The limit of the expression lim (x² - √x⁴ + 3x²) as x approaches any value is indeterminate (∞ - ∞), except when x approaches zero, where the limit is 0.
How did we get the value?To find the limit of the expression lim (x² - √x⁴ + 3x²) as x approaches a certain value, we can simplify the expression and evaluate the limit.
First, let's simplify the expression:
lim (x² - √x⁴ + 3x²)
= lim (4x² - x² - √x⁴)
= lim (3x² - √x⁴)
Now, let's consider the behavior of the expression as x approaches a value.
As x approaches any finite value, the term 3x² will approach a finite value.
For the term √x⁴, as x approaches a finite value, the square root of x⁴ will approach the absolute value of x².
Therefore, the limit becomes:
lim (3x² - √x⁴) = lim (3x² - |x²|)
Next, let's consider the different cases as x approaches positive infinity, negative infinity, and zero.
1. As x approaches positive infinity, the term 3x² will tend to positive infinity, and |x²| will also tend to positive infinity. Thus, the expression becomes:
lim (3x² - |x²|) = lim (∞ - ∞)
In this case, the limit is indeterminate (∞ - ∞).
2. As x approaches negative infinity, the term 3x² will tend to positive infinity, and |x²| will also tend to positive infinity. Thus, the expression becomes:
lim (3x² - |x²|) = lim (∞ - ∞)
Again, in this case, the limit is indeterminate (∞ - ∞).
3. As x approaches zero, the term 3x² will tend to zero, and |x²| will also tend to zero. Thus, the expression becomes:
lim (3x² - |x²|) = lim (0 - 0) = 0
Therefore, the limit of the expression lim (x² - √x⁴ + 3x²) as x approaches any value is indeterminate (∞ - ∞), except when x approaches zero, where the limit is 0.
learn more about limit: https://brainly.com/question/29412132
#SPJ1
if the graph of f(x) =3^x shifted 6 units to the right, what is the equation of the new graph
Express in simplest radical form show work
Answer:
-33x√2
Step-by-step explanation:
[tex]-5x\sqrt{98}+2\sqrt{2x^2}\\\\= -5x\sqrt{2*7^{2} } + 2(x\sqrt{2} )\\\\= -5x(7)(\sqrt{2} ) + 2x\sqrt{2} \\\\= -35x\sqrt{2} +2x\sqrt{2} \\\\= (-35+2)x\sqrt{2}\\ \\=-33x\sqrt{2}[/tex]
find the value of x. 142 3x+22
Answer:
x = 40
you can guess and check.
Rotate the triangle 180 counterclockwise around the origin and enter the coordinates. Enter the number that belongs in the green box A (1,-1) B (4,-2) C (2,-4)
Answer:
A''(-1, 1), B''(-4, 2), C''(-2, 4)
Step-by-step explanation:
When rotated 180°, the symbol of the coordinames change
i.e., if x = 2 it becomes x = -2 and if y = -4, it becomes y = 4
so the coordinates A(1, -1), B(4, -2), C(2, -4)
change to A''(-1, 1), B''(-4, 2), C''(-2, 4)
y=1x^2 + 2x - 3 in vertex and intercept form
The vertex and the x-intercepts of the quadratic equation are:
The vertex is (-1, -4)
The x-intercepts are -3 and 1.
To express the quadratic equation [tex]y = x^2 + 2x - 3[/tex]in vertex and intercept form, we need to complete the square to find the vertex and rewrite the equation in terms of the x-intercepts.
First, let's complete the square to find the vertex. We can do this by taking half the coefficient of x, squaring it, and adding/subtracting it to both sides of the equation:
[tex]y = x^2 + 2x - 3\\y = (x^2 + 2x + 1) - 1 - 3\\y = (x + 1)^2 - 4[/tex]
Now we have the equation in the form [tex]y = a(x - h)^2 + k[/tex], where the vertex is at the point (-h, k). The vertex is (-1, -4).
Next, let's find the x-intercepts by setting y = 0:
[tex]0 = x^2 + 2x - 3\\0 = (x + 3)(x - 1)[/tex]
The x-intercepts are -3 and 1.
In vertex and intercept form, the equation is:
[tex]y = (x + 1)^2 - 4[/tex]
The vertex is (-1, -4)
The x-intercepts are -3 and 1.
This form allows us to easily identify the vertex and the x-intercepts of the quadratic equation.
For more such questions on Vertex
https://brainly.com/question/29638000
#SPJ8
The data below shows the money Paritosh spends on a weekend. What will be the central angles of each of these categories?with the numbers 40 100 50 50
The central angles for the categories with the numbers 40, 100, 50, and 50 are 60 degrees, 150 degrees, 75 degrees, and 75 degrees, respectively.
To calculate the central angles for each category based on the given numbers 40, 100, 50, and 50, we need to find the proportion of each value to the total sum of all the values. Let's proceed with the following steps:
Step 1: Calculate the total sum of the given numbers: 40 + 100 + 50 + 50 = 240.
Step 2: Find the proportion of each value by dividing it by the total sum and multiplying it by 360 (since a full circle has 360 degrees).
Central angle for the first category: (40/240) * 360 = 60 degrees.
Central angle for the second category: (100/240) * 360 = 150 degrees.
Central angle for the third category: (50/240) * 360 = 75 degrees.
Central angle for the fourth category: (50/240) * 360 = 75 degrees.
The central angles for each category based on the given numbers are 60 degrees, 150 degrees, 75 degrees, and 75 degrees, respectively.
These central angles represent the relative proportions of each category's spending in relation to the total spending. They can be used to create a pie chart or visualize the distribution of expenses in a circular graph.
For more question on angles visit:
https://brainly.com/question/31615777
#SPJ8
Note the search engine cannot find the complete question
Ms. Florinda is a kindergarten teacher. She buys 100 pencils and wants to give 2 pencils to each of her students. She has 2 classes, a class with 22 students and a class with 19 students.
Part A
Write an expression for how many pencils she has left after giving them out to her students.
A.
100
−
2
×
(
22
−
19
)
B.
100
−
2
×
22
−
19
C.
100
−
2
×
22
−
2
×
19
D.
100
−
22
−
19
Part B
Does she have enough pencils to give each of her students 2?
Yes or no
, she has
15,18,37,59
More or fewer
than she needs.
Answer:
Part A:
The correct expression for how many pencils Ms. Florinda has left after giving them out to her students is:
A. 100 - 2 × (22 - 19)
Part B:
To determine whether Ms. Florinda has enough pencils to give each of her students 2, we can calculate the total number of pencils needed. The total number of students is the sum of the students in both classes, which is 22 + 19 = 41.
If each student needs 2 pencils, then the total number of pencils needed is 2 × 41 = 82.
Comparing this with the initial number of pencils Ms. Florinda bought (100), we can see that she has more than enough pencils to give each of her students 2.
Yes, she has enough pencils to give each of her students 2.
She has 18 more than she needs.
[tex]\sqrt{x+7}-1=x[/tex]
Answer:
x = 2
Step-by-step explanation:
Pre-SolvingWe are given the following equation:
[tex]\sqrt{x+7} -1=x[/tex], which we want to solve for x.
To do this, we should isolate the square root on one side, then square both sides. We can then solve the equation as normal, but then we have to check the domain in the end for any extraneous solutions.
SolvingStart by adding 1 to both sides.
[tex]\sqrt{x+7} -1=x[/tex]
+1 +1
________________________
[tex]\sqrt{x+7} = x+1[/tex]
Now, square both sides.
[tex](\sqrt{x+7} )^2= (x+1)^2[/tex]
We get:
x + 7 = x² + 2x + 1
Subtract x + 7 from both sides.
x + 7 = x² + 2x + 1
-(x+7) -(x+7)
________________________
0 = x² + x - 6
This can be factored to become:
0 = (x+3)(x-2)
Solve:
x+3 = 0
x = -3
x-2 = 0
x = 2
We get x = -3 and x = 2. However, we must check the domain.
DomainSubstitute -3 as x and 2 as x into the original equation.
We get:
[tex]\sqrt{-3+7} -1 = -3[/tex]
[tex]\sqrt{4} -1 = -3[/tex]
2 - 1 = -3
-1 = -3
This is an untrue statement, so x = -3 is an extraneous solution.
We also get:
[tex]\sqrt{2+7} -1 = 2[/tex]
[tex]\sqrt{9}-1=2[/tex]
3 - 1 = 2
2 = 2
This is a true statement, so x = 2 is a real solution.
Our only answer is x = 2.
A person leaves home and walks 5 miles west, then 6 miles southwest.
How far from home is she?
The person is approximately 7.73 miles from home.
To solve this problem, we can use the Pythagorean theorem and trigonometry. Let us assume that the person starts from the origin (0, 0) and walks 5 miles west, which takes her to the point (-5, 0) on the x-axis.
If we assume that the starting point is (0, 0) and we assign a coordinate system, then the point reached after walking 5 miles west can be represented as (-5, 0). Similarly, the point reached after walking 6 miles southwest can be represented as (-3, -6).Then, she walks 6 miles southwest, which forms a 45-degree angle with the x-axis. We can represent this vector as (6 cos 45°, -6 sin 45°) = (3√2, -3√2).
To find the total distance from home, we need to add the magnitude of these two vectors using the Pythagorean theorem:
d =[tex]\sqrt((-5)^2 + (-3\sqrt2)^2)[/tex]≈ 7.73 miles
For such more questions on miles
https://brainly.com/question/29806974
#SPJ8
Find the value of x
A. 16
B. 6
C. 4√5
8. √5
Here is a unit circle with point P at (1, 0) Find the coordinates of P after the circle rotates the given amount counter clockwise around its center
1. 1/3 of a full rotation: ?
2 1/2 of a full rotation: ?
3. 2/3 of a full rotation: ?
1. 1/3 of a full rotation: The coordinates of point P after rotating 1/3 of a full rotation counterclockwise are approximately (0.5, 0.866).
2. 1/2 of a full rotation: The coordinates of point P after rotating 1/2 of a full rotation counterclockwise are (-1, 0).
3. 2/3 of a full rotation: The coordinates of point P after rotating 2/3 of a full rotation counterclockwise are approximately (-0.5, -0.866).
1/3 of a full rotation:
To find the coordinates of point P after rotating 1/3 of a full rotation counter clockwise, we need to determine the angle of rotation.
A full rotation around the unit circle is 360 degrees or 2π radians.
Since 1/3 of a full rotation is (1/3) [tex]\times[/tex] 360 degrees or (1/3) [tex]\times[/tex] 2π radians, we have:
Angle of rotation = (1/3) [tex]\times[/tex] 2π radians
Now, let's use the properties of the unit circle to find the new coordinates.
At the initial position, point P is located at (1, 0).
Rotating counterclockwise by an angle of (1/3) [tex]\times[/tex] 2π radians, we move along the circumference of the unit circle.
The new coordinates of point P after the rotation will be (cos(angle), sin(angle)).
Substituting the angle of rotation into the cosine and sine functions, we get:
New coordinates of P = (cos((1/3) [tex]\times[/tex] 2π), sin((1/3) [tex]\times[/tex] 2π))
Calculating the values:
cos((1/3) [tex]\times[/tex] 2π) ≈ 0.5
sin((1/3) [tex]\times[/tex] 2π) ≈ 0.866
Therefore, the coordinates of point P after rotating 1/3 of a full rotation counterclockwise are approximately (0.5, 0.866).
1/2 of a full rotation:
Following a similar process, when rotating 1/2 of a full rotation counterclockwise, we have an angle of (1/2) [tex]\times[/tex] 2π radians.
New coordinates of P = (cos((1/2) [tex]\times[/tex] 2π), sin((1/2) [tex]\times[/tex] 2π))
Calculating the values:
cos((1/2) [tex]\times[/tex] 2π) = cos(π) = -1
sin((1/2) [tex]\times[/tex] 2π) = sin(π) = 0
Therefore, the coordinates of point P after rotating 1/2 of a full rotation counterclockwise are (-1, 0).
2/3 of a full rotation:
For a rotation of 2/3 of a full rotation counterclockwise, the angle is (2/3) [tex]\times[/tex] 2π radians.
New coordinates of P = (cos((2/3) [tex]\times[/tex] 2π), sin((2/3) [tex]\times[/tex] 2π))
Calculating the values:
cos((2/3) [tex]\times[/tex] 2π) ≈ -0.5
sin((2/3) [tex]\times[/tex] 2π) ≈ -0.866
Therefore, the coordinates of point P after rotating 2/3 of a full rotation counterclockwise are approximately (-0.5, -0.866).
For similar question on coordinates.
https://brainly.com/question/17206319
#SPJ8
Find the measure of UK
95°
T
99 °
U
87 R
S
?
K
Because f(x) ___ its inverse is a function.
○ is one to one
X is a function
○ Passes the vertical line test
The inverse of the function f(x) = 2·x - 4, is the option;
g(x) = (1/2)·x + 2
The completed statement is; Because f(x) is one to one, its inverse is a function
What is the inverse of a function?The inverse of a function is one that takes the output of a specified function to produce the input of the function.
The inverse of the function f(x) = 2·x - 4, can be found by making x the subject of the function equation as follows;
f(x) = 2·x - 4
f(x) + 4 = 2·x
2·x = f(x) + 4
x = (f(x) + 4)/2 = f(x)/2 + 2
x = f(x)/2 + 2
Substituting f(x) = x and x = g(x) in the above equation, we get;
g(x) = x/2 + 2
The inverse of the function is therefore, g(x) = (1/2)·x + 2The function f(x) = 2·x - 4 is a one to one function, and the condition of a one to one function guarantees that the inverse of the function is also a function
Learn more on the inverse of a function here: https://brainly.com/question/9007328
#SPJ1
Answer:
A
Step-by-step explanation:
is one to one
The school cafetteria recently served a new kind of snack to all the senior high school student. They want to know if more than 50% of the student like the newly served snack, thus, the cafeteria conducted a survey for asking 60 random selection of students whether they like (1), or Do not like (0), the new snack. They responses are show as follows
The cafeteria can conclude that a majority of the senior high school students like the newly served snack.
To determine if more than 50% of the students like the newly served snack, we need to analyze the responses of the 60 randomly selected students.
Analyzing the responses:
Out of the 60 students surveyed, we have:
- Number of students who responded with "1" (liking the snack): 32 students.
- Number of students who responded with "0" (not liking the snack): 28 students.
To determine the percentage of students who liked the snack, we divide the number of students who liked it by the total number of students surveyed and multiply by 100: (32/60) * 100 = 53.33%.
Since the percentage of students who liked the newly served snack is 53.33%, which is greater than 50%, we can conclude that more than 50% of the students like the snack based on the given survey results.
Therefore, the cafeteria can conclude that a majority of the senior high school students like the newly served snack.
for more such question on majority visit
https://brainly.com/question/28293697
#SPJ8
IfmZC = 142° and m LI = 48°, find mU B.
The minor arc UB in the circle measures 46 degrees,
What is the measure of arc UB?The external angles theorem states that "the measure of an angle formed by two secant lines, two tangent lines, or a secant line and a tangent line from a point outside the circle is half the difference of the measures of the intercepted arcs.
It is expressed as;
External angle = 1/2 × ( major arc - minor arc )
From the diagram:
External angle I = 48 degrees
Major arc ZC = 142 degrees
Minor arc UB = ?
Plug these values into the above formula and find the minor arc UB:
External angle = 1/2 × ( major arc - minor arc )
48 = 1/2 × ( 142 - minor arc )
Multiply both sides by 2:
2 × 48 = 2 × 1/2 × ( 142 - minor arc )
2 × 48 = ( 142 - minor arc )
96 = ( 142 - minor arc )
96 = 142 - Minor arc
Minor arc = 142 - 96
Minor arc = 46°
Therefore, the minor arc measures 46 degrees.
Learn about Intersecting secants theorem here: brainly.com/question/30242636
#SPJ1
Can someone help me? F(x)+8x-8x^3-x^4+6
Answer:
Step-by-step explanation:
Of course! I'd be happy to help you.
Let's simplify the expression f(x) + 8x - 8x^3 - x^4 + 6 step by step:
The given expression is: f(x) + 8x - 8x^3 - x^4 + 6
Since we don't have any specific information about f(x), we'll assume that f(x) is a constant or a function that doesn't depend on x. In that case, f(x) can be treated as a constant term.
Combining like terms, we have:
f(x) - x^4 - 8x^3 + 8x + 6
There is no further simplification we can do without additional information about the function f(x) or any specific values of x. Therefore, the simplified expression is:
f(x) - x^4 - 8x^3 + 8x + 6
Seafloor rocks from a secret area above the Arctic Circle will recently analyzed by the globe. The company had a contract with spacegov.bids to test the rocks for nickel. Zieglow found that setting samples from the first location were composed of an average of 8.43% nickel. Six samples from the second location yielded an average of 7.81% nickel. What was the overall average nickel content of the rock samples
Answer:
The overall average nickel content of the rock samples is approximately 7.97%.
Step-by-step explanation:
To find the overall average nickel content of the rock samples, we need to take into account the number of samples from each location. Since we know the average nickel content of each set of samples, we can use a weighted average formula:
overall average nickel content = (total nickel content from first location + total nickel content from second location) / (total weight of samples from both locations)
To calculate the total nickel content from each location, we need to multiply the average nickel content by the number of samples:
total nickel content from first location = 8.43% x 1 sample = 8.43%
total nickel content from second location = 7.81% x 6 samples = 46.86%
To calculate the total weight of the samples from both locations, we need to add up the number of samples:
total weight of samples from both locations = 1 + 6 = 7
Now we can substitute these values into the formula and calculate the overall average nickel content:
overall average nickel content = (8.43% + 46.86%) / 7 ≈ 7.97%
Therefore, the overall average nickel content of the rock samples is approximately 7.97%.
one number is seven less than a second number. Six times the first is 10 more than 2 times the second. Find the numbers.
Triangle ABC with vertices at A(4, 3), B(3, −2), C(−3, 1) is dilated using a scale factor of 1.5 to create triangle A′B′C′. Determine the vertex of point A′.
The vertex of point A' in the dilated triangle A'B'C' is (6, 4.5).
1. Start by calculating the distance between the vertices of the original triangle ABC:
- Distance between A(4, 3) and B(3, -2):
Δx = 3 - 4 = -1
Δy = -2 - 3 = -5
Distance = √((-[tex]1)^2[/tex] + (-[tex]5)^2[/tex]) = √26
- Distance between B(3, -2) and C(-3, 1):
Δx = -3 - 3 = -6
Δy = 1 - (-2) = 3
Distance = √((-6)² + 3²) = √45 = 3√5
- Distance between C(-3, 1) and A(4, 3):
Δx = 4 - (-3) = 7
Δy = 3 - 1 = 2
Distance = √(7² + 2²) = √53
2. Apply the scale factor of 1.5 to the distances calculated above:
- Distance between A' and B' = 1.5 * √26
- Distance between B' and C' = 1.5 * 3√5
- Distance between C' and A' = 1.5 * √53
3. Determine the coordinates of A' by using the distance formula and the given coordinates of A(4, 3):
- A' is located Δx units horizontally and Δy units vertically from A.
- Δx = 1.5 * (-1) = -1.5
- Δy = 1.5 * (-5) = -7.5
- Coordinates of A':
x-coordinate: 4 + (-1.5) = 2.5
y-coordinate: 3 + (-7.5) = -4.5
4. Thus, the vertex of point A' in the dilated triangle A'B'C' is (2.5, -4.5).
For more such questions on triangle, click on:
https://brainly.com/question/1058720
#SPJ8
Step 1: –10 + 8x < 6x – 4
Step 2: –10 < –2x – 4
Step 3: –6 < –2x
Step 4: ________
What is the final step in solving the inequality –2(5 – 4x) < 6x – 4?
x < –3
x > –3
x < 3
x > 3
Answer:
x<3
Step-by-step explanation:
[tex] - 2(5 - 4x) < 6x - 4 \\ - 10 + 8x < 6x - 4 \\ 8x - 6x < - 4 + 10 \\ 2x < 6 \\ x < 3[/tex]
What else would need to be congruent to show that ABC=AXYZ by SAS?
A
B
OA. ZB=LY
B. BC = YZ
OC. C= LZ
OD. AC = XZ
с
X
Z
Given:
AB XY
BC=YZ
What is needed to be congruent to show that ABC=AXYZ is AC ≅ XZ. option D
How to determine the statementGiven that in ΔABC and ΔXYZ, ∠X ≅ ∠A and ∠Z ≅ ∠C.
We are to select the correct condition that we will need to show that the triangles ABC and XYZ are congruent to each other by ASA rule..
ASA Congruence Theorem: Two triangles are said to be congruent if two angles and the side lying between them of one triangle are congruent to the corresponding two angles and the side between them of the second triangle.
In ΔABC, side between ∠A and ∠C is AC,
in ΔXYZ, side between ∠X and ∠Z is XZ.
Therefore, for the triangles to be congruent by ASA rule, we must have AC ≅ XZ.
Learn more about triangles at: https://brainly.com/question/14285697
#SPJ1
Yuri’s sister Karina is 12 years old. In the equation below, y represents Yuri’s age in years.
12 = 3 y minus 2
Which statement accurately relates their ages?
Yuri is 3 years younger than twice Karina’s age.
Yuri is 2 years younger than triple Karina’s age
Karina is 3 years younger than twice Yuri’s age.
Karina is 2 years younger than triple Yuri’s age.
Yuri is 2 years younger than triple Karina’s age
Answer:
yo
Step-by-step explanation:
i think its d
1. The annual sale volumes of three products X, Y, Z whose sale prices per unit are GHS 3.50, GHS 2.75, GHS 1.50 respectively, in two different markets I and II are shown below: Product Market X Y Z I 6000 9000 1300 II 12000 6000 17000 Find the total revenue in each market with the help of matrices.
Answer:
Step-by-step explanation:
To find the total revenue in each market, we can calculate the product of the sale volumes and sale prices per unit using matrices.
Let's represent the sale volumes as a matrix V and the sale prices per unit as a matrix P:
V = [6000 9000 1300]
[12000 6000 17000]
P = [3.50]
[2.75]
[1.50]
To calculate the total revenue in each market, we need to perform matrix multiplication between V and P, considering the appropriate dimensions. The resulting matrix will give us the total revenue for each product in each market.
Total revenue = V * P
Calculating the matrix multiplication:
[6000 9000 1300] [3.50] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[12000 6000 17000] [2.75] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
Performing the calculation:
[60003.50 + 90002.75 + 13001.50] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[120003.50 + 60002.75 + 170001.50] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
Simplifying the calculation:
[21000 + 24750 + 1950] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[42000 + 16500 + 25500] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
[47650] = [Total revenue for product X in Market I Total revenue for product Y in Market I Total revenue for product Z in Market I]
[84000] [Total revenue for product X in Market II Total revenue for product Y in Market II Total revenue for product Z in Market II]
Therefore, the total revenue in Market I is GHS 47,650 and the total revenue in Market II is GHS 84,000.
José encontró un álbum de fotos del abuelo cuando tenía nueve años si el álbum tenía 108 páginas cuantas veces se habría es que se habría escrito la cifra nueve para enumerar todo el libro
The total number of times the digit "9" would have been written to number the entire photo album is 12 + 9 = 21 times.
To determine how many times the digit "9" would have been written to number all the pages of the photo album, we need to analyze the numbering pattern.
Since the album has 108 pages, we can observe that the numbers 1 to 9 are repeated 12 times (1-9, 10-19, 20-29, ..., 90-99) to cover the first 99 pages. Each repetition consists of ten numbers, and the digit "9" appears once in each repetition.
So, the digit "9" would have been written 12 times for the numbers 9, 19, 29, ..., 89 and 99.
However, we have an additional 9 pages to consider, which are 100, 101, 102, ..., 108. Each of these pages contains a single "9" in its numbering.
Therefore, the total number of times the digit "9" would have been written to number the entire photo album is 12 + 9 = 21 times.
for such more question on total number
https://brainly.com/question/25109150
#SPJ8
A piece of wood is in the shape of a rectangular prism with a length of 10 inches, a width of 4 inches, and a height of 5 inches. You cut the wood in half to form two pieces of wood, each with a length of 5 inches. What is the percent increase in the total surface area? Round your answer to the nearest hundredth, if necessary. %
Answer: 18.18%
Step-by-step explanation:
First, let's calculate the surface area of the original piece of wood. The surface area (SA) of a rectangular prism is given by the formula:
[tex]$$SA = 2lw + 2lh + 2wh$$[/tex]
where [tex]\(l\)[/tex] is the length, [tex]\(l\)[/tex] is the width, and [tex]\(h\)[/tex] is the height. For the original piece of wood, [tex]\(l = 10\) inches[/tex], [tex]\(w = 4\) inches[/tex], and [tex]\(h = 5\) inches[/tex].
After the piece of wood is cut in half, the length becomes 5 inches, but the width and height remain the same. So, for each of the two new pieces of wood, [tex]\(l = 5\) inches[/tex], [tex]\(w = 4\) inches[/tex], and [tex]\(h = 5\) inches[/tex]. The total surface area of the two new pieces of wood is twice the surface area of one of the new pieces.
The percent increase in the total surface area is given by the formula:
[tex]$$\text{Percent Increase} = \frac{\text{New Total SA} - \text{Original SA}}{\text{Original SA}} \times 100\%$$[/tex]
Let's calculate these values.
The percent increase in the total surface area when the piece of wood is cut in half is approximately 18.18%.
4,5,6,8,9,9,10,12,12,12,17,17,18,18
10. A triangular prism is shown.
a. Find the area of the base.
b. Find the volume of the prism.
d
5 cm
10 cm
3 cm
8 cm
5 cm
Answer:
Step-by-step explanation:
Carson is buying items at a store. His total comes to $41.09. He uses a gift
card and cash to pay the total. After using the gift card, he pays the
remaining $27.74 with cash. Which percentage best describes the part of
the total that Carson paid for with the gift card?
A. 28%
B. 30%
C. 33%
D. 36%
Amy bought a new car for $21,000
. She paid a 10%
down payment and financed the remaining balance for 36
months with an APR of 3.5%
. Determine the monthly payment that Amy pays. Round your answer to the nearest cent, if necessary.
Answer:
Step-by-step explanation:
To determine the monthly payment Amy pays, we can use the formula for calculating the monthly payment on a loan. The formula is:
M = (P * r * (1 + r)^n) / ((1 + r)^n - 1)
Where:
M = Monthly payment
P = Principal amount (loan amount)
r = Monthly interest rate
n = Number of monthly payments
Given information:
Principal amount (loan amount) = $21,000
Down payment = 10% of $21,000 = $2,100
Remaining balance = $21,000 - $2,100 = $18,900
APR = 3.5%
Number of monthly payments (n) = 36
To calculate the monthly interest rate (r), we divide the annual interest rate by 12 (number of months in a year):
Monthly interest rate (r) = APR / (12 * 100)
Substituting the values into the formula:
r = 3.5 / (12 * 100) = 0.0029167 (rounded to 7 decimal places)
M = (18,900 * 0.0029167 * (1 + 0.0029167)^36) / ((1 + 0.0029167)^36 - 1)
Using a calculator to evaluate the expression within the formula:
M ≈ $539.26
Therefore, the monthly payment that Amy pays is approximately $539.26.
pls helpppppppppppppppppp
Answer:
Step-by-step explanation:
Bisector means breaking the segment in half.
answer is A. to have a length exactly half the segment