Answer:
80
Step-by-step explanation:
You mean the "interest on"
I=800×.1×1=80
Find the area of the surface generated when the given curve is revolved about the y-axis. The part of the curve y=4x-1 between the points (1, 3) and (4, 15)
Answer:
Step-by-step explanation:
Let take a look at the given function y = 4x - 1 whose point is located between (1,3) and (4,15) on the graph.
Here, the function of y is non-negative. Now, expressing y in terms of x in y = 4x- 1
4x = y + 1
[tex]x = \dfrac{y+1}{4}[/tex]
[tex]x = \dfrac{1}{4}y + \dfrac{1}{4}[/tex]
By integration, the required surface area in the revolve is:
[tex]S = \int^{15}_{ 3} 2 \pi g (y) \sqrt{1+g'(y^2) \ dy }[/tex]
where;
g(y) = [tex]x = \dfrac{1}{4}y + \dfrac{1}{4}[/tex]
∴
[tex]S = \int^{15}_{ 3} 2 \pi \Big( \dfrac{1}{4}y + \dfrac{1}{4}\Big) \sqrt{1+\Bigg(\Big( \dfrac{1}{4}y + \dfrac{1}{4}\Big)'\Bigg)^2 \ dy }[/tex]
[tex]S = \dfrac{1}{2} \pi \int^{15}_{ 3} (y+1) \sqrt{1+\Bigg(\Big( \dfrac{1}{4}\Big ) \Bigg)^2 \ dy } \\ \\ \\ S = \dfrac{1}{2} \pi \int^{15}_{ 3} (y+1) \dfrac{\sqrt{17}}{4} \ dy[/tex]
[tex]S = \dfrac{\sqrt{17}}{8} \pi \int^{15}_{ 3} (y+1) \ dy[/tex]
[tex]S = \dfrac{\sqrt{17} \pi}{8} (\dfrac{1}{2}(y+1)^2)\Big|^{15}_{3} \\ \\ S = \dfrac{\sqrt{17} \pi}{8} (\dfrac{1}{2}(15+1)^2-\dfrac{1}{2}(3+1)^2 ) \\ \\ S = \dfrac{\sqrt{17} \pi}{8} *120 \\ \\\mathbf{ S = 15 \sqrt{17}x}[/tex]
Question 8 of 9
Use a calculator to find the correlation coefficient of the data set.
х
у
2
15
6
13
7.
9
8
on 0
12 5
O A. -0.909
OB. 0.909
Ο Ο Ο
O C. 0.953
D. -0.953
Actual data table :
X __ y
2 15
6 13
7 9
8 8
12 5
Answer:
0.953
Step-by-step explanation:
The question isnt well formatted :
The actual data:
X __ y
2 15
6 13
7 9
8 8
12 5
Using a correlation Coefficient calculator, the correlation Coefficient obtained by fitting the data is 0.953 which depicts a strong linear correlation between the x and y variable. This shows that the value of y increases with a corresponding increase in x values and vice versa.
Help please. Need to get this right to get 100%
Answer:
Step-by-step explanation:
[tex]f(x) = \frac{4}{x}\\\\f(a) = \frac{4}{a}\\\\f(a+h) = \frac{4}{a+h}\\\\\frac{f(a+h) - f(a)}{h} = \frac{\frac{4}{a+h} - \frac{4}{a}}{h}[/tex]
[tex]=\frac{\frac{4(a)}{(a+h)a} - \frac{4(a+h)}{a(a+h)}}{h}\\\\=\frac{\frac{4a - 4a - 4h}{a(a+h)}}{h}\\\\=\frac{\frac{ - 4h}{a(a+h)}}{h}\\\\= \frac{-4h}{a(a+h) \times h}\\\\= -\frac{4}{a(a+h)}\\\\[/tex]
helppppppppppppppppppppppppppppppppppppppp
Answer:
the total square footage = 194
1.88 x 194 = 364.72
Step-by-step explanation:
Area for triangle ends.
A = [tex]\frac{2.5 (8)}{2}[/tex] (Times two, because there are two ends.)
Base of prism = 8 x 10 = 80
Sides of prism = 2(10 x 4.7 ) = 94 (What's the 2? There's two of them)
Add all together : 10 + 10 + 80 + 94 = 194
1.88 x 194 = 364.72
it's tooooo easy who wants brain list
Answer:
1) Isosceles
2) Acute
3) Right angled
4( Obtuse
5) Equilateral
Find the numerical value of each expression. (Round your answers to five decimal places.) (a) sinh(ln(5)) (b) sinh(5)
sinh(ln(4)) = (exp(ln(4)) - exp(-ln(4)))/2 = (4 - 1/4)/2 = 15/8 = 1.875
sinh(4) = (exp(4) - exp(-4))/2 ≈ 27.28992
Value of the expression in which each variable was swapped out with a number from its corresponding domain sinh (l5)
How do you determine an expression's numerical value?sinh (5)
=sinh(1.6094) =2.39990 rad
=sinh(1.6094) =2.3
By doing the following, you may determine the numerical value of an algebraic expression: Replace each variable with the specified number. Then, enter your score in your team's table.
Analyze expressions that are linear.Multi-variable expressions should be evaluated.Analyze expressions that are not linear.Value of the expression in which each variable was swapped out with a number from its corresponding domain. In the case of a number with only one digit, referring to the numerical value associated with a digit by its "value" is a convenient shorthand.
To learn more about Value of the expression refer to:
https://brainly.com/question/13961297
#SPJ2
Factor completely 4x2 − 8x + 4.
Given :-
4x² - 8x - 4 .To Find :-
To find the factorised form .Answer :-
Taking the given expression,
→ 4x² - 8x + 4
→ 4x² - 4x -4x + 4
→ 4x ( x - 1 ) -4( x -1)
→ (4x - 4)(x-1)
Hence the required answer is (4x - 4)( x - 1) .
I really need help with this problem
Step-by-step explanation:
(x)+(x+1)<832x+1<832x<83-1x<82/2x<41hope it helps.stay safe healthy and happy....Answer:
[tex]x<41[/tex]
Step-by-step explanation:
[tex](x)+(x+1)<83[/tex]
simplify both sides
[tex]2x+1<83[/tex]
subtract one from the both sides to isolate the variable
[tex]2x<82[/tex]
divide both sides by 2 to isolate the variable
[tex]x<41[/tex]
Solve the simultaneous equations
2x+3y20
2x+5=10
Answer:
[tex]x=\frac{5}{2} \\y=5[/tex]
( 5/2, 2 )
Step-by-step explanation:
Solve by substitution method:
[tex]2x+5=10\\\2x+3y=20[/tex]
Solve [tex]2x+5=10[/tex] for [tex]x[/tex]:
[tex]2x+5=10[/tex]
[tex]2x=10-5[/tex]
[tex]2x=5[/tex]
[tex]x=5/2[/tex]
Substitute [tex]5/2[/tex] for [tex]x[/tex] in [tex]2x+3y=20[/tex]:
[tex]2x+3y=20[/tex]
[tex]2(\frac{5}{2} )+3y=20[/tex]
[tex]3y+5=20[/tex]
[tex]3y=20-5[/tex]
[tex]3y=15[/tex]
[tex]y=15/3[/tex]
[tex]y=5[/tex]
∴ [tex]x=\frac{5}{2}[/tex] and [tex]y=5[/tex]
hope this helps....
anna needs at least $1000 to pay her bills this week.she has $250 in the bank and makes $15 an hour at her job.how many hours does she have to work thus week in order to pay her bills
A square coffee shop has sides that are 10 meters long. What is the coffee shop's area?
square meters
100
SOLUTION:
10•10= 100
In a box of chocolates, 12 of the chocolates are wrapped in red foil. That is 30% of the chocolates in the box. How many chocolates are there?
Answer:
The answer is 40 chocolates in the box in total
Use the definition of a Taylor series to find the first four nonzero terms of the series for f(x) centered at the given value of a. (Enter your answers as a comma-separated list.)
f(x) = 7/(1+x), a = 2
Find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.]
f(x) = e−5x
f(x)=
[infinity]
n = 0
=
Find the associated radius of convergence R.
R =
Answer:
A) [ 7/3, (-7/9)(x/2), 7/27(x-2)^2, (-7/81)(x-2)^3 ]
B) attached below
Step-by-step explanation:
A) Using the definition of a Taylor series
The first four nonzero terms of the series for f(x) = 7/ (1 +x), a = 2
= [ 7/3, (-7/9)(x/2), 7/27(x-2)^2, (-7/81)(x-2)^3 ]
attached below is the detailed solution
B) Finding Maclaurin series for f(x)
f(x) = e^-5x
attached below
Associated radius of convergence = ∞ ( infinity )
Which of the following must be equal to 30% of x?
3x
(A)
1,000
3x
(B)
100
3x
(C)
10
(D) 3x
Answer:
You can go ahead with option D
Step-by-step explanation:
30% of x will be 3xA group of 40 bowlers showed that their average score was 192. Assume the population standard deviation is 8. Find the 95% confidence interval of the mean score of all bowlers.
Answer:
[tex]CI=189.5,194.5[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=40[/tex]
Mean [tex]\=x =192[/tex]
Standard deviation[tex]\sigma=8[/tex]
Significance Level [tex]\alpha=0.05[/tex]
From table
Critical Value of [tex]Z=1.96[/tex]
Generally the equation for momentum is mathematically given by
[tex]CI =\=x \pm z_(a/2) \frac{\sigma}{\sqrt{n}}[/tex]
[tex]CI =192 \pm 1.96 \frac{8}{\sqrt{40}}[/tex]
[tex]CI=192 \pm 2.479[/tex]
[tex]CI=189.5,194.5[/tex]
Olivia rides her scooter 3/4 mile in
1/3 hour. How fast, in miles per hour,
does she ride her scooter?
Answer:
2.25 miles per hr
Answer:
2.25 miles per hour
Step-by-step explanation:
speed = distance / time
speed = [tex]\frac{3}{4} / \frac{1}{3}[/tex] (take the reciprocal of [tex]\frac{1}{3}[/tex])
= [tex]\frac{3}{4} * 3[/tex]
= [tex]\frac{9}{4}[/tex] = 2.25 miles per hour
Suppose that the IQ of a randomly selected student from a university is normal with mean 115 and standard deviation 25. Determine the interval of values that is centered at the mean and for which 50% of the students have IQ's in that interval.
Answer:
The interval is [98,132]
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normal with mean 115 and standard deviation 25.
This means that [tex]\mu = 115, \sigma = 25[/tex]
Determine the interval of values that is centered at the mean and for which 50% of the students have IQ's in that interval.
Between the 50 - (50/2) = 25th percentile and the 50 + (50/2) = 75th percentile.
25th percentile:
X when Z has a p-value of 0.25, so X when Z = -0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-0.675 = \frac{X - 115}{25}[/tex]
[tex]X - 115 = -0.675*25[/tex]
[tex]X = 98[/tex]
75th percentile:
X when Z has a p-value of 0.75, so X when Z = 0.675.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.675 = \frac{X - 115}{25}[/tex]
[tex]X - 115 = 0.675*25[/tex]
[tex]X = 132[/tex]
The interval is [98,132]
What is the distance between -10.2 and 5.7?
Answer:
15.9
Step-by-step explanation:
The distance between -10.2 and 5.7 is 15.9 after plotting the points on a number line.
What is a number line?It is defined as the representation of the numbers on a straight line that goes infinitely on both sides.
It is given that:
Two numbers on a number line:
-10.2 and 5.7
As we know, a number is a mathematical entity that can be used to count, measure, or name things. For example, 1, 2, 56, etc. are the numbers.
Indicating the above numbers on a number line:
= 5.7 -(-10.5)
The arithmetic operation can be defined as the operation in which we do the addition of numbers, subtraction, multiplication, and division. It has a basic four operators that is +, -, ×, and ÷.
= 5.7 + 10.5
= 15.9
Thus, the distance between -10.2 and 5.7 is 15.9 after plotting the points on a number line.
Learn more about the number line here:
brainly.com/question/13189025
#SPJ5
Step by step solution help me pls
Step-by-step explanation:
Recall that
[tex]1 + \tan^2 x = \sec^2 x[/tex]
and
[tex]\dfrac{d}{dx}(\tan x) = \sec^2 x[/tex]
so that
[tex]\displaystyle \int \tan^2 x = \int (\sec^2 x - 1)dx[/tex]
[tex]\:\:\:\:\:\:\:\:\:=\int \sec^2 xdx - \int dx[/tex]
[tex]\:\:\:\:\:\:\:\:\:=\tan x - x + C[/tex]
where C is the constant of integration.
Suppose 42% of the population has myopia. If a random sample of size 442 is selected, what is the probability that the proportion of persons with myopia will differ from the population proportion by less than 3%
Answer:
0.7994 = 79.94% probability that the proportion of persons with myopia will differ from the population proportion by less than 3%.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose 42% of the population has myopia.
This means that [tex]p = 0.42[/tex]
Random sample of size 442 is selected
This means that [tex]n = 442[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.42[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.42*0.58}{442}} = 0.0235[/tex]
What is the probability that the proportion of persons with myopia will differ from the population proportion by less than 3%?
Proportion between 0.42 + 0.03 = 0.45 and 0.42 - 0.03 = 0.39, which is the p-value of Z when X = 0.45 subtracted by the p-value of Z when X = 0.39.
X = 0.45
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.45 - 0.42}{0.0235}[/tex]
[tex]Z = 1.28[/tex]
[tex]Z = 1.28[/tex] has a p-value of 0.8997
X = 0.39
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.39 - 0.42}{0.0235}[/tex]
[tex]Z = -1.28[/tex]
[tex]Z = -1.28[/tex] has a p-value of 0.1003
0.8997 - 0.1003 = 0.7994
0.7994 = 79.94% probability that the proportion of persons with myopia will differ from the population proportion by less than 3%.
By recognizing each series below as a Taylor series evaluated at a particular value of x, find the sum of each convergent series.
A. 1 + 1/5 + (1/5)^2 + (1/5)^3 + (1/5)^4 +.....+ (1/5)^n + .... = _____.
B. 1 + 5 + 5^2/2! + 5^3/3! + 5^4/4! +....+ 5^n/n! +....= _____.
The first sum is a geometric series:
[tex]1+\dfrac15+\dfrac1{5^2}+\dfrac1{5^3}+\cdots+\dfrac1{5^n}+\cdots=\displaystyle\sum_{n=0}^\infty\frac1{5^n}[/tex]
Recall that for |x| < 1, we have
[tex]\dfrac1{1-x}=\displaystyle\sum_{n=0}^\infty x^n[/tex]
Here we have |x| = |1/5| = 1/5 < 1, so the first sum converges to 1/(1 - 1/5) = 5/4.
The second sum is exponential:
[tex]1+5+\dfrac{5^2}{2!}+\dfrac{5^3}{3!}+\cdots+\dfrac{5^n}{n!}+\cdots=\displaystyle\sum_{n=0}^\infty \frac{5^n}{n!}[/tex]
Recall that
[tex]\exp(x)=\displaystyle\sum_{n=0}^\infty\frac{x^n}{n!}[/tex]
which converges everywhere, so the second sum converges to exp(5) or e⁵.
please help please help
Answer:
1. 3
2. D
3. KE
4. B
5. A
Step-by-step explanation:
those should be your answers
Answer:
1. 3
2. D
3. E and K
4. B
5. A
negative integers lie on the negative side of the number line(usually having a minus sign in front of them)
positive ones lie on the positive side( usually have no signs in front of them)
math help plz
how to solve parabola and its vertex, how to understand easily and step by step with an example provided please
Answer:
The general equation for a parabola is:
y = f(x) = a*x^2 + b*x + c
And the vertex of the parabola will be a point (h, k)
Now, let's find the values of h and k in terms of a, b, and c.
First, we have that the vertex will be either at a critical point of the function.
Remember that the critical points are the zeros of the first derivate of the function.
So the critical points are when:
f'(x) = 2*a*x + b = 0
let's solve that for x:
2*a*x = -b
x = -b/(2*a)
this will be the x-value of the vertex, then we have:
h = -b/(2*a)
Now to find the y-value of the vertex, we just evaluate the function in this:
k = f(h) = a*(-b/(2*a))^2 + b*(-b/(2*a)) + c
k = -b/(4*a) - b^2/(2a) + c
So we just found the two components of the vertex in terms of the coefficients of the quadratic function.
Now an example, for:
f(x) = 2*x^2 + 3*x + 4
The values of the vertex are:
h = -b/(2*a) = -3/(2*2) = -3/4
k = -b/(4*a) - b^2/(2a) + c
= -3/(4*2) - (3)^2/(2*2) + 4 = -3/8 - 9/4 + 4 = (-3 - 18 + 32)/8 = 11/8
One angle of a triangle is twice as large as another. The measure of the third angle is 60° more than that of the smallest angle. Find the measure of each angle.
The measure of the smallest angle is º
Please help :)
Answer:
The measure of the smallest angle is 30º
Step-by-step explanation:
Let the angles be:
[tex]x \to[/tex] the first angle (the smallest)
[tex]y \to[/tex] the second angle
[tex]z \to[/tex] the third angle
So, we have:
[tex]y = 2x[/tex]
[tex]z=x + 60[/tex]
Required
Find x
The angles in a triangle is:
[tex]x + y +z = 180[/tex]
Substitute values for y and z
[tex]x + 2x +x + 60 = 180[/tex]
[tex]4x + 60 = 180[/tex]
Collect like terms
[tex]4x = 180-60[/tex]
[tex]4x = 120[/tex]
Divide by 4
[tex]x = 30[/tex]
Consider the functions z = 4 e^x ln y, x = ln (u cos v), and y = u sin v.
Express dz/du and dz/dv as functions of u and y both by using the Chain Rule and by expressing z directly in terms of u and v before differentiating.
Answer:
remember the chain rule:
h(x) = f(g(x))
h'(x) = f'(g(x))*g'(x)
or:
dh/dx = (df/dg)*(dg/dx)
we know that:
z = 4*e^x*ln(y)
where:
y = u*sin(v)
x = ln(u*cos(v))
We want to find:
dz/du
because y and x are functions of u, we can write this as:
dz/du = (dz/dx)*(dx/du) + (dz/dy)*(dy/du)
where:
(dz/dx) = 4*e^x*ln(y)
(dz/dy) = 4*e^x*(1/y)
(dx/du) = 1/(u*cos(v))*cos(v) = 1/u
(dy/du) = sin(v)
Replacing all of these we get:
dz/du = (4*e^x*ln(y))*( 1/u) + 4*e^x*(1/y)*sin(v)
= 4*e^x*( ln(y)/u + sin(v)/y)
replacing x and y we get:
dz/du = 4*e^(ln (u cos v))*( ln(u sin v)/u + sin(v)/(u*sin(v))
dz/du = 4*(u*cos(v))*(ln(u*sin(v))/u + 1/u)
Now let's do the same for dz/dv
dz/dv = (dz/dx)*(dx/dv) + (dz/dy)*(dy/dv)
where:
(dz/dx) = 4*e^x*ln(y)
(dz/dy) = 4*e^x*(1/y)
(dx/dv) = 1/(cos(v))*-sin(v) = -tan(v)
(dy/dv) = u*cos(v)
then:
dz/dv = 4*e^x*[ -ln(y)*tan(v) + u*cos(v)/y]
replacing the values of x and y we get:
dz/dv = 4*e^(ln(u*cos(v)))*[ -ln(u*sin(v))*tan(v) + u*cos(v)/(u*sin(v))]
dz/dv = 4*(u*cos(v))*[ -ln(u*sin(v))*tan(v) + 1/tan(v)]
Help please somebody ASAP
Answer:
[tex]\frac{-2x+11}{(x-4)(x+1)}[/tex]
Step-by-step explanation:
I don't think we can factor this so we'll have to multiply to make the denominators the same
[tex]\frac{3(x+1)}{(x^2-3x-4)(x+1)}-\frac{2(x^2-3x-4)}{(x+1)(x^2-3x-4)}\\\\\frac{3x+3-(2x^2-6x-8)}{(x^2-3x-4)(x+1)}=\frac{-2x^2+9x+11}{(x^2-3x-4)(x+1)}\\-2x^2+9x+11=(x+1)(-2x+11)\\\\x^2-3x-4=(x+1)(x-4)\\\frac{(x+1)(-2x+11)}{(x+1)(x-4)(x+1)}=\frac{-2x+11}{(x-4)(x+1)}[/tex]
Given: x + 2 < -5.
Choose the solution set.
{x | x R, x < -3}
{x | x R, x < 3}
{x | x R, x < -7}
{x | x R, x < 7}
Answer:
C
Step-by-step explanation:
x + 2 < -5
x < - 5 - 2
x < - 7
Answer:
{x| x R, x<-7}
Step-by-step explanation:
=> x+2<-5
=> x<-5-2
=> x<-7
circle A has a center of (2,3) and a radius of 5 and circle B has a center of (1,4) and a radius of 10. What steps will help show that circle A is similar to circle B
Answer:
12
Step-by-step explanation:
what is the value of x? 4/5x-1/10=3/19
Answer:
x=[tex]\frac{1}{2}[/tex]
Step-by-step explanation:
Hi there!
We are given the following equation:
[tex]\frac{4x}{5}[/tex]-[tex]\frac{1}{10}[/tex]=[tex]\frac{3}{10}[/tex]
and we need to find the value of x
To do this, we need to isolate the value of x with a coefficient of 1 (1x) on one side. The value of x, or everything else is on the other side
So let's get rid of [tex]\frac{1}{10}[/tex] from the left side by adding [tex]\frac{1}{10}[/tex] to both sides (-[tex]\frac{1}{10}[/tex]+[tex]\frac{1}{10}[/tex]=0).
[tex]\frac{4x}{5}[/tex]-[tex]\frac{1}{10}[/tex]=[tex]\frac{3}{10}[/tex]
+[tex]\frac{1}{10}[/tex] +[tex]\frac{1}{10}[/tex]
___________
[tex]\frac{4x}{5}[/tex]=[tex]\frac{3}{10}[/tex]+[tex]\frac{1}{10}[/tex]
as the fractions on the right side both have the same denominator, we can add them together
[tex]\frac{4x}{5}[/tex]=[tex]\frac{4}{10}[/tex]
Now we need to have the value of 1x. Currently we have [tex]\frac{4x}{5}[/tex].
In order to get x with a coefficient of 1, multiply both sides by the reciprocal of [tex]\frac{4}{5}[/tex], which is [tex]\frac{5}{4}[/tex]
[tex]\frac{5}{4}[/tex]×[tex]\frac{4x}{5}[/tex]=[tex]\frac{4}{10}[/tex]*[tex]\frac{5}{4}[/tex]
which simplifies down to
x=[tex]\frac{20}{40}[/tex]
Now reduce the fraction by dividing the numerator and denominator both by 20
x=[tex]\frac{1}{2}[/tex]
Hope this helps!
haydenkyletoddhaydenkyletodd