round 5.7255 to thousands place
place after thousands place (5) rounds up the 5 before it
therefore 5.726 ur ans
MARK above ANS as branliest
During three consecutive years, an employers salary is increased by 15%. If after three years his salary is 45,400, what was his salary before the raises?
Answer:
$29,851.24
Step-by-step explanation:
The salary started as x.
Each year it was increased 15%.
A full amount is 100% of the amount. When you add 15% to the amount, you now have 115% of the amount.
115% as a decimal is 1.15; that means that to increase an amount by 15%, multiply the amount by 1.15
For example, let's say you want to know what is a 15% increase on 100. Start with 100. 15% of 100 is 15, so if you add 15% to 100 you expect to get 115.
Now multiply 1.15 by 100. You also get 115 showing you that multiplying a number by 1.15 is the same as adding 15%.
Now let's get back to our problem.
The salary started as x.
Each year, the increase in salary was 15% of the previous salary.
After 1 year the salary is 1.15x.
After 2 years, the salary is 1.15(1.15x).
After 3 years, the salary is 1.15(1.15(1.15x)) = (1.15^3)x
We are told that the salary became $45,400 after the three 15% increases, so
(1.15)^3 * x = 45,400
Multiply out 1.15^3 as 1/15 * 1.15 * 1.15 = 1.520875
1.520875x = 45,400
Divide both sides by 1.520875.
x = 45,400/1.520875
x = 29,851.24
Answer: $29,851.24
find the sum and difference between the place value and face value of 5 in the number 3508 6941
Answer:
Sum= 5000005
Difference= 4999995
Step-by-step explanation:
The place value of 5 in the number 35086941 is 5000000
The face value is 5
The sum between the face value and place value can be calculated as follows
°= 5000000+5
= 5000005
The difference can be calculated as follows
= 5000000-5
= 4999995
Question 1 of 12, Step 1 of 1
0/17
Correct
Two planes, which are 2800 miles apart, fly toward each other. Their speeds differ by 50 mph. If they pass each other in 4 hours, what is the sspeed of each?
Keypad
Answer:
325 and 375 mph
Step-by-step explanation:
Given :
Distance between plane A and B = 2800
Recall :
Distance = speed * time
Let speed of A = v1
Speed of B = v2
v1 = v2 + 50
Time taken = 4 hours
Distance = speed * time
Total distance = 2800
2800 = v1 * 4 + v2 * 4
2800 = (4v1) + (4v2)
2800 = 4(v2+50) + 4v2
2800 = 4v2 + 200 + 4v2
2800 = 8v2 + 200
2800 - 200 = 8v2
2600 = 8v2
v2 = 2600/8
v2 = 325 mph
v1 = v2 + 50
v1 = 325 + 50
v1 = 375 mph
WILL MARK BRAINLIEST PLEASE HELP
Answer:
Step-by-step explanation:
The amount of snowfall falling in a certain mountain range is normally distributed with a average of 170 inches, and a standard deviation of 20 inches. What is the probability a randomly selected year will have an average snofall above 200 inches
Answer:
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a average of 170 inches, and a standard deviation of 20 inches.
This means that [tex]\mu = 170, \sigma = 20[/tex]
What is the probability a randomly selected year will have an average snowfall above 200 inches?
This is 1 subtracted by the p-value of Z when X = 200. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{200 - 170}{20}[/tex]
[tex]Z = 1.5[/tex]
[tex]Z = 1.5[/tex] has a p-value of 0.9332.
1 - 0.9332 = 0.0668
0.0668 = 6.68% probability a randomly selected year will have an average snowfall above 200 inches.
Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.) c, c, c , where c > 0
Answer:
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
Step-by-step explanation:
Given the data in the question;
vector is z = < c,c,c >
the direction cosines and direction angles of the vector = ?
Cosines are the angle made with the respect to the axes.
cos(∝) = z < 1,0,0 > / |z|
so
cos(∝) = < c,c,c > < 1,0,0 > / √[c² + c² + c²] = ( c + 0 + 0 ) / √[ 3c² ]
cos(∝) = c / √[ 3c² ] = c / c√3 = 1/√3
∝ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(β) = < c,c,c > < 0,1,0 > / √[c² + c² + c²] = ( 0 + c + 0 ) / √[ 3c² ]
cos(β) = c / √[ 3c² ] = c / c√3 = 1/√3
β = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
cos(γ) = < c,c,c > < 0,0,1 > / √[c² + c² + c²] = ( 0 + 0 + c ) / √[ 3c² ]
cos(γ) = c / √[ 3c² ] = c / c√3 = 1/√3
γ = cos⁻¹( 1/√3 ) = 54.7356° ≈ 55°
Therefore;
cos(∝) = 1/√3
cos(β) = 1/√3
cos(γ) = 1/√3
∝ = 55°
β = 55°
γ = 55°
Find the equation of the line tangent to y = sin(x) going through х = pi/4
Answer:
[tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]
General Formulas and Concepts:
Algebra I
Coordinates (x, y)
Functions
Function Notation
Point-Slope Form: y - y₁ = m(x - x₁)
x₁ - x coordinate y₁ - y coordinate m - slopePre-Calculus
Unit CircleCalculus
Derivatives
The definition of a derivative is the slope of the tangent lineDerivative Notation
Trig Derivative: [tex]\displaystyle \frac{d}{dx}[sin(u)] = u'cos(u)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = sin(x)[/tex]
[tex]\displaystyle x = \frac{\pi}{4}[/tex]
Step 2: Differentiate
Trig Derivative: [tex]\displaystyle y' = cos(x)[/tex]Step 3: Find Tangent Slope
Substitute in x [Derivative]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = cos \bigg( \frac{\pi}{4} \bigg)[/tex]Evaluate [Unit Circle]: [tex]\displaystyle y' \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]Step 4: Find Tangent Equation
Substitute in x [Function y]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = sin \bigg( \frac{\pi}{4} \bigg)[/tex]Evaluate [Unit Circle]: [tex]\displaystyle y \bigg( \frac{\pi}{4} \bigg) = \frac{\sqrt{2}}{2}[/tex]Substitute in variables [Point-Slope Form]: [tex]\displaystyle y - \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \bigg( x - \frac{\pi}{4} \bigg)[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Speedy Oil provides a single-server automobile oil change and lubrication service. Customers provide an arrival rate of 2.5 cars per hour. The service rate is 5 cars per hour. Assume that arrivals follow a Poisson probability distribution and that service times follow an exponential probability distribution. What is the average number of cars in the system
Answer:
the average number of car(s) in the system is 1
Step-by-step explanation:
Given the data in the question;
Arrival rate; λ = 2.5 cars per hour
Service time; μ = 5 cars per hour
Since Arrivals follows Poisson probability distribution and service times follows exponential probability distribution.
Lq = λ² / [ μ( μ - λ ) ]
we substitute
Lq = (2.5)² / [ 5( 5 - 2.5 ) ]
Lq = 6.25 / [ 5 × 2.5 ]
Lq = 6.25 / 12.5
Lq = 0.5
Now, to get the average number of cars in the system, we say;
L = Lq + ( λ / μ )
we substitute
L = 0.5 + ( 2.5 / 5 )
L = 0.5 + 0.5
L = 1
Therefore, the average number of car(s) in the system is 1
Which of the following expressions is not equivalent to the others?
Answer:
Im going to guess the second one
Step-by-step explanation:
It's the only one that does not have more than one negative fraction.
The manager of a fast-food restaurant determines that the average time that her customers wait for service is 2.5 minutes. (a) Find the probability that a customer has to wait more than 4 minutes. (Round your answer to three decimal places.)
Answer:
0.758
explaination
using poisson distribution
0.08208+0.2052+0.2565+0.2138
0 .758
Which of the following is a polynomial
A. 1-5x^2/x
b. 11x
c. 2x^2- square root x
d. 3x^2+6x
Answer:
B and D are polynomial
Step-by-step explanation:
An algebraic expression with non-zero coefficients and variables having non-negative integers as exponents is called a polynomial.
A)
If it is [tex]1 -\frac{5x^{2}}{x }=1-5x[/tex] , then it is a polynomial.
But if it is [tex]\frac{1-5x^{2}}{x}[/tex] then it is not a polynomial
Someone pls answer all?
Answer: hello there here are your answers:
5) Associate property of addition
6) Multiplicative identify
7) additive identify
Step-by-step explanation:
5) that is correct because you are changing the numbers in the ()
6) because it the same numbers and variables just placed in a different way
7) its cleaves the system changed with any element added
hope this help have a good day
jenny has 3 cherry candies and 3 orange candies. She takes out 2 candies without looking.What is the probability in fractions that both are cherry?
Angela’s average for six math tests is 87. on her first four tests she had scores of 93, 87, 82, and 86. on her last tests she scored 4 points lower than she did on her fifth test what scores did Angela receive on her firth and sixth tests?
Answer:
the scores on her last test is x (x > 0)
because on her last tests she scored 4 points lower than she did on her fifth test
=> the scores in the 5th test is x + 4
because Angela’s average for six math tests is 87, we have:
[tex] \frac{93 + 87 + 82 + 86 + x + x + 4}{6} = 87 \\ \\ < = > \frac{352 + 2x}{6} = 87 \\ \\ < = > 352 + 2x = 522 \\ \\ < = > 2x = 170 \\ \\ < = > x = 85[/tex]
=> on her last test, she had 85
=> on her 5th test, she had 85 + 4 = 89
Question 1 of 10
One advantage of a long-term loan compared to a short-term loan is that a
long-term loan:
A. does not require the borrower to have a good credit score.
O
B. can be paid off in full without the borrower paying any interest.
C. does not force the borrower to make payments every month.
D. allows a person to borrow more money at a lower interest rate.
Answer:
D. allows a person to borrow more money at a lower interest rate
Solve the inequality. |X-15|>9
Answer:
X<6 or X>24
Step-by-step explanation:
The probability that a tennis set will go to a tiebreaker is 13%. In 120 randomly selected tennis sets, what is the mean and the standard deviation of the number of tiebreakers
Answer:
[tex]\mu = 15.6[/tex]
[tex]\sigma =3.684[/tex]
Step-by-step explanation:
Given
[tex]p =13\%[/tex]
[tex]n = 120[/tex]
Solving (a): The mean
This is calculated as:
[tex]\mu = np[/tex]
So, we have:
[tex]\mu = 13\% * 120[/tex]
[tex]\mu = 15.6[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\mu * (1 - p)[/tex]
So, we have:
[tex]\sigma = \sqrt{15.6 * (1 - 13\%)[/tex]
[tex]\sigma = \sqrt{15.6 * 0.87[/tex]
[tex]\sigma =\sqrt{ 13.572[/tex]
[tex]\sigma =3.684[/tex]
which ordered pairs are in the solution set of the system of linear inequalities?
y > -1/3x+2
-
y <2x+3
A. (2,2), (3,1) (4,2)
B. (2,2) (3,-1) (4,1)
C. (2,2) (1,-2) (0,2)
D. (2,2) (1,2) (2,0)
==========================================================
Explanation:
The graph of [tex]y \ge -\frac{1}{3}x+2[/tex] has the boundary y = (-1/3)x+2 which is a solid line. This line goes through (0,2) and (3,1). We shade above the boundary because of the "greater than" sign.
The graph of y < 2x+3 has a dashed boundary line of y = 2x+3, and we shade below the boundary because of the "less than" sign.
The two regions overlap in the upper right corner where it's shaded in the darkest color. The points (2,2), (3,1) and (4,2) are in this upper right corner region. If we plug the coordinates of each point into each inequality, then we'll get true statements.
For instance, let's try (x,y) = (2,2) into the first inequality
[tex]y \ge -\frac{1}{3}x+2\\\\2 \ge -\frac{1}{3}(2)+2\\\\2 \ge -\frac{2}{3}+2\\\\2 \ge -\frac{2}{3}+\frac{6}{3}\\\\2 \ge \frac{-2+6}{3}\\\\2 \ge \frac{4}{3}\\\\2 \ge 1.33\\\\[/tex]
Which is true since 2 is indeed larger than 1.33, so that confirms (2,2) is in the shaded region for [tex]y \ge -\frac{1}{3}x+2\\\\[/tex]
Let's check the other inequality as well
[tex]y < 2x+3\\\\2 < 2(2)+3\\\\2 < 4+3\\\\2 < 7\\\\[/tex]
That works too. So (2,2) is in BOTH shaded regions at the same time; hence, it's a solution to the system. You should find that (3,1) and (4,2) work for both inequalities also. This will confirm choice A is the answer.
--------------------------------
Extra info (optional section)
A point like (3,-1) does not work for the first inequality as shown below
[tex]y \ge -\frac{1}{3}x+2\\\\-1 \ge -\frac{1}{3}(3)+2\\\\-1 \ge -1+2\\\\-1 \ge 1\\\\[/tex]
Since -1 is neither equal to 1, nor is -1 larger than 1 either. The false statement at the end indicates (3,-1) is not a solution to that inequality.
Based on the graph, the point (3,-1) is not above the blue solid boundary line. All of this means we can rule out choice B.
You should find that (1,-2) is a similar story, so we can rule out choice C. Choice D can be ruled out because (2,0) is not a solution to the first inequality.
A large container holds 4 gallons of chocolate milk that has to be poured into bottles. Each bottle holds 2 pints.
If the ratio of gallons to pints is 1: 8,
bottles are required to hold the 4 gallons of milk.
Answer:
64 Bottles
Step-by-step explanation:
that is the procedure above
The data represent the results for a test for a certain disease. Assume one individual from the group is randomly selected. Find the probability of getting someone who tests negative, given that he or she did not have the disease.
The individual actually had the disease
Yes No
Positive 135 11
Negative 99 145
Answer:
0.9295 = 92.95% probability of getting someone who tests negative, given that he or she did not have the disease.
Step-by-step explanation:
A probability is the number of desired outcomes divided by the number of total outcomes.
In this question:
11 + 145 = 156 people did not have the disease.
Out of those, 145 tested positive. So
[tex]p = \frac{145}{156} = 0.9295[/tex]
0.9295 = 92.95% probability of getting someone who tests negative, given that he or she did not have the disease.
Help someone please
A car uses 3/4% of a tank of gasoline to go 600 kilometers. What must one know to be able to determine how many kilometers the car gets per liter?
(1) the number of liters the tank holds
(2) the cost of gasoline per liter
(3) the average daily mileage of the driver (4) the relative age of the car
(5) the ratio of the mass to volume of the car
Answer:
(1) the number of liters the tank holds
Step-by-step explanation:
convert 1.5% to decimal and a fraction. Show and explain your method
Answer:
0.015 and 3/200.
Step-by-step explanation:
1.5% is equal to 0.015. Percents are always equal to their decimal counterparts; basically, the number over 100. Dividing 1.5 by 100 will yield us 0.015.
0.015 is going to be equal to 15/1000, or 3/200. Since we did 1.5/100, we need to multiply both sides of the fraction by 10 so there are no decimal points. Therefore, this is 15/1000. If we divide both sides of this fraction by 5, then we get 3/200, which is the most simplified form.
The edge of a cube was found to be 30 cm with a possible error in measurement of 0.5 cm. Use differentials to estimate the maximum possible error, relative error, and percentage error in computing the volume of the cube and the surface area of the cube. (Round your answers to four decimal places.) My Notes Ask Your Teacher
(a) the volume of the cube maximum possible error relative error percentage error cm
(b) the surface area of the cube maximum possible error relative error percentage error cm Need Help? ReadTalk to Tuter
Answer with Step-by-step explanation:
We are given that
Side of cube, x=30 cm
Error in measurement of edge,[tex]\delta x=0.5[/tex] cm
(a)
Volume of cube, [tex]V=x^3[/tex]
Using differential
[tex]dV=3x^2dx[/tex]
Substitute the values
[tex]dV=3(30)^2(0.5)[/tex]
[tex]dV=1350 cm^3[/tex]
Hence, the maximum possible error in computing the volume of the cube
=[tex]1350 cm^3[/tex]
Volume of cube, [tex]V=(30)^3=27000 cm^3[/tex]
Relative error=[tex]\frac{dV}{V}=\frac{1350}{2700}[/tex]
Relative error=0.05
Percentage error=[tex]0.05\times 100=5[/tex]%
Hence, relative error in computing the volume of the cube=0.05 and
percentage error in computing the volume of the cube=5%
(b)
Surface area of cube,[tex]A=6x^2[/tex]
[tex]dA=12xdx[/tex]
[tex]dA=12(30)(0.5)[/tex]
[tex]dA=180cm^2[/tex]
The maximum possible error in computing the volume of the cube=[tex]180cm^2[/tex]
[tex]A=6(30)^2=5400cm^2[/tex]
Relative error=[tex]\frac{dA}{A}=\frac{180}{5400}[/tex]
Relative error in computing the volume of the cube=0.033
The percentage error in computing the volume of the cube=[tex]0.033\times 100=3.3[/tex]%
What is division story problem where the dividend is a three-digit number and the divisor is a single digit.
Answer:
dddddddddv
Step-by-step explanation:
what is 221st number out of 5,6,7,8,9
Answer:
221
Step-by-step explanation:
Given sequence is ,
> 5 , 6 , 7 , 8 , 9.
The common difference is 6-5 = 1 .
Therefore , the 221st number will be
> 221 st term = 221 × 1 = 221 .
Hence the 221 st term is 221 .
Answer:
225
Step-by-step explanation:
d = 6 - 5 = 1 (common differences)
a = 5 (first term)
221st term
a+(n-1)d
5 +(221 - 1) 1
5 + 220 =225
Therefore the answer is 225
How is solving for speed similar to solving for time?
O They both require that two numbers be added.
O They both require that two numbers be subtracted
O They both involve writing a rate.
O They both use the same units of measure.
Answer:
third one
Step-by-step explanation:
two trains leave the station at the same time, one traveling due east, the other due west. After 46 minutes, they are 140 miles apart. if one trains speed is 20 mph more than the other trains, what are the speeds of the two trains?
Answer:
Train A speed = x + 20
Train B = x
We know the 46 minutes is 23/30 of an hour.
Use D = rt
Take it from it, hope its helped, have a great day!
-3/8 divided by -1/4
Flip the -1/4, cross deduct and should get 3/2
Answer:
It might be 3/2 or 1 and 1/2.
4. Cindy purchased a pair of boots which had a sticker price of $85. Cindy paid $5.95 in sales tax. What was the tax rate on Cindy's purchase?
You are doing research on balance and fitness. To complete this research you will need a watch with a second hand. Identify a random sample of n = 12 men and n = 8 women. You must answer this question: How do you establish that this sample is truly random? STEP 2: Have each subject perform the following task: a) Have the subjects stand with their hands at their side, raise one knee, cross their ankle over the other knee, squat and bring their hands palms together in front of their chest. Time the subject until they put their foot back down on the floor. b) Ask the following questions: i) How many days per week do they exercise? ii) What is their favorite exercise? STEP 3: You will analyze your data and compute the following statistics for each group: 1) The Mean and standard deviation of the number of seconds the subject stayed balanced 2) The Median number of days per week exercised 3) The Mode of the favorite exercise 4) The 90% confidence interval of the mean STEP 4: Construct a complete hypothesis test and determine if the two groups have significantly different balance using α = 0.05. STEP 5: Write a one page introduction to your research, discuss how you selected your sample (is it a random sample?) and write a one page conclusion. Present your data in an organized manner.
Answer:
It should be a 2 sample t-test for the sample mean mu 1 - mu 2 at alpha = 0.05.
Step-by-step explanation:
To solve, you can just insert the data values into a graphing calculator and it should work. Remember to check the conditions and write out the null and alternate hypotheses.
Null: mu 1 - mu 2 = 0 There is no difference
Alternate: mu 1 - mu 2 =/= 0 There is a difference
Conditions:
-Random sample? Yes b/c assume that it is from a simple random sample.
-10%? Assume that there are more than 120 men and 80 women in the population"
-Normal Distribution? If the data for each respective sample is approx normal, assume they come from a normally distributed population. Large counts and the central limit theorem do not work here.
After this, insert ur data values into the graphing calculator n solve for p.
Once you get p, make a conclusion based on alpha = 0.05. If p is less than alpha, you can reject the null and conclude that you have significant evidence that the alternate is true. If p is greater than alpha, you cannot reject the null and conclude that you do not have significant evidence that the alternate is true.