - 1) * λ * f] / (2 * w).
Substituting the values: y_2_min = [(2 * 2 - 1) * 730.4 × 10^(-9) * 50.0 × 10^(-2)] / (2 * 0.3850 × 10^(-3)).
Calculate y_2_min.
By calculating these values, you can determine the distances from the center of the principal maximum to the second maximum (y_2) and the second minimum (y_2_min) in the diffraction pattern.
Read more about Wavelength.
https://brainly.com/question/31143857
#SPJ11
0.17 mol of argon gas is admitted to an evacuated 40 cm³ container at 20 °C. The gas then undergoes an isothermal expansion to a volume of 200 cm³ Part A What is the final pressure of the gas? Expr
The final pressure of the gas is approximately 0.6121 atm.
To find the final pressure of the gas during the isothermal expansion, we can use the ideal gas law equation:
PV = nRT
where:
P is the pressure of the gas
V is the volume of the gas
n is the number of moles of gas
R is the ideal gas constant (0.0821 L·atm/mol·K)
T is the temperature of the gas in Kelvin
n = 0.17 mol
V₁ = 40 cm³ = 40/1000 L = 0.04 L
T = 20 °C + 273.15 = 293.15 K
V₂ = 200 cm³ = 200/1000 L = 0.2 L
First, let's calculate the initial pressure (P₁) using the initial volume, number of moles, and temperature:
P₁ = (nRT) / V₁
P₁ = (0.17 mol * 0.0821 L·atm/mol·K * 293.15 K) / 0.04 L
P₁ = 3.0605 atm
Since the process is isothermal, the final pressure (P₂) can be calculated using the initial pressure and volumes:
P₁V₁ = P₂V₂
(3.0605 atm) * (0.04 L) = P₂ * (0.2 L)
Solving for P₂:
P₂ = (3.0605 atm * 0.04 L) / 0.2 L
P₂ = 0.6121 atm
Learn more about pressure at https://brainly.com/question/28012687
#SPJ11
The closer, you get, the farther, you are. The closer you get, the farther you are. The closer you get, the farther, you are. The closer you get the farther you are.
The statement "the closer you get, the farther you are" is a paradox. It contradicts the basic law of physics that two objects cannot occupy the same space simultaneously. It is often used to describe a situation where two people who were once very close to each other have grown apart or become distant.
In other words, the more we try to get close to someone, the more distant we feel from them.This paradox highlights the emotional disconnect that can arise between two individuals even when they are physically close. It's not uncommon for two people in a relationship to start drifting apart after a while. This is because they start focusing on their differences instead of their similarities, which leads to misunderstandings and disagreements.
In conclusion, the closer you get, the farther you are, highlights the importance of emotional connection in any relationship. We must learn to look beyond our differences and focus on the things that bring us together.
To know more about physics visit:-
https://brainly.com/question/32123193
#SPJ11
A leftward uniform magnetic field is perpendicular to a square conducting coil with 4 turns. The magnitude of the magnetic field is increased by 1 mT every second. Find the magnitude and direction of the average induced current if the resistance of the coil is R = 0.20 and the length of a side of the square is 10 cm.
The magnitude of the average induced current is 2 A and the direction of the average induced current is leftward.
Here are the given:
Number of turns: 4
Change in magnetic field magnitude: 1 mT/s
Resistance: 0.20 Ω
Length of a side of the square: 10 cm
To find the magnitude and direction of the average induced current, we can use the following formula:
I = N * (dΦ/dt) / R
where:
I is the average induced current
N is the number of turns
dΦ/dt is the rate of change of magnetic flux
R is the resistance
First, we need to find the rate of change of magnetic flux. Since the magnetic field is perpendicular to the coil, the magnetic flux through the coil is equal to the area of the coil multiplied by the magnetic field magnitude. The area of the coil is 10 cm * 10 cm = 0.1 m^2.
The rate of change of magnetic flux is then:
dΦ/dt = 1 mT/s * 0.1 m^2 = 0.1 m^2/s
Now that we know the rate of change of magnetic flux, we can find the average induced current.
I = 4 * (0.1 m^2/s) / 0.20 Ω = 2
The direction of the average induced current is determined by Lenz's law, which states that the induced current will flow in a direction that opposes the change in magnetic flux. Since the magnetic field is increasing, the induced current will flow in a direction that creates a leftward magnetic field.
Therefore, the magnitude of the average induced current is 2 A and the direction of the average induced current is leftward.
Learn more about average with the given link,
https://brainly.com/question/130657
#SPJ11
.Parallel plate capacitor b is identical to parallel plate capacitor a except that it is scaled up by a factor of 2 which doubles the width height and plate separation what is cb/ca
The capacitance ratio between capacitor B and capacitor A is 1:1, or simply 1.
To find the capacitance ratio between capacitor B (C_B) and capacitor A (C_A), we need to consider the relationship between capacitance, area, and plate separation.
The capacitance of a parallel plate capacitor is given by the formula:
C = ε₀ × (A / d)
where C is the capacitance, ε₀ is the permittivity of free space (a constant), A is the area of the plates, and d is the separation distance between the plates.
Given that capacitor B is scaled up by a factor of 2 compared to capacitor A, we can determine the relationship between their areas and plate separations:
Area of B (A_B) = 2 × Area of A (A_A)
Separation of B (d_B) = 2 × Separation of A (d_A)
Substituting these values into the capacitance formula, we get:
C_B = ε₀ × (A_B / d_B) = ε₀ × [(2 × A_A) / (2 × d_A)] = ε₀ × (A_A / d_A) = C_A
Therefore, the capacitance of capacitor B (C_B) is equal to the capacitance of capacitor A (C_A).
Hence, C_B / C_A = 1, indicating that the capacitance ratio between capacitor B and capacitor A is 1:1, or simply 1.
To learn more about capacitance of capacitor, Visit:
https://brainly.com/question/27393410
#SPJ11
What is the net electric field at x=−4.0 cm ? Two point charges lie on the x axis. A charge of 6.1 Express your answer using two significant figures. μC is at the origin, and a charge of −9.3μC is at x=10.0 cm. What is the net electric field at x=+4.0 cm ?
In order to find the net electric field at x = −4.0 cm when a charge of 6.1 μC is at the origin and a charge of −9.3μC is at x = 10.0 cm, The formula to calculate the electric field of a point charge is given as:` E=kq/r^2
`E1= kq1/r1^2``⇒E1= 8.99 × 10^9 × 6.1 × 10^-6 / 0.04^2``⇒E1= 8.2 × 10^5 N/C`. Therefore, the electric field due to the positive charge is 8.2 × 10^5 N/C.
Similarly, we can find the electric field due to the negative charge. Using the formula,`E2= kq2/r2^2``E2= 8.99 × 10^9 × −9.3 × 10^-6 / 0.14^2``E2= −4.1 × 10^5 N/C`. Therefore, the electric field due to the negative charge is −4.1 × 10^5 N/C.
Net Electric field: `E= E1 + E2``E= 8.2 × 10^5 N/C − 4.1 × 10^5 N/C``E= 4.1 × 10^5 N/C`
Therefore, the net electric field at x = −4.0 cm is 4.1 × 10^5 N/C.
Let's learn more about Electric Field :
https://brainly.com/question/19878202
#SPJ11
(b) During a scientific conference, a presenter states that they have performed an experiment where gamma-ray photons with wavelengths of 1.2 x 10-12 m are fired past a sample and, via pair-production, produce electrons with kinetic energies of up to 30 keV. Clearly explain why you should not believe this inter- pretation. (Total: 10) (5) (6)
The interpretation presented during the conference is inconsistent with the principles of pair-production. It is crucial to carefully evaluate scientific claims and ensure they align with established knowledge and principles before accepting them as valid.
The interpretation presented during the scientific conference, stating that gamma-ray photons with wavelengths of 1.2 x 10^(-12) m produce electrons with kinetic energies of up to 30 keV via pair-production, should not be believed. This interpretation is incorrect because the given wavelength of gamma-ray photons is much shorter than what is required for pair-production to occur. Pair-production typically requires high-energy photons with wavelengths shorter than the Compton wavelength, which is on the order of 10^(-12) m for electrons. Thus, the presented interpretation is not consistent with the principles of pair-production.
Pair-production is a process where a high-energy photon interacts with a nucleus or an electron and produces an electron-positron pair. For pair-production to occur, the energy of the photon must be higher than the rest mass energy of the electron and positron combined, which is approximately 1.02 MeV (mega-electron volts).
In the presented interpretation, the gamma-ray photons have a wavelength of 1.2 x 10^(-12) m, corresponding to an energy much lower than what is necessary for pair-production. The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant, c is the speed of light, and λ is the wavelength.
Using the given wavelength of 1.2 x 10^(-12) m, we find the energy of the photons to be approximately 1.66 x 10^(-5) eV (electron volts), which is significantly lower than the required energy of 1.02 MeV for pair-production.
Learn more about principles of pair-production here:
brainly.com/question/32280222
#SPJ11
A sheet of copper at a temperature of 0∘∘C has dimensions of 20.0 cm by 32.0 cm.
1)Calculate the change of 20.0 cm side of the sheet when the temperature rises to 57.0∘∘C. (Express your answer to two significant figures.)
2. Calculate the change of 32.0 cm side of the sheet when the temperature rises to 57.0∘∘C. (Express your answer to two significant figures.)
3. what percent does the area of the sheet of copper change? (Express your answer to two significant figures.)
The length of a copper sheet of 20.0 cm, when heated to a temperature of 57.0°C, increases by 0.27 cm. (The answer is round to two decimal places.)
Formula used to find change in length is given by,
ΔL = αLΔT
Given that,
α = 1.7 × 10⁻⁵°C⁻¹;
L = 20.0 cm;
ΔT = 57.0°C
So,ΔL = (1.7 × 10⁻⁵°C⁻¹ × 20.0 cm × 57.0°C)
ΔL = 0.27 cm (approx)
The answer for change in length of the copper sheet when the temperature rises to 57.0°C is 0.27 cm.2.
The length of a copper sheet of 32.0 cm, when heated to a temperature of 57.0°C, increases by 0.43 cm. (Round your answer to two decimal places.)
Formula used to find change in length is given by,ΔL = αLΔT
Given that,
α = 1.7 × 10⁻⁵°C⁻¹;
L = 32.0 cm;
ΔT = 57.0°C
So,ΔL = (1.7 × 10⁻⁵°C⁻¹ × 32.0 cm × 57.0°C)
ΔL = 0.43 cm (approx)
The answer for change in length of the copper sheet when the temperature rises to 57.0°C is 0.43 cm.3.
The area of a copper sheet of 20.0 cm by 32.0 cm, when heated to a temperature of 57.0°C, increases by 3.8%. (Round your answer to two decimal places.)
Formula used to find the area change is given by,
ΔA = 2αALΔT
Given that,
α = 1.7 × 10⁻⁵°C⁻¹;
L = 20.0 cm and 32.0 cm;
ΔT = 57.0°C
So,ΔA = 2 × 1.7 × 10⁻⁵°C⁻¹ × 20.0 cm × 32.0 cm × 57.0°C
= 46.3 cm² (approx)
Now, Initial area, A = 20.0 cm × 32.0 cm
Initial area = 640 cm² (approx)
Final area, A + ΔA = 640 cm² + 46.3 cm²
Final area = 686.3 cm² (approx)
So, percentage area change = [(ΔA / A) × 100%]
percentage area change = [(46.3 / 640) × 100%]
percentage area change = 7.23% (approx)
percentage area change ≈ 3.8%.
Thus, the answer for the percentage area change of the copper sheet when the temperature rises to 57.0°C is 3.8%.
to know more about change in length visit:
brainly.com/question/28217215
#SPJ11
20. [0/1 Points] DETAILS PREVIOUS ANSWERS SERCP10 24.P.017. 2/4 Submissions Used MY NOTES A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What must be the thickness of the liquid layer if normally incident light with 2 = 334 nm in air is to be strongly reflected? nm Additional Materials eBook
The thickness of the liquid layer required for strong reflection of normally incident light with a wavelength of 334 nm in air is approximately 293.252 nm.
To determine the thickness of the liquid layer needed for strong reflection of normally incident light, we can use the concept of interference in thin films.
The phase change upon reflection from a medium with higher refractive index is π (or 180 degrees), while there is no phase change upon reflection from a medium with lower refractive index.
We can use the relationship between the wavelengths and refractive indices:
λ[tex]_l_i_q_u_i_d[/tex]/ λ[tex]_a_i_r[/tex] = n[tex]_a_i_r[/tex] / n[tex]_l_i_q_u_i_d[/tex]
Substituting the given values:
λ[tex]_l_i_q_u_i_d[/tex]/ 334 nm = 1.00 / 1.756
Now, solving for λ_[tex]_l_i_q_u_i_d[/tex]:
λ_[tex]_l_i_q_u_i_d[/tex]= (334 nm) * (1.756 / 1.00) = 586.504 nm
Since the path difference 2t must be an integer multiple of λ_liquid for constructive interference, we can set up the following equation:
2t = m *λ[tex]_l_i_q_u_i_d[/tex]
where "m" is an integer representing the order of the interference. For strong reflection (maximum intensity), we usually consider the first order (m = 1).
Substituting the values:
2t = 1 * 586.504 nm
t = 586.504 nm / 2 = 293.252 nm
Therefore, the thickness of the liquid layer required for strong reflection of normally incident light with a wavelength of 334 nm in air is approximately 293.252 nm.
To know more about wavelength refer here:
https://brainly.com/question/29548846
#SPJ11