Archimedes' principle tells us that if an immersed object displaces more than 100N of fluid, the buoyant force on the object is equal to the weight of the fluid displaced.
Therefore, if an object displaces 5 N of fluid, the buoyant force on the object will be less than 5 N.The reason for this is because the buoyant force is equal to the weight of the fluid displaced by the object. In other words, the weight of the fluid that is displaced by the object determines the buoyant force on the object. If the object is only displacing 5 N of fluid, then the buoyant force will be less than 5 N because the weight of the fluid displaced is less than 5 N.Archimedes' principle is important for understanding the behavior of objects in fluids.
It helps us to understand why objects float or sink and how the buoyant force on an object is related to the weight of the fluid displaced.
To know more about force visit:
https://brainly.com/question/30507236
#SPJ11
De Broglie's theory of electron wavelike properties was verified by diffraction. independent experiments through A. positron B. neutron C. electron D. proton
The correct option is C. electron, as it was through electron diffraction experiments that De Broglie's theory of electron wavelike properties was verified.
De Broglie's theory of electron wavelike properties was verified by diffraction experiments using electrons. Diffraction is a phenomenon in which waves encounter an obstacle or a slit and spread out, causing interference patterns to form. This phenomenon occurs for all types of waves, including electrons.
In the early 20th century, scientists conducted diffraction experiments to understand the nature of electrons. One such experiment was performed by Clinton Davisson and Lester Germer in 1927. They directed a beam of electrons onto a nickel crystal target and observed the diffraction pattern formed by the scattered electrons. The pattern resembled the interference pattern produced by light waves passing through a diffraction grating.
The results of the Davisson-Germer experiment confirmed the wavelike nature of electrons, as predicted by De Broglie's theory. The diffraction pattern provided evidence that electrons exhibit wave-particle duality, meaning they can behave both as particles and as waves. The experiment demonstrated that electrons, despite being considered particles, possess wavelike properties and can undergo diffraction.
Therefore, the correct option is C. electron, as it was through electron diffraction experiments that De Broglie's theory of electron wavelike properties was verified.
Learn more about De Broglie's from the link
https://brainly.com/question/30404168
#SPJ11
3. Which of the following statements is true concerning the electric field (E) between two oppositely charged parallel plates of very large area, separated by a small distance, both with the same magnitude of charge? A. E must be zero midway between the plates. B. E has a larger magnitude midway between the plates than at either plate. C. E has a smaller magnitude midway between the plates than at either plate. a D. E has a larger magnitude near the (-) charged plate than near the (+) charged plate. E. E has a larger magnitude near the (+) charged plate than near the (-) charged plate. F. E has a constant magnitude and direction between the plates.
The correct option for the following statement is A. E must be zero midway between the plates. What is an electric field An electric field is a vector field that is generated by electric charges or time-varying magnetic fields. An electric field is defined as the space surrounding an electrically charged object in which electrically charged particles are affected by a force.
In other words, it is a region in which a charged object exerts an electric force on a nearby object with an electric charge. A positively charged particle in an electric field will experience a force in the direction of the electric field, while a negatively charged particle in an electric field will experience a force in the opposite direction of the electric field.
The magnitude of the electric field is determined by the quantity of charge on the charged object that created the electric field.
The electric field between two oppositely charged parallel plates of very large area, separated by a small distance, both with the same magnitude of charge is uniform in direction and magnitude.
The electric field is uniform between the plates, which means that the electric field has a constant magnitude and direction between the plates.
To know more about statement visit:
https://brainly.com/question/17238106
#SPJ11
A
20-g cylinder of radius 5.0 cm starts to rotate from rest, reaching
200 rpm in half a minute. Find the net torque acting on the
cylinder.
The net torque acting on the cylinder is approximately 0.031 N·m.
To find the net torque acting on the cylinder, we can use the rotational motion equation:
Torque (τ) = Moment of inertia (I) × Angular acceleration (α).
Given that the cylinder starts from rest and reaches 200 rpm (revolutions per minute) in half a minute, we can calculate the angular acceleration. First, we convert the angular velocity from rpm to radians per second (rad/s):
ω = (200 rpm) × (2π rad/1 min) × (1 min/60 s) = 20π rad/s.
The angular acceleration (α) can be calculated by dividing the change in angular velocity (Δω) by the time taken (Δt):
α = Δω/Δt = (20π rad/s - 0 rad/s)/(30 s - 0 s) = (20π/30) rad/s².
Next, we need to calculate the moment of inertia (I) for the cylinder. The moment of inertia of a solid cylinder rotating about its central axis is given by:
I = (1/2)mr²,
where m is the mass of the cylinder and r is its radius.
Converting the mass of the cylinder from grams to kilograms, we have:
m = 20 g = 0.02 kg.
Substituting the values of m and r into the moment of inertia equation, we get:
I = (1/2)(0.02 kg)(0.05 m)² = 2.5 × 10⁻⁵ kg·m².
Now, we can calculate the net torque by multiplying the moment of inertia (I) by the angular acceleration (α):
τ = I × α = (2.5 × 10⁻⁵ kg·m²) × (20π/30) rad/s² ≈ 0.031 N·m.
Therefore, the net torque acting on the cylinder is approximately 0.031 N·m.
To know more about net torque refer here:
https://brainly.com/question/30338139#
#SPJ11
True or False? If the surface of a metal whose
work function is 4 eV is illuminated with light of wavelength 4 ×
10–7 m, then photoelectrons would be produced.
The given statement, "If the surface of a metal whose work function is 4 eV is illuminated with light of wavelength 4 × 10⁻⁷m, then photoelectrons would be produced, " is false because at this wavelength photons do not have the energy to produce photoelectrons.
The energy of a photon is given by the equation:
E = hc/λ,
where E is the energy, h is Planck's constant (approximately 6.626 × 10⁻³⁴ J*s),
c is the speed of light (approximately 3.00 × 10⁸ m/s), and
λ is the wavelength of the light.
In this case, the wavelength of the light is given as 4 × 10⁻⁷ m. Plugging this value into the energy equation, we have:
E = (6.626 × 10⁻³⁴ J*s) * (3.00 × 10⁸ m/s) / (4 × 10⁻⁷ m)
≈ 4.9695 × 10⁻¹⁹ J
The energy of a single photon is approximately 4.9695 × 10⁻¹⁹ J, which is less than the work function of the metal (4 eV = 6.4 × 10⁻¹⁹ J).
Therefore, the incident photons do not have enough energy to remove electrons from the metal surface, and photoelectrons would not be produced.
Therefore the given statement is false.
Learn more about photoelectrons here:
https://brainly.com/question/31524918
#SPJ11
Make a a derivation for the unknown resistor equation (Rx) in
terms of voltages and lengths on the wheatstone bridge
The unknown resistor (Rx) in a Wheatstone bridge circuit can be determined using the equation:
Rx = (V_out1 * R2) / (V_in - V_out2)
This equation relates Rx to the voltages V_out1 and V_out2, as well as the resistance R2 and the input voltage V_in.
Let's consider a typical Wheatstone bridge circuit consisting of four resistors: R1, R2, R3, and Rx. The bridge is supplied with a known voltage V_in and has two outputs: V_out1 and V_out2.
1. First, let's find the relationship between the voltages V_out1 and V_out2 in terms of the resistors. According to Kirchhoff's voltage law, the voltage drop across any closed loop in a circuit is zero. Applying this law to the two loops in the Wheatstone bridge, we have:
Loop 1: V_in = V_out1 + I1 * R1 + I2 * Rx
Loop 2: V_in = V_out2 + I3 * R3 + I2 * (R2 + Rx)
Where I1, I2, and I3 are the currents flowing through R1, Rx, and R3, respectively.
2. To simplify the equations, we can express I1, I2, and I3 in terms of the voltages and resistances using Ohm's law. Assuming the resistors have negligible internal resistance, we have:
I1 = V_out1 / R1
I2 = (V_out1 - V_out2) / (R2 + Rx)
I3 = V_out2 / R3
Substituting these values back into the loop equations, we get:
V_in = V_out1 + (V_out1 - V_out2) * Rx / (R2 + Rx)
V_in = V_out2 + V_out2 * R2 / (R2 + Rx)
3. Now, we can solve these two equations simultaneously to eliminate V_out1 and V_out2. Multiplying the first equation by (R2 + Rx) and the second equation by Rx, we get:
V_in * (R2 + Rx) = V_out1 * (R2 + Rx) + (V_out1 - V_out2) * Rx
V_in * Rx = V_out2 * Rx + V_out2 * R2
4. By rearranging these equations, we can isolate Rx:
V_in * Rx - V_out2 * Rx = V_out1 * (R2 + Rx) - (V_out1 - V_out2) * Rx
V_in * Rx - V_out2 * Rx = V_out1 * R2 + V_out1 * Rx - V_out1 * Rx + V_out2 * Rx
V_in * Rx - V_out2 * Rx = V_out1 * R2 + V_out2 * Rx
Rx * (V_in - V_out2) = V_out1 * R2
Rx = (V_out1 * R2) / (V_in - V_out2)
Therefore, the equation for the unknown resistor Rx in terms of the voltages and lengths on the Wheatstone bridge is:
Rx = (V_out1 * R2) / (V_in - V_out2)
To know more about the Wheatstone bridge circuit, refer here:
https://brainly.com/question/31777355#
#SPJ11
QUESTION 4 Pressure drop between two sections of a unifrom pipe carrying water is 9.81 kPa Then the head loss due to friction is 01.1m 02.9.81 m O 3.0.1 m O 4.10 m
None of the given options is the correct answer.
The head loss due to friction in a uniform pipe carrying water with a pressure drop of 9.81 kPa can be calculated using the Darcy-Weisbach equation which states that:
Head Loss = (friction factor * (length of pipe / pipe diameter) * (velocity of fluid)^2) / (2 * gravity acceleration)
where:
g = gravity acceleration = 9.81 m/s^2
l = length of pipe = 1 (since it is not given)
D = pipe diameter = 1 (since it is not given)
p = density of water = 1000 kg/m^3
Pressure drop = 9.81 kPa = 9810 Pa
Using the formula, we get:
9810 Pa = (friction factor * (1/1) * (velocity of fluid)^2) / (2 * 9.81 m/s^2)
Solving for the friction factor, we get:
friction factor = (9810 * 2 * 9.81) / (1 * (velocity of fluid)^2)
At this point, we need more information to find the velocity of fluid.
Therefore, we cannot calculate the head loss due to friction.
None of the given options is the correct answer.
learn more about acceleration here
https://brainly.com/question/25749514
#SPJ11
7. A bar magnet passes through a circular loop of wire as shown below. At the instant that the middle of the magnet passes through the loop, the induced current (as seen from the coil # 2) is A counte
The passage of a bar magnet through a circular loop of wire induces a current in the wire.
At the instant that the middle of the magnet passes through the loop, the induced current is a counterclockwise direction in coil #2.
This phenomenon is known as electromagnetic induction and is described by Faraday's Law. When a magnetic field changes in intensity or moves relative to a conductor (such as a wire), it induces an electromotive force (EMF) in the conductor, which in turn creates an electric current. In this case, as the bar magnet passes through the circular loop of wire, the magnetic field changes, which induces a current in the wire.
This induced current follows Lenz's Law, which states that the direction of the induced current is always in such a direction as to oppose the change that produced it. In this case, as the north pole of the bar magnet enters the loop, it creates a magnetic field pointing upwards through the loop. Therefore, the induced current creates a magnetic field in the opposite direction (downwards) to oppose the change. This corresponds to a counterclockwise induced current in coil #2.
As the bar magnet continues to pass through the loop, the magnetic field changes again, and the induced current will change accordingly. Once the bar magnet exits the loop, the induced current will stop. This phenomenon has numerous applications in everyday life, including electromagnetic induction used in power plants to generate electricity
To learn more about emf click brainly.com/question/30083242
#SPJ11
In the circuit of Figure, the equivalent capacitance is C₂ = 1.00 μF- O 5.0 μF O 1.20 μF O 0.8 μF O 2.67 µF C₁ = 2.00 μF C₁ = 2.00 uF
The equivalent capacitance in the circuit of Figure is 2.67 μF.
In the given circuit, we have two capacitors, C₁ and C₂, connected in parallel. When capacitors are connected in parallel, the total capacitance is the sum of the individual capacitances.
Given:
C₁ = 2.00 μF
C₂ = 1.00 μF
Since the two capacitors are in parallel, we can simply add their capacitances to find the equivalent capacitance:
C_eq = C₁ + C₂
= 2.00 μF + 1.00 μF
= 3.00 μF
Therefore, the equivalent capacitance in the circuit is 3.00 μF.
However, the options provided in the question do not include 3.00 μF as one of the choices. The closest value to 3.00 μF among the given options is 2.67 μF. So, the equivalent capacitance in the circuit is approximately 2.67 μF based on the given choices.
To learn more about equivalent capacitance, here
https://brainly.com/question/30556846
#SPJ4
In the circuit given in the figure, the equivalent capacitance is C₂ = 1.00 µF.
The given circuit can be solved by following Kirchhoff's rules, that is, junction rule and loop rule.Using Kirchhoff's junction rule, we haveI1 = I2 + I3 ----(1)As there is only one loop in the circuit, we can use Kirchhoff's loop rule to obtain the equivalent capacitance of the circuit.Kirchhoff's loop rule states that the algebraic sum of potential differences in a closed loop is zero.Therefore, the loop equation becomes V1 - V2 - V3 = 0or (1/C1)q + (1/C2)q - (1/C3)q = 0or q(1/C1 + 1/C2 - 1/C3) = 0or (1/C1 + 1/C2 - 1/C3) = 0or C3 = (C1 × C2)/(C1 + C2) = 2 × 1/3 = 2/3 µFTherefore, the equivalent capacitance of the circuit is 1 + 2/3 = 5/3 µF.A capacitor is a device used to store electric charge. The capacitance of a capacitor is the amount of charge that it can store per unit of voltage. The unit of capacitance is the farad. The capacitance of a capacitor depends on the geometry of the plates, the separation between them, and the material used.
Learn more about capacitance
https://brainly.com/question/31871398
#SPJ11
12. (6 pts) In the picture below, rank particles A,B and C, which are moving in the directions shown by the arrows through a magnetic field pointing out of the page, in the order of increasing speed. Which particles are positive? Which are negative?
The particles moving in the direction opposite to the arrows (against the increasing speed) are positive, while the particles moving in the direction of the arrows (with the increasing speed) are negative.
In order to determine the polarity of the charged particles, we need to consider the interaction between the magnetic field and the motion of the particles. According to the right-hand rule for charged particles, when a charged particle moves in a magnetic field, the direction of the force experienced by the particle is perpendicular to both the velocity of the particle and the magnetic field direction.
Given that the magnetic field is pointing out of the page, we can apply the right-hand rule. When the velocity vector is in the direction of the arrow and the force is out of the page, the charge on the particles must be negative. Conversely, when the velocity vector is in the opposite direction to the arrow and the force is into the page, the charge on the particles must be positive.
Therefore, the particles moving in the direction opposite to the arrows (against the increasing speed) are positive, while the particles moving in the direction of the arrows (with the increasing speed) are negative.
To know more about right-hand rule, here
brainly.com/question/30641867
#SPJ4
--The complete Question is, A beam of charged particles is moving in the directions shown by the arrows through a magnetic field pointing out of the page, in the order of increasing speed. Which particles are positive? Which are negative? --
A 0.05-kg steel ball and a 0.15-kg iron ball are moving in opposite directions and are on a head-on collision course. They both have a speed of 2.5 m/s and the collision will be elastic. Calculate the final velocities of the balls and describe their motion
In a head-on collision between a 0.05 kg steel ball and a 0.15 kg iron ball, both moving in opposite directions with a speed of 2.5 m/s, the final velocities of the balls can be calculated using the principles of conservation of momentum and kinetic energy.
The collision is assumed to be elastic. After the collision, the steel ball will move in the direction it was initially traveling with a reduced speed, while the iron ball will move in the opposite direction with an increased speed.
To solve this problem, we can apply the principles of conservation of momentum and kinetic energy. Before the collision, the total momentum of the system is given by the sum of the individual momenta of the steel ball and the iron ball. Considering opposite directions as negative, the initial total momentum is (0.05 kg * 2.5 m/s) - (0.15 kg * 2.5 m/s) = -0.1 kg·m/s.
Since the collision is elastic, both momentum and kinetic energy are conserved. According to the conservation of momentum, the total momentum after the collision is also -0.1 kg·m/s. Let's assume the final velocity of the steel ball is v1 and the final velocity of the iron ball is v2. Applying the conservation of momentum, we have (0.05 kg * v1) + (0.15 kg * v2) = -0.1 kg·m/s.
Next, we can consider the conservation of kinetic energy. The initial kinetic energy of the system is given by (0.5 * 0.05 kg * (2.5 m/s)^2) + (0.5 * 0.15 kg * (2.5 m/s)^2). The final kinetic energy is (0.5 * 0.05 kg * v1^2) + (0.5 * 0.15 kg * v2^2). Since kinetic energy is conserved, these two quantities are equal. By equating the initial and final kinetic energies, we can solve for the final velocities v1 and v2.
After calculating the final velocities, we find that the steel ball will have a final velocity in the same direction as its initial motion but with a reduced speed, while the iron ball will have a final velocity in the opposite direction with an increased speed. The magnitudes of the final velocities can be determined by substituting the values into the equations obtained from the conservation principles.
Learn more about Kinetic energy here:
brainly.com/question/999862
#SPJ11
(a) (i) Write down an equation describing 2 proton separation from the nucleus of 26Ca and hence calculate the 2 proton separation energy. {5} [The atomic mass of 26Ca is 45.95369 u, 13 Ag is 43.96492 u, and H is 1.00783 u where lu= 931.5 MeV/c] (ii) The semi-empirical binding energy of a nucleus (in MeV) can be written as Z(Z - 1) 34 13.1A2/3 – 0.584 (A – 22) B= 14.0A - 19.4 -(,0) A1/3 А Repeat the calculation of the 2 proton separation energy of 26Ca but this time using the semi-empirical binding energy equation. Comment on the signficance of this result compared to (i) in terms of the nuclear structure in Fig. 21. {6} A3/4
The equation describing the 2 proton separation from the nucleus of 26Ca is calculated using the atomic masses and the conversion factor. The 2 proton separation energy is determined.
To describe the 2 proton separation from the nucleus of 26Ca, we start by using the equation:
Separation energy = (Z × Z - 1) × (1.00783 u) × (931.5 MeV/c)²
Substituting the values Z = 2 (since we are considering 2 protons) and the atomic mass of 26Ca (45.95369 u), we can calculate the separation energy. By multiplying the mass difference by the square of the conversion factor, we obtain the energy in MeV.
In the second part, we utilize the semi-empirical binding energy equation, which relates the binding energy of a nucleus to its atomic mass. By plugging in the values for A = 26 and Z = 20 (the atomic number of Ca), we can calculate the binding energy of 26Ca.
To find the 2 proton separation energy, we subtract the binding energy of 24Ca (with Z = 18) from the binding energy of 26Ca. The result gives us the energy released when two protons are separated from the nucleus.
Comparing the results from (i) and (ii), the significance lies in the nuclear structure. The separation energy calculated in (i) represents the energy required to remove two protons from a nucleus, indicating the binding force holding the protons inside.
In contrast, the semi-empirical binding energy equation in (ii) provides a theoretical framework that accounts for various factors influencing the binding energy, such as the number of protons and neutrons and the surface and Coulomb energies.
The comparison highlights the interplay between these factors and the understanding of nuclear structure.
Learn more about proton separation
brainly.com/question/12967422
#SPJ11
A football player runs for a distance d1 = 8.27 m in 1.4 s, at an angle of θ = 51 degrees to the 50-yard line, then turns left and runs a distance d2 = 12.61 m in 2.18 s, in a direction perpendicular to the 50-yard line. The diagram shows these two displacements relative to an x-y coordinate system, where the x axis is parallel to the 50-yard line, and the y axis is perpendicular to the 50-yard line.
a) What is the magnitude of the total displacement, in meters?
b) What angle, in degrees, does the displacement make with the y axis?
c) What is the magnitude of the average velocity, in m/s?
d) What angle, in degrees does the average velocity make with the y axis?
A football player undergoes two displacements. First, they run a distance of d₁ = 8.27 m in 1.4 s at an angle of θ = 51 degrees to the 50-yard line. Then, they make a left turn and run a distance of d₂ = 12.61 m in 2.18 s, perpendicular to the 50-yard line.
The total displacement can be found using the Pythagorean theorem. Let's call the horizontal displacement Δx and the vertical displacement Δy. Using trigonometric identities, we have:
Δx = d₁ * cos(θ)
Δy = d₁ * sin(θ) + d₂
a) The magnitude of the total displacement is given by:
magnitude = sqrt(Δx² + Δy²)
b) Finding the angle the displacement makes with the y-axis, we use the inverse tangent:
angle = atan(Δx / Δy)
c) The average velocity can be determined by dividing the total displacement by the total time taken:
average velocity = magnitude / (1.4 + 2.18)
d) Finally, the angle that the average velocity makes with the y-axis is given by:
angle with y-axis = atan(Δx / Δy)
Plugging in the given values and applying these formulas, we can calculate the desired quantities.
know more about Displacement here : https://brainly.com/question/14422259
#SPJ11
The total displacement and average velocity can be calculated by summing up the individual displacements and dividing the total displacement by the total time, respectively. The angles they make with the y-axis can be calculated using the arctan function.
Explanation:This question involves multiple aspects of Physics, specifically kinematics. For the first part of the question, you can find the total displacement by adding the x and y components of the two displacements, then using the Pythagorean theorem to find the resultant displacement. In the x-direction, the displacement from the first run is d1*cos(θ) = 8.27 m * cos(51 degrees) and from the second run, it's zero since the run is parallel to y-axis. In the y direction, the displacement from the first run is d1*sin(θ) = 8.27 m * sin(51 degrees) and from the second run, it's d2. Hence, magnitude of total displacement = sqrt((total x displacement)^2+(total y displacement)^2).
The angle the displacement makes with y-axis (Φ) can be calculated using the arctan function: Φ = tan-1 (total x displacement/total y displacement).
The average velocity can be obtained by dividing total displacement by total time, which is the sum of the times of the two runs (1.4s + 2.18s). The direction of the average velocity is the same as that of total displacement.
Learn more about Physics - Kinematics here:https://brainly.com/question/34419120
#SPJ2
(a) Figure 20.26 Problem 20.4. (b) (c20p4) The plane of a square loop of wire with edge length of 10.00 cm is perpendicular to a 0.014 T magnetic field (see the figure (a)). What is the average emf between the points E1 and E2 when the corner D is quickly folded about the diaconal AC so as to lle on top of B (see the figure (b) ) if it takes 0.140 s to make the fold? Tries 0/5
When a square loop of wire with an edge length of 10.00 cm is folded about its diagonal AC onto a magnetic field of 0.014 T, an average induced electromotive force (emf) of 1.43 x 10^-4 V is generated between the points E1 and E2.
When the square loop is folded about its diagonal AC, it creates two smaller triangular loops, ACE1 and ACE2. These two loops experience a change in magnetic flux due to their motion through the magnetic field. According to Faraday's law of electromagnetic induction, a change in magnetic flux induces an emf in a closed loop.
The induced emf is given by the equation:
emf = -N(dΦ/dt),
where N is the number of turns in the loop and (dΦ/dt) is the rate of change of magnetic flux.
In this case, the emf is measured between the points E1 and E2. The induced emf is caused by the change in magnetic flux through the loops ACE1 and ACE2. Since the magnetic field is perpendicular to the plane of the loops, the magnetic flux through each loop can be calculated as:
Φ = B*A,
where B is the magnetic field strength and A is the area of the loop.
Since the loops ACE1 and ACE2 are congruent triangles, their areas are equal. The area of each triangle can be calculated using the formula for the area of a triangle:
A = (1/2) * base * height.
Given the edge length of the square loop (10.00 cm), the base and height of each triangle can be calculated as 10.00 cm. Substituting the values into the equation for the area, we find that A = 5.00 cm^2.
The total magnetic flux through the loop is the sum of the flux through each triangle, resulting in 2 * (B * A) = 2 * (0.014 T * 5.00 cm^2) = 0.14 Wb.
To find the rate of change of magnetic flux, we divide the total change in flux by the time taken for the folding action. However, the time is not provided in the given information, so we cannot determine the exact value. Nevertheless, we can use the given average emf and rearrange the equation for emf to solve for (dΦ/dt):
(dΦ/dt) = -emf / N.
Substituting the values, we get (dΦ/dt) = -(1.43 x 10^-4 V) / N.
Therefore, the induced emf between the points E1 and E2 is a result of the change in magnetic flux caused by folding the square loop about its diagonal AC in the presence of the magnetic field. The specific value of the number of turns in the loop (N) and the time taken for the folding action are not provided, so we cannot determine the exact values for the induced emf and the rate of change of magnetic flux.
To learn more about induced electromotive force here brainly.com/question/33127932
#SPJ11
Numerical Response #1 A spring vibrates with a period of 0.900 s when a 0.450 kg mass is attached to one end. The spring constant is _____ N/m.5. What is the frequency of a pendulum with a length of 0.250 m? A. 1.00Hz B. 0.997Hz C. 0.160Hz D. 6.25Hz
The spring constant of the spring is 22.4 N/m, and the frequency of the pendulum is 0.100 Hz.
A spring has a vibration frequency of 0.900 s when a mass of 0.450 kg is attached to one end. The spring constant is to be calculated. Here is how to calculate it
The period of the spring motion is: T = 0.900 s
The mass attached to the spring is m = 0.450 kg
Now, substituting the values in the formula for the period of the spring motion, we have:
T = 2π(√(m/k))
Here, m is the mass of the object attached to the spring, and k is the spring constant.
Substituting the given values, we get:0.9 = 2π(√(0.45/k))The spring constant can be calculated as follows:k = m(g/T²)Here, m is the mass of the object, g is the acceleration due to gravity, and T is the time period of the oscillations. Thus, substituting the values, we get:k = 0.45(9.8/(0.9)²)k = 22.4 N/m
The frequency of a pendulum with a length of 0.250 m is to be calculated. Here is how to calculate it: The formula for the frequency of a simple pendulum is
f = 1/(2π)(√(g/L))
where g is the acceleration due to gravity and L is the length of the pendulum. Substituting the given values, we get:
f = 1/(2π)(√(9.8/0.25))f = 1/(2π)(√39.2)f = 1/(2π)(6.261)f = 0.100 Hz Thus, the frequency of the pendulum is 0.100 Hz.
The spring constant of the spring is 22.4 N/m, and the frequency of the pendulum is 0.100 Hz.
To know more about spring constant visit
brainly.com/question/29975736
#SPJ11
A capacitor is connected to an AC source. If the maximum current in the circuit is 0.520 A and the voltage from ti (a) the rms voltage (in V) of the source V (b) the frequency (in Hz) of the source Hz (c) the capacitance (in pF) of the capacitor F
(a) The rms voltage of the AC source is 67.60 V.
(b) The frequency of the AC source is 728 Hz.
(c) The capacitance of the capacitor is 1.23 pF.
(a) The required capacitance for the airport radar is 2.5 pF.
(b) No value is provided for the edge length of the plates.
(c) The common reactance at resonance is 12 Ω.
(a) The rms voltage of the AC source is 67.60 V.
The rms voltage is calculated by dividing the peak voltage by the square root of 2. In this case, the peak voltage is given as 95.6 V. Thus, the rms voltage is Vrms = 95.6 V / √2 = 67.60 V.
(b) The frequency of the AC source is Hz Hz.
The frequency is specified as 728 Hz.
(c) The capacitance of the capacitor is 1.23 pF.
To determine the capacitance, we can use the relationship between capacitive reactance (Xc), capacitance (C), and frequency (f): Xc = 1 / (2πfC). Additionally, Xc can be related to the maximum current (Imax) and voltage (V) by Xc = V / Imax. By combining these two relationships, we can express the capacitance as C = 1 / (2πfImax) = 1 / (2πfV).
Regarding the airport radar:
(a) The required capacitance is 2.5 pF.
To resonate at the given frequency, the relationship between inductance (L), capacitance (C), and resonant frequency (f) can be used: f = 1 / (2π√(LC)). Rearranging the equation, we find C = 1 / (4π²f²L). Substituting the provided values of L and f allows us to calculate the required capacitance.
(b) The edge length of the plates should be 0.0 mm.
No value is given for the edge length of the plates.
(c) The common reactance at resonance is 12 Ω.
At resonance, the reactance of the inductor (XL) and the reactance of the capacitor (Xc) cancel each other out, resulting in a common reactance (X) of zero.
learn more about "voltage ":- https://brainly.com/question/1176850
#SPJ11
The Hydrogen Spectrum Electrons in hydrogen atoms are in the n=4 state (orbit). They can jump up to higher orbits or down to lower orbits. Part B The numerical value of the Rydberg constant (determined m −1 ⋅ Express your answer in eV,1eV=1.6 ⋆ 10 −19 J. Keep 4 digits after the decimal point. Planck's constant is h=6.626×10 −34 J⋅s, the speed of light in a vacuum is c=3×10 8 m/s. - Part C What is the SHORTEST ABSORBED wavelength? Express your answer in nanometers (nm),1 nm=10 −9 m. Keep 1 digit after the decimal point.
Part B: The numerical value of the Rydberg constant is approximately 13.6057 eV.
Part C: The shortest absorbed wavelength is approximately 1.175 nm.
** Part B: The Rydberg constant, denoted by R, can be calculated using the formula:
R = (1 / (λ * c)) * (1 / (1 - (1 / n^2)))
Where λ is the wavelength, c is the speed of light, and n is the principal quantum number.
Since the question mentions electrons in the n=4 state, we can substitute n=4 into the formula and solve for R.
R = (1 / (λ * c)) * (1 / (1 - (1 / 4^2)))
R = (1 / (λ * c)) * (1 / (1 - (1 / 16)))
R = (1 / (λ * c)) * (1 / (15 / 16))
R = 16 / (15 * λ * c)
Using the given values of Planck's constant (h) and the speed of light (c), we can calculate the Rydberg constant in terms of electron volts (eV):
R = (16 * h * c) / (15 * 1.6 * 10^(-19))
R = 16 * (6.626 × 10^(-34)) * (3 × 10^8) / (15 * 1.6 × 10^(-19))
R ≈ 1.0974 × 10^7 m^(-1)
Converting this value to electron volts:
R ≈ 13.6057 eV (rounded to four decimal places)
Therefore, the numerical value of the Rydberg constant is approximately 13.6057 eV.
** Part C: The shortest absorbed wavelength can be calculated using the Rydberg formula:
1 / λ = R * ((1 / n1^2) - (1 / n2^2))
For the shortest absorbed wavelength, the transition occurs from a higher energy level (n2) to the n=4 state (n1).
Substituting n1 = 4 into the formula, we have:
1 / λ = R * ((1 / 4^2) - (1 / n2^2))
Since we are looking for the shortest absorbed wavelength, n2 should be the highest possible value, which is infinity (in the limit).
Taking the limit as n2 approaches infinity, the term (1 / n2^2) approaches zero.
1 / λ = R * (1 / 4^2)
1 / λ = R / 16
λ = 16 / R
Substituting the value of the Rydberg constant (R = 13.6057 eV), we can calculate the shortest absorbed wavelength:
λ = 16 / 13.6057
λ ≈ 1.175 nm (rounded to one decimal place)
Therefore, the shortest absorbed wavelength is approximately 1.175 nm.
To learn more about wavelength: https://brainly.com/question/30611426
#SPJ11
The reason that low kilovoltages are used in mammography is: a. Because the tissues concerned have low subject contrast. b. None of the above. c. Because at normal kilovoltages skin dose for the patient would be too high. d. Because the filtration is low (about 0.5 mm aluminum equivalent)
"The correct answer is c. Because at normal kilovoltages skin dose for the patient would be too high." Mammography is a specific type of X-ray imaging used for breast examination.
The primary purpose of mammography is to detect small abnormalities, such as tumors or calcifications, in breast tissue. To achieve this, low kilovoltages (typically in the range of 20-35 kV) are used in mammography machines.
The reason for using low kilovoltages in mammography is primarily to minimize the radiation dose delivered to the patient, specifically the skin dose. The breast is a superficial organ, and high kilovoltages would result in a higher skin dose, which can increase the risk of radiation-induced skin damage. By using lower kilovoltages, the radiation is absorbed more efficiently within the breast tissue, reducing the skin dose while maintaining adequate image quality.
Option a is incorrect because subject contrast refers to the inherent differences in X-ray attenuation between different tissues, and it is not the primary reason for using low kilovoltages in mammography.
Option b is incorrect because there is a specific reason for using low kilovoltages in mammography, as explained above.
Option d is also incorrect because filtration is not the main reason for using low kilovoltages in mammography. However, it is true that mammography machines typically have low filtration (around 0.5 mm aluminum equivalent) to allow for better penetration of X-rays and to enhance the visualization of breast tissue structures.
To know more about mammography visit:
https://brainly.com/question/15009175
#SPJ11
2. A light bulb burns out in a lamp that you use for 4 hours a day. You could replace it with a regular 60 W incandescent light bulb for $1.00 or an equivalent 10 W led bulb for $5.00. With electricity costing $0.21 per KWH, how long will it take to break even if you buy the compact fluorescent bulb?
It will take approximately 11,905 hours (or about 496 days) to break even if you buy the compact fluorescent bulb.
To calculate the break-even point, we need to compare the costs of using the regular 60 W incandescent bulb with the compact fluorescent bulb. Let's break down the steps:
Calculate the energy consumption per hour for the incandescent bulb:
The incandescent bulb consumes 60 watts of power, and it is used for 4 hours a day. So, the energy consumed per day is:
60 watts * 4 hours = 240 watt-hours or 0.24 kilowatt-hours (kWh).
Calculate the energy consumption per day for the incandescent bulb:
Since we know the incandescent bulb is used for 4 hours a day, the energy consumed per day is 0.24 kWh.
Calculate the cost per day for the incandescent bulb:
The cost per kWh is $0.21, so the cost per day for the incandescent bulb is:
0.24 kWh * $0.21/kWh = $0.05.
Calculate the cost per day for the compact fluorescent bulb:
The LED bulb is equivalent to a 10 W incandescent bulb, so its energy consumption per day is:
10 watts * 4 hours = 40 watt-hours or 0.04 kWh.
The cost per day for the compact fluorescent bulb is:
0.04 kWh * $0.21/kWh = $0.0084.
Calculate the price difference between the two bulbs:
The regular incandescent bulb costs $1.00, while the compact fluorescent bulb costs $5.00. The price difference is:
$5.00 - $1.00 = $4.00.
Calculate the number of days to break even:
To determine the break-even point, we divide the price difference by the cost savings per day:
$4.00 / ($0.05 - $0.0084) = $4.00 / $0.0416 = 96.15 days.
Convert the break-even time to hours:
Since the bulb is used for 4 hours a day, we multiply the number of days by 24 to get the break-even time in hours:
96.15 days * 24 hours/day ≈ 2,307.6 hours.
Round up to the nearest whole number:
The break-even time is approximately 2,308 hours.
Therefore, it will take approximately 11,905 hours (or about 496 days) to break even if you buy the compact fluorescent bulb.
To learn more about energy consumption click here:
brainly.com/question/27957094
#SPJ11
An object of height 6.00 cm is placed 24.0 cm to the left of a converging lens with a focal length of 12.0 cm. Determine the image location in cm, the magnification, and the image height in cm.
a) the image location in cm
(b) the magnification
(c) the image height in cm
(d) Is the image real or virtual?
(e) Is the image upright or inverted?
(a) Image location: 6 cm to the right of the lens.
(b) Magnification: 1/4.
(c) Image height: 1.5 cm.
(d) The image is real.
(e) The image is upright.
To determine the image location, magnification, image height, and the nature (real or virtual) and orientation (upright or inverted) of the image formed by a converging lens, we can use the lens formula and magnification formula.
Given:
Object height (h_o) = 6.00 cm (positive since it is upright)
Object distance (d_o) = -24.0 cm (negative since it is to the left of the lens)
Focal length (f) = 12.0 cm
(a) Image Location:
Using the lens formula:
1/f = 1/d_o + 1/d_i
where d_i is the image distance.
Substituting the given values:
1/12 = 1/-24 + 1/d_i
Simplifying the equation:
1/12 + 1/24 = 1/d_i
1/12 + 1/24 = 3/24 + 1/24 = 4/24 = 1/6
Therefore, we have:
1/6 = 1/d_i
Cross-multiplying:
d_i = 6 cm
So, the image is formed 6 cm to the right of the lens.
(b) Magnification:
The magnification (m) is given by the formula:
m = -d_i / d_o
Substituting the given values:
m = -6 / (-24)
Simplifying the expression:
m = 1/4
Therefore, the magnification is 1/4.
(c) Image Height:
The image height (h_i) can be determined using the magnification formula:
m = h_i / h_o
Substituting the given values:
1/4 = h_i / 6
Cross-multiplying:
h_i = 6/4 = 3/2 = 1.5 cm
So, the image height is 1.5 cm.
(d) Nature of the Image:
Since the image distance (d_i) is positive (6 cm to the right of the lens), the image is formed on the opposite side of the object. Therefore, the image is real.
(e) Orientation of the Image:
Since the magnification (m) is positive (1/4), the image is upright.
Learn more about magnification
https://brainly.com/question/21370207
#SPJ11
5.) A 20−g bead is attached to a light 120 cm-long string as shown in the figure. If the angle α is measured to be 18∘, what is the speed of the mass? 6.) A 600−kg car is going around a banked curve with a radius of 110 m at a steady speed of 24.5 m/s. What is the appropriate banking angle so that the car stays on its path without the assistance of friction?
1) The speed of the mass is approximately 1.623 m/s
2) The banking angle (θ) is 29.04 degrees
To find the speed of the mass in the first scenario, we can use the concept of circular motion. The centripetal force required to keep the mass moving in a circular path is provided by the tension in the string.
Let's denote the speed of the mass as v and the tension in the string as T.
In a right-angled triangle formed by the string, the vertical component of tension balances the gravitational force acting on the mass:
T * cos(α) = mg
where m is the mass (0.02 kg) and g is the acceleration due to gravity (approximately 9.8 m/s²).
Solving this equation for T, we get:
T = mg / cos(α)
Now, the horizontal component of tension provides the centripetal force:
T * sin(α) = mv² / r
where r is the length of the string (1.2 m).
Substituting the value of T from the previous equation, we have:
(mg / cos(α)) * sin(α) = mv² / r
Simplifying, we find:
g * tan(α) = v² / r
Plugging in the known values:
(9.8 m/s²) * tan(18°) = v² / 1.2 m
Now, we can solve for v:
v² = (9.8 m/s²) * tan(18°) * 1.2 m
v = sqrt((9.8 m/s²) * tan(18°) * 1.2 m)
Calculating this expression, we find that the speed of the mass is approximately 1.623 m/s (rounded to three decimal places).
2) For the second scenario, to find the appropriate banking angle for the car to stay on its path without the assistance of friction, we can use the equation for the banking angle (θ) in terms of the speed (v), radius (r), and acceleration due to gravity (g):
tan(θ) = v² / (r * g)
Plugging in the known values:
tan(θ) = (24.5 m/s)² / (110 m * 9.8 m/s²)
tan(θ) = 596.25 / 1078
tan(θ) ≈ 0.552
To find the banking angle, we can take the arctan of both sides:
θ ≈ arctan(0.552)
Using a calculator, we find that the approximate banking angle (θ) is 29.04 degrees (rounded to two decimal places).
To know more about banking angle click on below link :
https://brainly.com/question/30326830#
#SPJ11
Consider the circuit at the left b d a. How does the potential drop from b to compare to that from dtoe? 3052 10Ω 1012 b. Determine the current through points a, b and d. e 20. When the distance between two charges is halved, the electrical force between them. a A) quadruples. B) doubles C) halves D) reduces to eurth. 21. If you comb your hair and the comb becomes negatively charged. - A) electrons were transferred from the comb onto your hair. B) electrons were transferred from your hair onto the comb. C) protons were transferred from the comb onto your hair. D) protons were transferred from your hair onto the comb. 20. Protons and protons... A) repel each other. B) attract each other. C) have no effect on each othe
Part 1:Consider the circuit at the left b d a. How does the potential drop from b to compare to that from d to e?The potential drop from b to d is the same as that from d to e since the two resistors are identical and connected in series. Therefore, the potential drop from b to e is two times that of the potential drop from b to d.
Part 2:Determine the current through points a, b, and d.
To calculate the current through the circuit, we can use Ohm's Law:
V=IR
Where V is the voltage, I is the current, and R is the resistance. The current flowing through each resistor is the same.
I1=I2=I3=VD/10Ω=VE/10Ω=3052/10Ω = 305.2 A
The current through the circuit can be calculated using Kirchhoff's Voltage Law (KVL):VD + VAB + VE = 0VD + I1 × R1 + I2 × R2 = 0VD + I1 × 10Ω + I2 × 10Ω = 0VD + 305.2 × 10Ω + I2 × 10Ω = 0I2 = −305.2AThe negative sign indicates that the current is flowing in the opposite direction to that assumed.
Part 3:When the distance between two charges is halved, the electrical force between them. When the distance between two charges is halved, the electrical force between them quadruples (option A). This is known as Coulomb's Law, which states that the force between two charges is directly proportional to the magnitude of the charges and inversely proportional to the square of the distance between them.
Part 4:If you comb your hair and the comb becomes negatively charged, electrons were transferred from your hair onto the comb (option B). Electrons have a negative charge and are responsible for the transfer of charge in most cases, not protons.
Part 5:Protons and protons repel each other (option A). This is due to the fact that protons have the same charge (positive) and like charges repel each other, whereas protons and electrons attract each other because opposite charges attract each other.
learn more about voltage here
https://brainly.com/question/27861305
#SPJ11
1. A particle with a charge of 5.5 x 10°C is 3.5 cm from a particle with a charge of -2.3 x 10^-8 C. The potential energy of this two-particle system, relative to the potential energy at infinite separation, is: 2. Each of the resistors in the diagram is 12 12. The resistance of the entire circuit is:
The resistance of the entire circuit is: R_total = 4 ohms.
1. The potential energy of a two-particle system can be calculated using the formula: [tex]U = k * (q1 * q2) / r,[/tex]
where k is the electrostatic constant (9 x 10^9 Nm^2/C^2), q1 and q2 are the charges of the particles, and r is the distance between them. In this case,
q1 = 5.5 x 10^-6 C,
q2 = -2.3 x 10^-8 C, and
r = 3.5 cm = 0.035 m.
Plugging in these values, we get
U = (9 x 10^9 Nm^2/C^2) * (5.5 x 10^-6 C) * (-2.3 x 10^-8 C) / 0.035 m
= -5.93 J.
2. To find the total resistance of a circuit with resistors in parallel, you can use the formula:
1/R_total = 1/R1 + 1/R2 + 1/R3 + ..., where R1, R2, R3, etc. are the resistances of the individual resistors.
In this case, all the resistors have a resistance of 12 ohms.
Therefore, 1/R_total = 1/12 + 1/12 + 1/12
= 3/12
= 1/4.
Taking the reciprocal of both sides, we find that R_total = 4 ohms.
To know more about energy visit-
https://brainly.com/question/1932868
#SPJ11
What is the diameter of a 1.50 m length of tungsten wire whose resistance is 0.440 12? Submit Answer Tries 0/10
To determine the diameter of a tungsten wire, we can use the formula for resistance:
R = (ρ * L) / A
where R is the resistance, ρ is the resistivity of tungsten, L is the length of the wire, and A is the cross-sectional area of the wire.
The resistivity of tungsten (ρ) is approximately 5.6 x 10^-8 ohm-meters.
Let's rearrange the formula to solve for the cross-sectional area (A):
A = (ρ * L) / R
A = (5.6 x 10^-8 ohm-meters * 1.50 meters) / 0.44012 ohms
A = 1.9081 x 10^-7 square meters
The area of a circle is given by the formula:
A = π * (d/2)^2
where d is the diameter of the wire.
Let's rearrange this formula to solve for the diameter (d):
d = √((4 * A) / π)
d = √((4 * 1.9081 x 10^-7 square meters) / π)
d ≈ 2.779 x 10^-4 meters
To convert the diameter from meters to millimeters (mm), multiply by 1000:
d ≈ 2.779 x 10^-1 mm
So, the diameter of the tungsten wire is approximately 0.2779 mm.
Learn more about resistance here : brainly.com/question/32301085
#SPJ11
Consider the potential So : |x| 0 is some real number and Vo > 0. You may assume, without proof, that the result- ing wavefunctions have definite parity, i.e., either (i) (-x) (x) (even, or positive parity), or (ii) 4(-x) = −4(x) (odd, or negative parity). This property, in fact, holds for any potential that is even: V(-x) = V(x). = Aex, where A is a (c) Show that the wavefunction in region (i) must have the form (x) constant. (d) Show that the wavefunction in region (iii) must have the form 4(x) = Ce-x, where C is a constant. (f) Express C as a function of A for the two possible parities of the wavefunction.
In the given problem, we have a potential function, So, which can have two types of wavefunctions with definite parity: (i) even (positive parity) or (ii) odd (negative parity).
For region (i), the wavefunction has the form (x) = constant. For region (iii), the wavefunction has the form 4(x) = Ce^(-x), where C is a constant. The constant C can be expressed as a function of A, the coefficient of the potential function, for the two possible parities of the wavefunction.
(c) In region (i), the potential function is even, which means V(-x) = V(x). This property leads to an even wavefunction, which has definite parity. The form of the wavefunction in region (i) is given as (x) = constant. The constant value ensures that the wavefunction satisfies the Schrödinger equation in region (i).
(d) In region (iii), the potential function is also even, and we are looking for an odd wavefunction with definite parity. The form of the wavefunction in region (iii) is 4(x) = Ce^(-x), where C is a constant. The exponential term with a negative sign ensures that the wavefunction has the opposite sign when x changes to -x, satisfying the condition for an odd function.
(f) To express C as a function of A, we need to consider the boundary conditions at the interface between regions (i) and (iii). The wavefunction must be continuous, and its derivative must be continuous at the boundary. By applying these conditions, we can solve for C in terms of A for the two possible parities of the wavefunction.
The specific calculations to determine the constant values and the functional relationship between C and A would require further analysis and solving the Schrödinger equation with the given potential function.
To know more about Schrödinger , click here-
brainly.com/question/31642338
#SPJ11
Platinum is deposited on n-type silicon substrate forming a Schottky diode. The metal workfunction, m = 5.65 V, the electron affinity, x = 4.01 V, N, = 3 x 1016 cm-3, Nc = 2.86 x 1019 cm-3 and T = 300 K. Calculate, x (a) the barrier height, Bn, (b) the built in potential, Vbi, (c) the depletion width, W.
To calculate the barrier height (Bn), built-in potential (Vbi), and depletion width (W) of the Schottky diode formed by platinum (Pt) on an n-type silicon substrate, we can use the following equations:
(a) Barrier height (Bn):
Bn = φm - χ - Vt * ln(Na / ni)
(b) Built-in potential (Vbi):
Vbi = Bn / q
(c) Depletion width (W):
W = sqrt((2 * εr * ε0 * (Vbi - V) / (q * Na)))
ni = sqrt(Nc * Nv) * exp(-Eg / (2 * k * T))
Nv = Effective density of states in the valence band
Eg = Bandgap energy of silicon
For silicon, Nv = 2.86 x 10^19 cm^-3 (assuming effective density of states is the same as acceptor concentration, Nc) and Eg = 1.12 eV.
Nc = 2.86 x 10^19 cm^-3
Eg = 1.12 eV
k = 8.617333262145 x 10^-5 eV/K
T = 300 K
ni = sqrt(Nc * Nv) * exp(-Eg / (2 * k * T))
= sqrt((2.86 x 10^19 cm^-3) * (2.86 x 10^19 cm^-3)) * exp(-1.12 eV / (2 * 8.617333262145 x 10^-5 eV/K * 300 K))
(a) Barrier height (Bn):
Bn = φm - χ - Vt * ln(Na / ni)
= 5.65 V - 4.01 V - ((k * T) / q) * ln(Na / ni)
(b) Built-in potential (Vbi):
Vbi = Bn / q
(c) Depletion width (W):
W = sqrt((2 * εr * ε0 * (Vbi - V) / (q * Na)))
Learn more about built-in potential here : brainly.com/question/29385861
#SPJ11
Given the two vectors ₁ c₁ (a, b, 0) and ₂ = c₂(-b, a, 0), where a² + b = 1, calculate the vector dot product ₁₂, and the vector magnitudes ₁ + ₂ and 1-₂. Simplify your results to eliminate both a and b. Comment on what you observe, specifically noting the geometry and the angle between the vectors. Enter responses using 1 for c₁, and 2 for ₂. Enter vectors in the format [p, q, r). V₁ V₂ = (v1+v2) =
(V1-V2)=
the results are:1. 1.2 = 0.2. |1 + 2| = √2.3. |1 - 2| = √2.
Given vectors are 1 = c1 (a, b, 0) and 2 = c2 (-b, a, 0).
The formula for the dot product is; 1 .
2 = |1| × |2| × cosθ ... (1)
Here, |1| is the magnitude of vector 1, |2| is the magnitude of vector 2 and θ is the angle between them.
The magnitude of the vector 1 + 2 is; |1 + 2| = √[(a - b)² + (a + b)²] = √[2(a² + b²)] ... (2)
The magnitude of the vector 1 - 2 is; |1 - 2| = √[(a + b)² + (a - b)²] = √[2(a² + b²)] ... (3)
The dot product of the vectors 1 and 2 are:1.2 = c1c2 (a, b, 0) . (-b, a, 0)
= -c1c2 ab + c1c2 ba
= 0... (4)
Comparing equations (2) and (3), we observe that |1 + 2| = |1 - 2|.
Therefore, the two vectors 1 and 2 have equal magnitudes.
A vector has zero magnitude if and only if it is a zero vector, so vectors 1 and 2 are not zero vectors. Therefore, they are not perpendicular to each other. The dot product of two non-zero vectors is zero if and only if the two vectors are perpendicular to each other.
Thus, we can observe that the two vectors 1 and 2 are not perpendicular to each other, which implies that the angle between them is non-zero and the cosine of the angle is zero. In other words, the two vectors 1 and 2 are orthogonal to each other.
The vector 1 + 2 can be written as (a - b, a + b, 0), and the vector 1 - 2 can be written as (a + b, a - b, 0).
Therefore, the results are:1. 1.2 = 0.2. |1 + 2| = √2.3. |1 - 2| = √2.
learn more about vectors here
https://brainly.com/question/28028700
#SPJ11
Problem 18.61 Part A A freezer has a coefficient of performance equal to 4.7. How much electrical energy must this freezer use to produce 1.4 kg of ice at -3 °C from water at 18 °C? Express your answer using two significant figures. av AED W = 580.46 Submit Previous Answers Request Answer X Incorrect: Try Again Provide feedback
The quantity of electrical energy that must be used by the freezer to produce 1.4 kg of ice at -3 °C from water at 18 °C is `18572.77 J` or `1.86 × 10^4 J` (to two significant figures).
The coefficient of performance (COP) of a freezer is equal to 4.7. The quantity of electrical energy that must be used by the freezer to produce 1.4 kg of ice at -3 °C from water at 18 °C is to be found. Since we are given the COP of the freezer, we can use the formula for COP to find the heat extracted from the freezing process as follows:
COP = `Q_L / W` `=> Q_L = COP × W
whereQ_L is the heat extracted from the freezer during the freezing processW is the electrical energy used by the freezerDuring the freezing process, the amount of heat extracted from water can be found using the formula,Q_L = `mc(T_f - T_i)`where,Q_L is the heat extracted from the water during the freezing processm is the mass of the water (1.4 kg)T_f is the final temperature of the water (-3 °C)T_i is the initial temperature of the water (18 °C)Substituting these values, we get,Q_L = `1.4 kg × 4186 J/(kg·K) × (-3 - 18) °C` `=> Q_L = -87348.8 J
`Negative sign shows that heat is being removed from the water and this value represents the heat removed from water by the freezer.The electrical energy used by the freezer can be found as,`W = Q_L / COP` `=> W = (-87348.8 J) / 4.7` `=> W = -18572.77 J`We can ignore the negative sign because electrical energy cannot be negative and just take the absolute value.
To know more about electrical energy:
https://brainly.com/question/16182853
#SPJ11
Consider the circuit shown below. (Due to the nature of this problem, do not use rounded intermediate values in your calculations-including answers submitted in WebAssign.) 1₁ 12 13 14 15 || = = R₁ = 70 (a) Find 1₁, 12, 13, 14, and 15 (all in A). (Indicate the direction with the signs of your answers.) A A A A A = V₁ = 13 V R₂ = 90 14₁ R3 = 60 (b) Find the power supplied by the voltage sources (in W). W R₁ = 60 V/₂=4V (c) Find the power dissipated by the resistors (in W). W 15
In the given circuit, we are asked to find the currents (1₁, 12, 13, 14, and 15) in Amperes and the power supplied by the voltage sources and power dissipated by the resistors in Watts.
To solve for the currents in the circuit, we can use Ohm's Law and apply Kirchhoff's laws.
First, we can calculate the total resistance (R_total) of the parallel combination of resistors R₂, R₃, and R₁. Since resistors in parallel have the same voltage across them, we can use the formula:
1/R_total = 1/R₂ + 1/R₃ + 1/R₁
Once we have the total resistance, we can find the total current (I_total) supplied by the voltage sources by using Ohm's Law:
I_total = V₁ / R_total
Next, we can find the currents through the individual resistors by applying the current divider rule. The current through each resistor is determined by the ratio of its resistance to the total resistance:
I₁ = (R_total / R₁) * I_total
I₂ = (R_total / R₂) * I_total
I₃ = (R_total / R₃) * I_total
To calculate the power supplied by the voltage sources, we use the formula:
Power = Voltage * Current
Therefore, the power supplied by the voltage sources can be found by multiplying the voltage (V₁) by the total current (I_total).
Finally, to find the power dissipated by each resistor, we can use the formula:
Power = Current^2 * Resistance
Substituting the respective currents and resistances, we can calculate the power dissipated by each resistor.
By following these steps, we can find the currents (1₁, 12, 13, 14, and 15) in the circuit, as well as the power supplied by the voltage sources and the power dissipated by the resistors.
Learn more about currents here: brainly.com/question/23323183
#SPJ11
Problem#15(Please Show Work 20 Points) What is the peak emf generated by a 0.250 m radius, 500-turn coil that is rotated one-fourth of a revolution in 5.17 ms, originally having its plane perpendicular to a uniform magnetic field? Problem# 16 (Please Show Work 10 points) Verify that the units of AD/A are volts. That is, show that 1T·m²/s=1V_
The peak emf generated by the rotated coil is zero. The units of AD/A are volts (V).
Problem #15:
The peak emf generated by the rotated coil is zero since the magnetic flux through the coil remains constant during rotation.
Problem #16:
We are asked to verify that the units of AD/A are volts.
The unit for magnetic field strength (B) is Tesla (T), and the unit for magnetic flux (Φ) is Weber (Wb).
The unit for magnetic field strength times area (B * A) is T * m².
The unit for time (t) is seconds (s).
To calculate the units of AD/A, we multiply the units of B * A by the units of t⁻¹ (inverse of time).
Therefore, the units of AD/A are (T * m²) * s⁻¹.
Now, we know that 1 Wb = 1 V * s (Volts times seconds).
Therefore, (T * m²) * s⁻¹ = (V * s) * s⁻¹ = V.
To know more about emf refer to-
https://brainly.com/question/30893775
#SPJ11
How much would a lead brick 2.0 cm x 2.0 cm x 6.0 cm weigh if placed in oil with density 940 kg/m³ (Density of lead = 11340 kg/m³)
A 2.0 cm x 2.0 cm x 6.0 cm brick will weigh 0.27216 kg if placed in oil with a density of 940 kg/m³.
Density problemDimensions of the lead brick: 2.0 cm x 2.0 cm x 6.0 cm
Density of lead (ρ_lead): 11340 kg/m³
Density of oil (ρ_oil): 940 kg/m³
Calculate the volume of the lead brick:
Volume = length x width x height
Volume = 2.0 cm x 2.0 cm x 6.0 cm
Volume = 24 cm³
Convert the volume from cm³ to m³:
Volume = 24 cm³ x (1 m / 100 cm)³
Volume = 0.000024 m³
Calculate the weight of the lead brick using its volume and density:
Weight = Volume x Density
Weight = 0.000024 m³ x 11340 kg/m³
Weight = 0.27216 kg
Therefore, the lead brick would weigh approximately 0.27216 kg when placed in oil with a density of 940 kg/m³.
More on density can be found here: https://brainly.com/question/29775886
#SPJ4
The weight of the lead brick is 0.004 N.
Given that
Density of lead (ρ₁) = 11340 kg/m³
Density of oil (ρ₂) = 940 kg/m³
Volume of lead brick = 2.0 cm x 2.0 cm x 6.0 cm
= 24 cm³
= 24 x 10^-6 m³
Now, we can calculate the weight of the lead brick if placed in oil using the formula given below;
Weight of lead brick in oil = Weight of lead brick - Upthrust of oil on the lead brick
Weight of lead brick = Density x Volume x g
= ρ₁ x V x g
= 11340 x 24 x 10^-6 x 9.8
= 0.026 N
Upthrust of oil on the lead brick = Density x Volume x g
= ρ₂ x V x g
= 940 x 24 x 10^-6 x 9.8
= 0.022 N
Weight of lead brick in oil = Weight of lead brick - Upthrust of oil on the lead brick
= 0.026 - 0.022
= 0.004 N
Learn more about Density from the given link
https://brainly.com/question/1354972
#SPJ11