At 25 Degrees Celsius, Delta G degree f is -620 kj/mol for SiCl4(g) and -592 kj/mol ofr MgCl2(s). Calculate Delta G Degree for the reaction,
SiCl4 (g) + 2 Mg(s) → 2MgCl2 (s) + Si(s)
and determine if the reaction is pontaneous at 25 degrees celsius if the pressure of SiCl4(g) is 1 atm.
A. Delta G degree = -564 kj; the process is spontaneous
B. Delta G degree = +565 kj; the process in nonspontaneous
C. Delta G degree = -28.0 kj; the process is spontaneous
D. Delta G degree = +28.0 kj; the process is nonspontaneous

Answers

Answer 1

The change in the free energy can be obtained as  -28.0 kJ. Option C

What is the free energy?

Free energy, also known as Gibbs free energy, is a thermodynamic potential that measures the maximum amount of reversible work that can be performed by a system at constant temperature and pressure. It is denoted by the symbol "G" and is named after the American physicist Josiah Willard Gibbs.

We know that;

ΔG = ΔGproducts - ΔG reactants

ΔG = 2(-592) + 2(-620)

ΔG = -1184 - 1240

= -28.0 kJ

Learn more about free energy:https://brainly.com/question/32260413

#SPJ4


Related Questions

Select the structure of the intermediate carbocation in the reaction. E is an abbreviation for electrophile. C6H6 +E+ + Intermediate + CH_X + H+ The structure of the intermediate is: H H E H B Ε EH

Answers

The structure of the intermediate carbocation in the given reaction is E. The intermediate structure is represented as follows: C6H6 + E+ → Intermediate + CH_X + H+Here, E represents the electrophile.

The structure of the intermediate is E, which is an electrophile. In the reaction, C6H6 + E+ + Intermediate + CH_X + H+, benzene reacts with an electrophile, E+. This leads to the formation of an intermediate carbocation and CH_X as a byproduct. Finally, H+ acts as a proton donor to produce the desired product.

The reaction can be summarized as: C6H6 + E+ → Intermediate + CH_X + H+The structure of the intermediate is E, which represents the electrophile. Therefore, the correct answer is E.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

What is the orbital hybridization of a central atom that has one lone pair and bonds to four other atoms?
sp
sp2
sp3
sp3d
sp3d2

Answers

The orbital hybridization of a central atom that has one lone pair and bonds to four other atoms is sp3. The sp3 hybridization is the result of combining 3p orbitals and one s orbital in the valence shell to create four sp3 hybrid orbitals.

The hybrid orbitals all have the same energy and shape, and they're all spaced out at a 109.5-degree angle. The sp3 hybridization is commonly seen in molecules with tetrahedral geometry, such as methane (CH4), water (H2O), and ammonia (NH3). The four hybrid orbitals of the central atom in these molecules are used to form four bonds with the surrounding atoms, resulting in a tetrahedral shape.

Read more about hybridization here;https://brainly.com/question/22765530

#SPJ11

how much kh2po4 solid needed to 50 ml of 0.10 m kh2po4 solution

Answers

According o the solving the amount  kh2po4 solid needed to 50 ml of 0.10 m kh2po4 solution of 0.680 g

The given conditions for the problem are:

Volume of solution (V) = 50 mL (0.050 L)

Molarity of solution (M) = 0.10 M

The equation to calculate the amount of solute needed to prepare a solution is:

n = M × V Where n is the amount of solute, M is the molarity of the solution, and V is the volume of the solution. Let's put the values into the above formula:

n = 0.10 M × 0.050 L = 0.005 mol.

The molecular mass of KH2PO4 = 136 g/mol The number of moles of KH2PO4 present in 136 g of KH2PO4 = 136/136 = 1 mol. The number of moles of KH2PO4 present in 32781198 g of KH2PO4 = 32781198/136 ≈ 241090.60 mol. The amount of KH2PO4 needed to prepare the solution is 0.005 mol.

So, the mass of KH2PO4 required is given by :Mass of KH2PO4 = Number of moles of KH2PO4 × Molecular mass of KH2PO4= 0.005 mol × 136 g/mol ≈ 0.680 g ≈ 680 mg.

So, 680 mg of KH2PO4 is required to prepare a 50 ml of 0.10 M KH2PO4 solution, using the above formula and data. Answer: 0.680 g

To know more about molarity visit

https://brainly.com/question/31545539

#SPJ11

s22. draw the band diagrams for si, cacl2, and zn. label the valence and conduction bands and state what atomic or molecular orbitals make up each band.

Answers

The valence band is made up of hybridized s and p orbitals, while the conduction band is made up of hybridized d and s orbitals.

A band diagram is a diagram that shows the valence and conduction bands' positions in an atom. The atomic or molecular orbitals that make up each band are also indicated in the diagram. The diagrams for Si, CaCl2, and Zn are shown below: SI Label the valence and conduction bands and state what atomic or molecular orbitals make up each band. In Si, the valence and conduction bands are labeled. The bands have p orbitals and s orbitals, respectively. The valence band is primarily made up of hybridized s and p orbitals. CaCl2Label the valence and conduction bands and state what atomic or molecular orbitals make up each band.

In CaCl2, there are two conduction bands and one valence band. The valence band is made up of Cl 3p and Ca 4s orbitals, whereas the conduction bands are made up of Ca 3d, Ca 4p, and Cl 3p orbitals. Zn Label the valence and conduction bands and state what atomic or molecular orbitals make up each band. In Zn, the valence and conduction bands are labeled.

To know more about valence band visit:

https://brainly.com/question/16777771

#SPJ11

Explain the properties of metals by completing the following sentences. The ___________ of transition metals increases as the number of delocalized electrons ________. Because the ______ in metals are strongly attracted to the delocalized electrons in the metal, they are not easily _____ from the metal, causing the metal to be very _______. Alkali metals are ______ than transition metals because they have only ____________ per atom. The ________ of metals vary greatly. The melting points are not as extreme as the ________. It does not take an extreme amount of energy for _________ to be able to move past each other. However, during ______ atoms must be separated from a group of __________, which requires a lot of _______. Light absorbed and released by the __________ in a metal accounts for the ________ of the metal.

Answers

Alkali metals are softer than transition metals. This is because they have only one valence electron per atom. The metallic bond in alkali metals is weaker than in transition metals.

The properties of metals are explained by completing the following sentences. The ductility and malleability of transition metals increases as the number of delocalized electrons increases. Because the cations in metals are strongly attracted to the delocalized electrons in the metal, they are not easily removed from the metal, causing the metal to be very strong. Alkali metals are softer than transition metals because they have only one valence electron per atom. The properties of metals vary greatly. The melting points are not as extreme as the non-metals. It does not take an extreme amount of energy for ions to be able to move past each other. However, during melting, atoms must be separated from a group of cations, which requires a lot of energy. Light absorbed and released by the electrons in a metal accounts for the luster of the metal.

The ductility and malleability of metals are the result of metallic bonds. In a metal lattice, the atoms are arranged in a regular pattern. In this lattice, atoms lose their valence electrons to create positively charged cations. These cations are surrounded by a sea of delocalized electrons. The valence electrons are no longer tied to a particular atom and can move freely throughout the metal lattice.

The electrons create a metallic bond that holds the cations together. The delocalized electrons in the metal lattice are responsible for the ductility and malleability of metals. They are free to move throughout the metal lattice, allowing atoms to slide past one another without breaking the metallic bond. Transition metals have a higher number of valence electrons than alkali metals.

The delocalized electrons are responsible for the properties of transition metals. They create a strong metallic bond, which gives rise to their high melting points, hardness, and strength.

Learn more about Alkali metals here:

https://brainly.com/question/18153051

#SPJ11

household ammonia used for cleaning contains about 8 g of nh3 in each 100mL of solution. What is the molarity of the ammonia solution?

Answers

The molarity of the ammonia solution that contains about 8 g of NH3 in each 100mL of solution is approximately 0.13 M.


The molarity of a solution can be defined as the number of moles of solute per liter of solution. The given mass of NH3 can be converted to moles by dividing the given mass by the molar mass of NH3. To find the molarity of the ammonia solution, we use the formula:  

Molarity = (Number of moles of solute) / (Volume of solution in liters)

The molar mass of NH3 is 17 g/mol, so the number of moles of NH3 present in 8 g of NH3 is:

Number of moles of NH3 = Mass of NH3 / Molar mass of NH3

= 8 g / 17 g/mol

= 0.47 mol

We have 100 mL of solution, which is equal to 0.1 L. Hence, the molarity of the ammonia solution can be calculated as follows:

Molarity = (0.47 mol) / (0.1 L)

= 4.7 mol/L

= 0.13 M

Therefore, the molarity of the ammonia solution that contains about 8 g of NH3 in each 100mL of solution is approximately 0.13 M.

Learn more about molarity here:

https://brainly.com/question/2817451

#SPJ11

the following is a list of events which occur before or during a muscle contraction. which of the following correctly lists the events in sequence. 1. threshold potentials reached in the terminal cisternae 2. threshold potentials reached in the tranverse tubule 3. threshold potentials reached in the sarcoplasmic reticulum 4. calcium ions bind to synaptotagmin 5. calcium ions bind to troponin 6. voltage-gated ca channels open in the sarcoplasmic reticulum

Answers

The following is the sequence of events that occur before or during a muscle contraction:

1. Threshold potentials are reached in the transverse tubule.

2. Voltage-gated calcium channels are opened in the sarcoplasmic reticulum.

3. Calcium ions bind to troponin.

4. Myosin binds to actin.

5. Sarcomeres shorten.

6. Calcium ions are transported back into the sarcoplasmic reticulum.

7. Myosin releases actin.

8. Sarcomeres lengthen.

In skeletal muscles, a muscle contraction is initiated by an action potential. The action potential propagates through the transverse tubule system and reaches the terminal cisternae of the sarcoplasmic reticulum. Threshold potentials are then reached in the transverse tubule. When the threshold potential is reached, voltage-gated calcium channels are opened in the sarcoplasmic reticulum. The calcium ions released from the sarcoplasmic reticulum bind to troponin, which is present on the actin filaments.

This binding allows myosin to bind to actin, which initiates the sliding of the actin and myosin filaments past each other, shortening the sarcomere. The calcium ions are transported back into the sarcoplasmic reticulum when the muscle contraction ends. This causes myosin to release actin, and the sarcomeres lengthen.

To know more about skeletal muscles refer to:

https://brainly.com/question/2929694

#SPJ11

Balance the following redox reaction by inserting the appropriate coefficients. HNO3 + H2S --> NO + S + H2O

Answers

The correct balanced redox reaction is:

H2S + HNO3 + 8H+ → NO + S + 4H2O

Assigning oxidation numbers to each element:

HNO3: Hydrogen (H) is +1, Nitrogen (N) is +5, Oxygen (O) is -2

H2S: Hydrogen (H) is +1, Sulfur (S) is -2

NO: Nitrogen (N) is +2, Oxygen (O) is -2

S: Sulfur (S) is 0

H2O: Hydrogen (H) is +1, Oxygen (O) is -2

Determine the elements undergoing oxidation and reduction:

HNO3: Nitrogen (N) is reduced from +5 to +2

H2S: Sulfur (S) is oxidized from -2 to 0

Balance the non-oxygen and non-hydrogen elements:

The elements other than oxygen and hydrogen are nitrogen (N) and sulfur (S). The equation is already balanced in terms of the non-oxygen and non-hydrogen elements.

Balance the oxygen atoms:

On the left side, there are three oxygen (O) atoms from HNO3, and on the right side, there are two oxygen atoms from NO and one oxygen atom from H2O. To balance the oxygen atoms, add one water molecule (H2O) to the left side:

Balance the hydrogen atoms:

On the left side, there are two hydrogen (H) atoms from HNO3 and two hydrogen atoms from H2O. On the right side, there are two hydrogen atoms from H2S. To balance the hydrogen atoms, add four hydrogen ions (H+) to the right side:

HNO3 + H2S + H2O → NO + S + H2O + 4H+

Balance the charges:

On the left side, the charge is neutral. On the right side, the charge is also neutral.

HNO3 + H2S + H2O → NO + S + H2O + 4H+

The balanced equation is:

H2S + HNO3 +  H2O → NO + S + H2O + 4H+

Therefore, the correct balanced redox reaction is:

H2S + HNO3 + 8H+ → NO + S + 4H2O

Learn more about redox reaction at: https://brainly.com/question/459488

#SPJ11

sn2 (aq)→sn4 (aq) (acidic or basic solution) express your answer as a chemical equation. identify all of the phases in your answer.

Answers

The chemical equation for the reaction of Sn2(aq) to Sn4(aq) in an acidic or basic solution is:Sn2(aq) + 2e- → Sn4(aq)

What is the chemical equation for the reaction of Sn2(aq) to Sn4(aq) in an acidic or basic solution?

In this reaction, Sn2(aq) is being oxidized to Sn4(aq) by losing two electrons (2e-). The oxidation state of Sn increases from +2 to +4.

It's important to note that the phases of the substances involved in the reaction are not specified in the question.

However, based on the naming conventions, "(aq)" indicates that the substances are in aqueous solution, meaning they are dissolved in water.

Learn more about chemical equation

brainly.com/question/28294176

#SPJ11

what ionic compound makes up corals and the shells and skeletons of plankton and shellfish? how does ocean acidity affect the ability of this compound to form? (hint:

Answers

The ionic compound that makes up corals, shells, and skeletons of plankton and shellfish is calcium carbonate (CaCO3).

Ocean acidity, specifically the increase in carbon dioxide (CO2) levels leading to ocean acidification, affects the ability of calcium carbonate to form in a few ways. When CO2 dissolves in seawater, it reacts with water to form carbonic acid (H2CO3), which then dissociates into hydrogen ions (H+) and bicarbonate ions (HCO3-). The increase in hydrogen ions decreases the pH of the seawater, making it more acidic.

The increased acidity of seawater reduces the concentration of carbonate ions (CO32-). Carbonate ions are essential for the formation of calcium carbonate. When the concentration of carbonate ions decreases, it becomes more difficult for corals, plankton, and shellfish to build their shells and skeletons.

Calcium carbonate formation depends on the equilibrium between carbonate ions and dissolved calcium ions (Ca2+). In acidic conditions, the equilibrium is shifted towards the bicarbonate ions, as more carbonate ions combine with hydrogen ions to form bicarbonate ions. This reduces the availability of carbonate ions for calcium carbonate precipitation.

ocean acidification hinders the ability of corals, plankton, and shellfish to form their shells and skeletons properly. It can lead to reduced growth rates, weakened structures, and even dissolution of existing shells in severe cases.

the increased acidity caused by ocean acidification reduces the concentration of carbonate ions, making it more challenging for calcium carbonate to form. This has detrimental effects on the ability of corals, plankton, and shellfish to build and maintain their shells and skeletons.

Learn more about  plankton  ,visit:

https://brainly.com/question/32479980

#SPJ11

how many grams of agcl would be needed to make a 4.0 m solution with a volume of 0.75 l? your answer should have two significant figures.

Answers

To prepare a 4.0 M solution with a volume of 0.75 L, approximately 430 grams of AgCl would be needed to prepare. For this molarity (M) and volume (V) of the solution are considered.

To calculate the grams of AgCl needed for the given solution, we need to consider the molarity (M) and volume (V) of the solution. Molarity is defined as moles of solute per litre of solution. First, we convert the volume from litres to millilitres (0.75 L = 750 mL) to maintain consistency with the molarity units. Then, we use the equation:

moles of AgCl = Molarity (M) * Volume (L)

Now, we can substitute the given values into the equation:

moles of AgCl = 4.0 mol/L * 0.750 L = 3.0 mol

Since we want to find the mass in grams, we need to multiply the moles of AgCl by its molar mass. The molar mass of AgCl is approximately 143.32 g/mol. Applying the conversion:

grams of AgCl = moles of AgCl * molar mass of AgCl

grams of AgCl = 3.0 mol * 143.32 g/mol = 430 g

Therefore, approximately 430 grams of AgCl would be needed to make a 4.0 M solution with a volume of 0.75 L.

Learn more about molarity here:

https://brainly.com/question/2817451

#SPJ11

given the following reaction, if one begins with 5.0 moles of al2o3 then how many moles of o2 could be produced?

2Al2O3 ➤ 4Al + 3O2

Answers

7.5 moles of oxygen would be produced if 5.0 moles of Al2O3 are used.

The given balanced chemical equation is2Al2O3 ➤ 4Al + 3O2

Here, 2 moles of aluminum oxide produce 3 moles of oxygen gas.

Now, we have5.0 moles of aluminum oxide.

Using stoichiometry, we can find the number of moles of oxygen produced as follows;

2Al2O3 ➤ 3O2

Moles of oxygen = Moles of aluminum oxide * (3/2)Moles of oxygen = 5.0 * (3/2)Moles of oxygen = 7.5

Hence, 7.5 moles of oxygen would be produced if 5.0 moles of Al2O3 are used.

learn more about moles here

https://brainly.com/question/15356425

#SPJ11

5. how much of an 800-gram sample of potassium-40 will remain after 3.9 × 10^9 years of radioactive decay?

Answers

Potassium-40 has a half-life of 1.28 x 10^9 years. The amount remaining of a substance undergoing radioactive decay can be determined using the formalin = N0 (1/2)^(t/t1/2)where:N0 is the initial amount is the elapsed timet1/2 is the half-life of the substances is the amount remaining after time pugging in the values:Given:N0 = 800 g t = 3.9 x 10^9 yearst1/2 = 1.28 x 10^9 years

Formula = N0 (1/2)^(t/t1/2)Substitute the values = 800 g (1/2)^(3.9 x 10^9 / 1.28 x 10^9) = 800 g (1/2)^3 = 800 g (0.125) = 100 g (to the nearest 10 g)Thus, 100 g of the 800-gram sample of potassium-40 will remain after 3.9 × 10^9 years of radioactive decay. Where: N(t) is the amount of the radioactive substance at time t N0 is the initial amount of the radioactive substance λ is the decay constant (related to the half-life) t is the time elapsed For potassium-40 (K-40), the half-life is approximately 1.25 billion years, or 1.25 × 10^9 years.

Read more about radioactive here;https://brainly.com/question/1236735

#SPJ11

what is the enthalpy of reaction for the decomposition of calcium carbonate? a. caco3(s)
b. cao(s) c. co2(g)
d. kj

Answers

Answer: The enthalpy of reaction for the decomposition of calcium carbonate is - 114.7 kJ/mol.

The enthalpy of reaction for the decomposition of calcium carbonate is provided as follows: The balanced chemical equation for the decomposition of calcium carbonate is given as:CaCO3 (s) → CaO (s) + CO2 (g). The enthalpy change of this reaction is ΔH.

The amount of heat absorbed or evolved during the course of this reaction is called the enthalpy of reaction. In this case, calcium carbonate decomposes into calcium oxide and carbon dioxide gas, and heat is absorbed. The enthalpy of reaction for the decomposition of calcium carbonate can be calculated as follows: ΔH = ΣH(products) − ΣH(reactants).

The enthalpy change of formation of CaO (s) is - 635.1 kJ/mol, and the enthalpy change of formation of CO2 (g) is - 393.5 kJ/mol. The enthalpy change of formation of CaCO3 (s) is -1206.9 kJ/mol. Using the above values, we can calculate the enthalpy change of the reaction: ΔH = [ΔHf(CaO) + ΔHf(CO2)] − ΔHf(CaCO3)ΔH = [(- 635.1) + (- 393.5)] − (-1206.9)ΔH = - 114.7 kJ/mol.

Therefore, the enthalpy of reaction for the decomposition of calcium carbonate is - 114.7 kJ/mol.

To know more about decomposition visit:

https://brainly.com/question/14843689

#SPJ11

how does the chemistry of caramelization explain why dark caramel has less sugar in it?

Answers

The chemistry of caramelization explains why dark caramel has less sugar content. Caramelization is a chemical process that occurs when sugar is heated.

Caramelization involves the breakdown of sugar molecules into smaller compounds, resulting in the characteristic flavor, color, and aroma of caramel. As sugar is heated, it undergoes a series of complex reactions, including dehydration, polymerization, and the Maillard reaction.

These reactions lead to the formation of new compounds, such as caramelan and caramelene, which contribute to the deep color and distinct taste of caramel.

Dark caramel, compared to lighter variations, undergoes caramelization for a longer period, resulting in more extensive chemical changes. During this prolonged process, a significant amount of sugar is converted into caramel compounds.

Consequently, dark caramel contains less sugar than its lighter counterparts, as a substantial portion of the original sugar molecules has transformed into different compounds. This is why dark caramel has a more intense flavor and a lower sugar content.

Learn more about Maillard reaction here:

https://brainly.com/question/30372295

#SPJ11

how much of a 11.0 m hno3 solution should you use to make 850.0 ml of a 0.220 m hno3 solution? nothing ml

Answers

A 11.0 m hno3 solution should you use to make 850.0 ml of a 0.220 m hno3 solution is, Volume of HNO3 solution = 2.75 mL

To calculate the amount of HNO3 solution required to make 850.0 mL of 0.220 M HNO3 solution, we need to use the formula:M1V1 = M2V2Where,M1 = concentration of stock solutionV1 = volume of stock solutionM2 = concentration of final solutionV2 = volume of final solution Let's substitute the values:11.0 M x V1 = 0.220 M x 850.0 mLV1 = (0.220 M x 850.0 mL) / 11.0 MV1 = 17.0454 mL We need to use 17.0454 mL of 11.0 M HNO3 solution to make 850.0 mL of 0.220 M HNO3 solution.

To convert mL to L, we need to by 1000:17.0454 mL ÷ 1000 = 0.017 mLSo, the amount of 11.0 M HNO3 solution required to make 850.0 mL of 0.220 M HNO3 solution is 0.017 mL (rounded to three significant figures).

To know more about solution visit:

https://brainly.com/question/15757469

#SPJ11

The value of ΔfH⊖ for NH3 is -91.8kJ mol−1. Calculate enthalpy change for the following reaction 2NH3(g)→N2(g)+3H2(g).

Answers

Calculated by reaction using the formula,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))Here,ΔfH⊖ for NH3 = -91.8 kJ/mol.

The balanced chemical equation for the given reaction is 2 NH3(g) → N2(g) + 3 H2(g)So, the enthalpy change for the given reaction is,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))ΔH = [ΔfH⊖ (N2) + 3ΔfH⊖ (H2)] - [2ΔfH⊖ (NH3)]Substituting the respective values,ΔH = [(0 + 3 × 0) kJ/mol] - [2 × (-91.8 kJ/mol)]ΔH = 183.6 kJ/mol.

Enthalpy change can be calculated by using the formula,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))Where,ΔH = enthalpy change for the reactionΔfH⊖ = standard enthalpy of formationThe balanced chemical equation for the given reaction is 2 NH3(g) → N2(g) + 3 H2(g)So, the enthalpy change for the given reaction is,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))ΔH = [ΔfH⊖ (N2) + 3ΔfH⊖ (H2)] - [2ΔfH⊖ (NH3)]Substituting the respective values,ΔH = [(0 + 3 × 0) kJ/mol] - [2 × (-91.8 kJ/mol)]ΔH = 183.6 kJ/mol.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

Find solutions for your homework

science

chemistry

chemistry questions and answers

a student dissolves 10.8 g of sodium chloride ( nacl)in 300.g of water in a well-insulated open cup. he then observes the temperature of the water fall from 23.0∘c to 22.6∘c over the course of 9 minutes. use this data, and any information you need from the aleks data resource, to answer the questions below about this reaction: nacl(s)→na+(aq)+cl−(aq) you can

Question: A Student Dissolves 10.8 G Of Sodium Chloride ( NaCl)In 300.G Of Water In A Well-Insulated Open Cup. He Then Observes The Temperature Of The Water Fall From 23.0∘C To 22.6∘C Over The Course Of 9 Minutes. Use This Data, And Any Information You Need From The ALEKS Data Resource, To Answer The Questions Below About This Reaction: NaCl(S)→Na+(Aq)+Cl−(Aq) You Can




Show transcribed image text

Expert Answer

1st step

All steps

Final answer

Step 1/3

1.


To determine whether this reaction is exothermic, endothermic, or neither, we need to consider the change in temperature that occurred when the NaCl dissolved in water. In this case, the temperature of the water fell from23.0°C to 22.6°C over the course of 9 minutes, indicating that heat was released by the reaction. Therefore, we can conclude that the reaction is exothermic.


a. exothermic


View the full answer

Step 2/3

Step 3/3

Final answer

Transcribed image text:

A student dissolves 10.8 g of sodium chloride ( NaCl)in 300.g of water in a well-insulated open cup. He then observes the temperature of the water fall from 23.0∘C to 22.6∘C over the course of 9 minutes. Use this data, and any information you need from the ALEKS Data resource, to answer the questions below about this reaction: NaCl(s)→Na+(aq)+Cl−(aq) You can make any reasonable assumptions about the physical properties of the solution. Be sure answers you caiculate using measured data are rounded to 1 significant digit. Note for advanced students' it's possible the student did not do the experiment carefully, and the values you calculate may not be the same as the known and published values for this reaction.

Answers

The temperature of the water decreases when the NaCl is dissolved in water. The energy released when the salt is dissolved in water is greater than the energy consumed in warming the salt and water to the initial temperature of 23.0 ∘C.

The heat lost by the solution is given by the following equation: Q = msΔTQ = Heat absorbed or released by the system m = mass of water = 300 gΔT = Change in temperature of the system = 0.4 Ks = Specific heat of water = 4.184 J/g K Now we will calculate the amount of heat released during the reaction. 1.

The amount of heat released by the NaCl in the reaction will be equal to the amount of heat absorbed by the water in cooling down from 23.0 ∘C to 22.6 ∘C. Hence, the value of Q will be negative. Q = -msΔTQ = -(300 g) (4.184 J/g K) (0.4 K)Q = -501.12 J2. The amount of heat released by the NaCl will be equal to the amount of heat absorbed by the water.

To know more about dissolved visit:

https://brainly.com/question/2364287

#SPJ11

the imidazole side chain of histidine can function as either a general acid catalyst or a general base catalyst because _____.

Answers

If the pH of the environment is greater than the pKa of the imidazole side chain, the imidazole will be deprotonated and will function as a general base catalyst by accepting a proton.

The imidazole side chain of histidine can function as either a general acid catalyst or a general base catalyst because it can donate or accept a proton, depending on the pH of the environment. In its neutral form, the imidazole side chain has a pKa of approximately 6, which means that it can act as either an acid or a base at physiological pH.A general acid catalyst is a molecule that donates a proton to a substrate, while a general base catalyst is a molecule that accepts a proton from a substrate. The imidazole side chain of histidine can perform both functions because it has a pKa that is close to physiological pH. If the pH of the environment is less than the pKa of the imidazole side chain, the imidazole will be protonated and will function as a general acid catalyst by donating a proton. If the pH of the environment is greater than the pKa of the imidazole side chain, the imidazole will be deprotonated and will function as a general base catalyst by accepting a proton.

To know more about imidazole visit:

https://brainly.com/question/30903179

#SPJ11

Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas. In which flask are the molecules least polar and therefore most ideal in behavior? a. Flask A b. Flask B c. Flask C d. All are the same. e. More information is needed to answer this.

Answers

As a result, the NH3 and NO2 gas molecules in flasks A and B are more polar than the N2 gas molecule in flask C, making the N2 gas molecule in flask C less polar and most ideal in behavior. Therefore, option C is the correct ..

STP refers to Standard Temperature and Pressure. Standard temperature is 0°C (273.15K) and the standard pressure is 1 atm pressure.

Consider three 1-L flasks at STP. Flask A contains NH3 gas, flask B contains NO2 gas, and flask C contains N2 gas.

According to the given information, we can draw the following conclusion;

The molecule with least polar is N2 gas, so Flask C contains N2 gas is least polar. Nitrogen is a gas that is composed of two nitrogen atoms, and because both of these atoms are identical, the molecule is symmetric. There are no polar bonds in the nitrogen molecule because the two bonds between the nitrogen atoms are the same, and the electronegativity difference between nitrogen and nitrogen is zero.

The electronegativity of Nitrogen is 3.04, whereas for Oxygen it is 3.44. NH3 and NO2 have polarity because the electronegativity of Nitrogen is higher than Hydrogen and Oxygen, which are 2.20 and 3.44 respectively.

As a result, the NH3 and NO2 gas molecules in flasks A and B are more polar than the N2 gas molecule in flask C, making the N2 gas molecule in flask C less polar and most ideal in behavior. Therefore, option C is the correct answer.

To know more about molecules visit:

https://brainly.com/question/32298217

#SPJ11

how do you model the following situation with a uml use case diagram: the lab director does a lab test together with his assistant. the assistant always has to write a protocol during the lab test.

Answers

A UML use case diagram can be used to model the situation where a lab director and his assistant perform a lab test, with the assistant being responsible for writing a protocol.

In a UML use case diagram, the primary actors and their interactions with the system are depicted. In this situation, the lab director and the assistant are the primary actors. The lab test itself can be represented as a use case, indicating the overall goal or task to be accomplished.

To represent the assistant's responsibility of writing a protocol, a separate use case can be created specifically for this task. This use case can be named "Write Protocol" or something similar. The lab director and the assistant would both be connected to this use case, indicating their involvement in the task.

Additionally, associations or dependencies can be used to represent the collaboration between the lab director and the assistant during the lab test. This can indicate that the lab director and the assistant work together to carry out the test, with the assistant taking on the additional responsibility of writing the protocol.

By using a UML use case diagram, the relationship between the lab director, the assistant, the lab test, and the writing of the protocol can be visually represented, providing a clear overview of the interactions and responsibilities involved in the given situation.

Learn more about lab director here:

https://brainly.com/question/13741451

#SPJ11

from the mechanism of the silver ion test for alkyl halides, depicted in figure 2, determine if that reaction mechanism an sn1 of sn2 process? explain your reasoning.

Answers

From the mechanism of the silver ion test for alkyl halides depicted in figure 2, the reaction mechanism is an SN1 process.

SN1 stands for Substitution Nucleophilic Unimolecular. It is a two-step nucleophilic substitution reaction mechanism. In this process, the substrate dissociates first, producing a carbocation intermediate, followed by the nucleophilic attack on the intermediate to create the substitution product. This mechanism is typical for primary or secondary substrates that produce a stable carbocation.

The silver ion test is a test for identifying halogen-containing compounds, such as alkyl halides. The silver ion test, also known as the Finkelstein reaction, entails the treatment of halogen-containing organic compounds with an aqueous solution of silver nitrate.The reactivity of halides with silver ions is different in SN1 and SN2 reaction mechanisms. Because silver ions are better nucleophiles than halide ions, they can act as nucleophiles and attack the carbocation intermediate that is created when the alkyl halide reacts with silver nitrate.

To know more about alkyl halides visit:

https://brainly.com/question/29371143

#SPJ11

how many grams of hydrochloric acid could be produced from 49.8 g of hydrogen sulfide?

Answers

From 49.8 grams of hydrogen sulfide ([tex]H_{2}S[/tex]), approximately 106.59 grams of hydrochloric acid (HCl) can be produced through a chemical reaction.

To determine the amount of hydrochloric acid that can be produced, we use the balanced chemical equation: [tex]H_{2} S + 2HCl ------ > 2H_{2}O + 2Cl[/tex]. The equation shows that 1 mole of [tex]H_{2}S[/tex] reacts with 2 moles of HCl. First, we convert the mass of [tex]H_{2} S[/tex] into moles. The molar mass of [tex]H_{2}S[/tex] is approximately 34.08 g/mol. Dividing 49.8 grams by the molar mass, we find 1.461 moles of [tex]H_{2} S[/tex].

Using the mole ratio from the balanced equation, we determine that the moles of HCl produced will be twice the moles of [tex]H_{2}S[/tex]. Thus, the moles of HCl are approximately 2.922 moles. Finally, to calculate the mass of HCl, we multiply the moles of HCl by its molar mass, which is approximately 36.46 g/mol. The result is approximately 106.59 grams of HCl.

In conclusion, from 49.8 grams of hydrogen sulfide, approximately 106.59 grams of hydrochloric acid can be produced by reacting the hydrogen sulfide with an adequate amount of hydrochloric acid according to the balanced chemical equation.

Learn more about hydrochloric acid here:

https://brainly.com/question/30395978

#SPJ11

The number of grams of hydrochloric acid that can be produced from 49.8 g of hydrogen sulfide depends on the balanced chemical equation for the reaction between hydrogen sulfide and hydrochloric acid.

To determine the number of grams of hydrochloric acid that can be produced from 49.8 g of hydrogen sulfide, we need to consider the balanced chemical equation for the reaction. The balanced equation for the reaction between hydrogen sulfide [tex](H_2S)[/tex] and hydrochloric acid (HCl) is:

[tex]H_2S + 2HCl[/tex]→ [tex]2H_2O + S[/tex]

From the balanced equation, we can see that 1 mole of hydrogen sulfide reacts with 2 moles of hydrochloric acid to produce 1 mole of sulfur and 2 moles of water.

To calculate the number of moles of hydrogen sulfide, we divide the given mass (49.8 g) by its molar mass. The molar mass of hydrogen sulfide [tex](H_2S)[/tex] is approximately 34.08 g/mol.

Moles of H2S = 49.8 g / 34.08 g/mol = 1.46 mol

Since the reaction stoichiometry tells us that 1 mole of [tex]H_2S[/tex] reacts with 2 moles of HCl, we multiply the number of moles of [tex]H_2S[/tex] by the stoichiometric ratio:

Moles of HCl = 1.46 mol [tex]H_2S[/tex] × (2 mol HCl / 1 mol [tex]H_2S[/tex]) = 2.92 mol HCl

Finally, we can calculate the mass of hydrochloric acid produced by multiplying the number of moles of HCl by its molar mass. The molar mass of hydrochloric acid (HCl) is approximately 36.46 g/mol.

Mass of HCl = 2.92 mol × 36.46 g/mol = 106.46 g

Therefore, approximately 106.46 grams of hydrochloric acid could be produced from 49.8 g of hydrogen sulfide.

Learn more about molar mass here:

https://brainly.com/question/31545539

#SPJ11

what is the final temperature (in °c) of 940.1 g of water (specific heat = 4.184 j/g・ °c) at 24.20 °c that absorbed 950.0 j of heat?

Answers

Final temperature = 24.20 °C + 0.256 °C = 24.456 °C, Therefore, the final temperature of the water is 24.456 °C. The temperature change of a substance is calculated using the formula,  ΔT = q / m

ΔT = change in temperatureNow, substituting the given values,ΔT = 950 J / 940.1 g * 4.184 J/g·°C = 0.256 °CTherefore, the temperature of the water changes by 0.256 °C. Now, to find the final temperature, we add the initial temperature (24.20 °C) to the temperature change (0.256 °C).Final temperature = 24.20 °C + 0.256 °C = 24.456 °CTherefore, the final temperature of the water is 24.456 °C.

The temperature change of a substance is calculated using the formula,  ΔT = q / m * cwhere q = heat absorbed, m = mass of the substance, c = specific heat capacity of the substance, ΔT = change in temperatureNow, substituting the given values,ΔT = 950 J / 940.1 g * 4.184 J/g·°C = 0.256 °C

To know more about temperature visit:-

https://brainly.com/question/7510619

#SPJ11

an atom's configuration based on its number of electrons ends at 3p2. another atom has eight more electrons. starting at 3p, what would be the remaining configuration?

Answers

The remaining electron configuration of the atom, starting from 3p, would be [tex]3p^6 4s^2[/tex].

The electron configuration of an atom describes how electrons are distributed among its various energy levels and orbitals. The given atom has an electron configuration ending at [tex]3p^2[/tex], indicating that it has two electrons in the 3p orbital. To determine the remaining electron configuration when eight more electrons are added, we start from 3p and distribute the additional electrons according to the Aufbau principle and Hund's rule.

The Aufbau principle states that electrons fill orbitals in order of increasing energy. Since the 3p orbital is filled with two electrons, we move on to the next available orbital, which is 4s. Hund's rule states that electrons occupy orbitals of the same energy level singly before pairing up. Therefore, the eight additional electrons would first fill the 4s orbital with two electrons, resulting in  [tex]3p^6 4s^2[/tex]. This configuration satisfies the electron requirement of the given atom with eight extra electrons.

To learn more about configuration refer:

https://brainly.com/question/26084288

#SPJ11

determine the value of kc for the following reaction if the equilibrium concentrations are as follows: [hcl]eq = 0.13 m, [hi]eq = 5.6 × 10-16 m, [cl2]eq = 0.0019 m.

Answers

The value of Kc cannot be determined without knowing the equilibrium concentration of I2 ([I2]eq).

What is the value of Kc for the given reaction with the provided equilibrium concentrations?

To determine the value of Kc for the given reaction, we need to use the equilibrium concentrations of the reactants and products. The balanced equation for the reaction is:

HCl + I2 ⇌ HI + Cl2

The equilibrium concentrations are given as [HCl]eq = 0.13 M, [HI]eq = 5.6 × 10^(-16) M, and [Cl2]eq = 0.0019 M.

The expression for Kc is the ratio of the product concentrations raised to their stoichiometric coefficients divided by the reactant concentrations raised to their stoichiometric coefficients:

Kc = ([HI]eq ˣ  [Cl2]eq) / ([HCl]eq ˣ  [I2]eq)

Plugging in the given equilibrium concentrations:

Kc = (5.6 × 10^(-16) ˣ 0.0019) / (0.13 ˣ  [I2]eq)

Since the equilibrium concentration of I2 ([I2]eq) is not provided, we cannot calculate the exact value of Kc in this case. The calculation of Kc requires knowing all the equilibrium concentrations of the reactants and products involved.

Learn more about equilibrium concentration

brainly.com/question/16645766

#SPJ11

an aqueous solution at 25has a ph of 6.07.calculate the poh. round your answer to 2 decimal places.

Answers

The pOH of the aqueous solution at 25°C with a pH of 6.07 is 7.93

The pH and pOH are related through the ionization constant of water, Kw, such that [tex]pH + pOH = 14.00.[/tex]

We can then use this equation to calculate pOH given a known pH. Therefore, the pOH of an aqueous solution at 25°C with a pH of 6.07 is calculated as follows: [tex]pH + pOH = 14.00[/tex]

Given pH = 6.07, then:

[tex]6.07 + pOH = 14.00[/tex]

[tex]pOH = 14.00 - 6.07[/tex]

[tex]pOH = 7.93[/tex]

Therefore, the pOH of the aqueous solution at 25°C with a pH of 6.07 is 7.93, rounded to two decimal places.

A solution in which water serves as the solvent is called an aqueous solution. By appending (aq) to the relevant chemical formula, it is typically demonstrated in chemical equations. Na+(aq) + Cl(aq) is an illustration of a solution of sodium chloride (NaCl) or table salt in water.

Water is a common solvent in chemistry because it is an excellent solvent and occurs naturally. Unless otherwise specified, the term solution refers to an aqueous solution because water is frequently used as the solvent in experiments.

To know more about ionization:

https://brainly.com/question/4428047

#SPJ11

how many distinct dibromo products are formed in the bromination reaction of (e)-stilbene? answer with digits only.

Answers

Bromination is a chemical process that entails the addition of bromine to a substrate. Bromination may occur selectively or may involve the addition of bromine to many locations on the substrate.

Bromination reactions are usually carried out in the presence of a catalyst or initiator.A catalyst or initiator is used in this process to generate free radicals, which can be used to add bromine atoms to the substrate. Aromatic compounds are more difficult to brominate than alkenes due to their greater stabilization of the radical intermediate formed during the reaction.

The following reaction scheme depicts the bromination of an alkene to generate a dibromoalkane. Two moles of bromine are needed to generate a dibromoalkane from an alkene. Mechanism for the bromination of alkenesThe bromination of alkenes follows an electrophilic addition mechanism.

To know more about Bromination visit:-

https://brainly.com/question/28938775

#SPJ11

Select all statements that are TRUE regarding strong electrolytes.
Strong electrolytes are substances composed of ions.
Strong electrolytes conduct an electrical current.
Strong electrolytes are substances that dissociate completely in water producing ions.
Some acids can be strong electrolytes.

Answers

C). Strong electrolytes are substances that dissociate completely in water producing ions. They are composed of ions and conduct an electrical current. Some acids can be strong electrolytes.

All of these statements are true regarding strong electrolytes. Here's a 150-word explanation to support this.Strong electrolytes are chemical compounds that completely dissociate in water, producing free ions. Electrolytes are charged particles that can conduct electricity when dissolved in water. The strong electrolyte dissociation process in water produces large numbers of ions that enable the solution to carry an electrical charge.Strong electrolytes are composed of ions that are responsible for conducting an electrical current. Salts such as potassium chloride and sodium chloride, which are strong electrolytes, completely dissociate into their respective ions.

Thus, they can be used to conduct electrical current through the solution. Some acids such as HCl are also strong electrolytes because they completely dissociate in water and form ions. The dissociation of the acid produces hydrogen ions (H+) and chloride ions (Cl-) in the solution. Hence, strong electrolytes are substances composed of ions, conduct an electrical current and dissociate completely in water producing ions.

To know more about electrolytes  visit:-

https://brainly.com/question/32477009

#SPJ11

the international commission of radiological protection has set the limit for yearly radiation exposure at 1000 usv. what is the risk associated with this dose?

Answers

The risk associated with a yearly radiation exposure of 1000 uSv is considered low and poses minimal health effects.

The International Commission on Radiological Protection (ICRP) is an organization that sets guidelines and recommendations for radiation protection. They have determined that a yearly radiation exposure of 1000 uSv (microsieverts) is within the acceptable limit for the general population.

At this dose, the risk of experiencing harmful health effects, such as radiation sickness or increased risk of cancer, is very low. The ICRP takes into account various factors, including scientific evidence and the principle of keeping radiation exposure as low as reasonably achievable (ALARA), to establish these limits.

You can learn more about radiation exposure at

https://brainly.com/question/1443001

#SPJ11

Other Questions
DNA Sequencing. The following DNA fragment was sequenced by the Sanger method. The red asterisk indicates a fluorescent label. *5 3 -3-OH -ATTACGCAAGGACATTAGAC-5' A sample of the DNA was reacted with DNA polymerase and each of the nucleotide mixtures listed below (in an appropriate buffer). Dideoxynucleotides (ddNTPs) were added in relatively small amounts. 1 DATP, DTTP, DCTP, GTP, ddTTP 2 DATP, DTTP, CTP, dGTP, ddGTP 3 DATP, CTP, dGTP, ddTTP 4 DATP, DTTP, OCTP, GTP The resulting DNA was separated by electrophoresis on an agarose gel, and the flu- orescent bands on the gel were located. The band pattern resulting from nucleotide mixture 1 is shown on Figure 21 below, on the left. Assuming that all mixtures were run on the same gel, what did the remaining lanes of the gel look like? Martol, Inc. has fixed costs of $102,500 and a contribution margin ratio of 25%. How much sales revenue must be earned for a profit of $63,000? Multiple Choice $82.750 $331,000 $662,000 $332.000 Ironwood Inc. has a variable cost ratio of 60% and fixed costs of $90,000. What sales revenue is needed to generate a $120,000 profit? Multiple Choice O $128,572 $225,000 $375,000 O $525.000 Idaho Corp. has fixed costs of $20,000 and a contribution margin ratio of 50%. Currently, sales are $75,000. What is Idaho's margin of safety? Multiple Choice $28,000 $35,000 O $42.000 $70,000 Project your own business career five to ten years ahead as an employee in one or more large, publicly traded companies. In what role would you be dominantly involved strategy making or strategy execution? Do explain your answer fully Which of the following statements about ethnic diversity in the workplace is true? Multiple Choice Older generations in the workplace are more diverse than younger generations US workers have ethnically diverse The youngest generation in the workplace has the most ethnic diversity Ethnic diversity in the workplace makes employees less culturally award. Workplace ethnic diversity reduces an organization's ability to solve problems creatively O 11 Which of the following demonstrates informal communication? Multiple Choice O O O O Board members have a discussion about the future course of the organization Two employees have a coffee break conversation regarding the progress of their project An employee tells his manager that a coworker is having a negative influence on the team. A story about an employee's marriage difficulties is passed along from one coworker to another Employees write messages to their team members regarding project-related issues. 12 Which of the following best exemplifies personal communication? Mutiple Choice a team discussion of how to improve work performance att acknowledgement that an order has been received a note to a suppler thanking him for the Christmas card he sent a business proposal written to the general manager of a company a team meeting to discuss plans for the company awards banquet In "Surviving Progress" - The film points to how the First World capitalist economy is served by, for instance, mining in Africa and deforestation in Brazil to provide raw materials to multinational corporations. How does this create inequality between countries and citizens? what is the chemical formula for the conjugate acid of the base trimethylamine T. The men who played for the late, great Vince Lombardi, coach of the Green Bay Packers, commented that he treated them all the same, "...like dogs. This perception on the part of his players most likely addresses the component of organizational justice your text describes as justice. O informational O interpersonal O interactional O distributive O transformational 1. Describe how bribery and corruption can impact a company'sinternational business relations.2. List and briefly discuss two benefits and two drawbacks ofregional integration. what is an accretionary wedge, and how does it form? who is responsible for final approval of the ahima code of ethics? what country originally colonized the area now known as delaware? 1B.) Show a situation where this farmer is making economic profits. Explain what is likely tohappen in this market as a result of this condition. Assume that this one farmer is one of manyfarmers making an economic profit and the high prices that lead to the economic profit has a verystrong influence on potential market participants. anyone can solve this?[tex] \sqrt[4] {a}^{3 \:} to \: power[/tex] Steven Ltd (Lessor) and Shane Ltd (Lessee) enter into a leaseagreement for a vehicle on 30 June 2020.Details of the lease agreement are as follows:Lease term3 yearsAnnual Rental Payment find the wavelengths of a photon and an electron that have the same energy of 20.0 evev . (the energy of the electron is its kinetic energy.) LISTENING1. Here is an interesting story. The story has been told in twways. Story A has all the odd sentences (1,3,5,. ) and story!take up Story A and the other take up Story B. The personhas the even sentences (2,4,6,. ). Working in pairs, one of youwith Story A will read out the first sentence and the partne(person with story B) will write in the space provided. Then theperson with Story B will read sentence two and the partnerwill write in the space for sentence two. Likewise complete thewhole story. Once the story is completed, both of you will readout to each other to check whether you have listened carefullyto your partner and written the complete story. tory AThe RaceStory B The Race1. y evening the animals of thehlipatti used to sit underbanyan tree. PRESSIONS 2 - Cuss X After 1 year,90 \%of the initial amount of a radioactive substance remains. What is the half-life of the substance? half-life is years . Sol-Tex has net income of $1,300,000 and 400,000 shares outstanding. It has preferred dividends of $300,000. What are the earnings per share? $0.25 $2.50 $1.86 O $4.33 In technical analysis the larger the number of days used in amoving average, the less smoothing of prices will occurTrueFalse Which of the following acids (listed with Ka values) and their conjugate base would form a buffer with a pH of 2.34? A) H F, Ka-3,5 x 10-4 B) H CIO, Ka -2.9 x 10-8 C)HIO3. Ka 1.7 x 10-1 D) C6HsCOOH, Ka 6.5 x 10-5 E) HCIO2 Ka 1.1 x 10-2