Find the Fourier transform of the function f(t): = And hence evaluate J. sin æ sin x/2 x² -dx. 1+t, if 1≤ t ≤0, - 1-t, if 0 ≤ t ≤ 1, 0 otherwise. [5]

Answers

Answer 1

The value of J from the given Fourier transform of the function f(t) is 5/6.

Fourier Transform of f(t):

F(ω) = 2∫1+t(sin(ωt))dt + 2∫1-t(sin(ωt))dt

= -2cos(ω) + 2∫cos(ωt)dt

= -2cos(ω) + (2/ω)sin(ω)                

J = ∫π/2-0sin(x/2)(x²-1)dx

J = [-sin(x/2)x²/2 - cos(x/2)]π/2-0

J = [2/3 +cos (π/2) - sin(π/2)]/2

J = 1/3 + 1/2

J = 5/6

Therefore, the value of J from the given Fourier transform of the function f(t) is 5/6.

Learn more about the Fourier transform here:

https://brainly.com/question/1542972.

#SPJ4


Related Questions

Sample space #4: what is the sample space for a die roll if you are rolling a 5-sided die. correctly type the sample space (yes, you should use the correct letter, an equal sign, and symbols). do not use any spaces when you type your solution and be sure to list your outcomes in order.

Answers

The sample space for a roll of a 5-sided die is {1, 2, 3, 4, 5}.

In probability theory, the sample space refers to the set of all possible outcomes of an experiment. In this case, we are rolling a 5-sided die, which means there are 5 possible outcomes. The outcomes are represented by the numbers 1, 2, 3, 4, and 5, as these are the numbers that can appear on the faces of the die. Thus, the sample space for this experiment can be expressed as {1, 2, 3, 4, 5}.

It is important to note that each outcome in the sample space is mutually exclusive, meaning that only one outcome can occur on a single roll of the die. Additionally, the outcomes are collectively exhaustive, as they encompass all the possible results of the experiment. By identifying the sample space, we can analyze and calculate probabilities associated with different events or combinations of outcomes.

Learn more about sample space here :

brainly.com/question/30206035

#SPJ11

Find all solutions to −3⋅x^2+5⋅x+5=0 ×1= ×2=

Answers

The quadratic equation -3x^2 + 5x + 5 = 0 has no real solutions.

To find all the solutions to the quadratic equation -3x^2 + 5x + 5 = 0, we can use the quadratic formula. The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions can be found using the formula:

x = (-b ± √(b^2 - 4ac))/(2a)

In our equation, a = -3, b = 5, and c = 5. Plugging these values into the quadratic formula, we have:

x = (-5 ± √(5^2 - 4(-3)(5)))/(2(-3))

Simplifying this expression, we get:

x = (-5 ± √(25 + 60))/(-6)
x = (-5 ± √(85))/(-6)

Now, let's simplify the expression under the square root:

x = (-5 ± √(85))/(-6)

Since we have a negative sign in front of the square root, this means that we have no real solutions for x. This is because the expression under the square root, 85, is positive, so we cannot take the square root of a negative number in real numbers.

Therefore, the quadratic equation -3x^2 + 5x + 5 = 0 has no real solutions.

To know more about quadratic equation, refer here:

https://brainly.com/question/30098550#

#SPJ11



Simplify each radical expression. Use absolute value symbols when needed. ³√64a⁸¹

Answers

The simplified form of the expression in cube root is 4a^(8/3).

To simplify the radical expression ³√64a⁸¹, we can break it down into its prime factors and simplify each factor separately.

First, let's simplify the number inside the radical, which is 64. We can write it as 2^6, since 2 multiplied by itself 6 times equals 64.

Next, let's simplify the variable inside the radical, which is a^8.

Since we are taking the cube root, we need to find the largest factor of 8 that is a perfect cube. In this case, 2^3 is the largest perfect cube factor of 8.

So, we can rewrite the expression as ³√(2^6 * 2^3 * a).

Using the property of radicals that says ³√(a * b) = ³√a * ³√b, we can simplify further.

³√(2^6 * 2^3 * a) = ²√(2^6) * ³√(2^3) * ³√a

Since ²√(2^6) is 2^3 and ³√(2^3) is 2, we can simplify even more.

2^3 * 2 * ³√a = 8 * 2 * ³√a = 16 * ³√a

Therefore, the simplified radical expression ³√64a⁸¹ is equal to 16 * ³√a.

In summary, to simplify the expression ³√64a⁸¹, we first broke down the number 64 into its prime factors and found the largest perfect cube factor of the exponent 8.

We then used the property of radicals to simplify the expression and arrived at the final answer of 16 * ³√a.

To know more about cube root refer here:

https://brainly.com/question/32447691

#SPJ11

Find the area A of the region that is bounded between the curve f(x)=1−ln(x) and the line g(x)=xe−1 over the interval [1,5].

Enter an exact answer.

Question

Find the area A of the region that is bounded between the curve f(x) = 1 – In (x) and the line g(x) = 1 over the e

interval (1,5).

Enter an exact answer.

Sorry, that's incorrect. Try again?

A = 5 ln(5) + 13 units2

Answers

The exact area A of the region bounded between the curve f(x) = 1 - ln(x) and the line g(x) = 1 over the interval [1, 5] is given by:

A = -5ln(5) + 5 units²

To find the area A of the region bounded between the curve f(x) = 1 - ln(x) and the line g(x) = 1 over the interval [1, 5], we can integrate the difference between the two functions over that interval.

A = ∫[1, 5] (f(x) - g(x)) dx

First, let's find the difference between the two functions:

f(x) - g(x) = (1 - ln(x)) - 1 = -ln(x)

Now, we can integrate -ln(x) over the interval [1, 5]:

A = ∫[1, 5] -ln(x) dx

To integrate -ln(x), we can use the properties of logarithmic functions:

A = [-xln(x) + x] evaluated from 1 to 5

A = [-5ln(5) + 5] - [-1ln(1) + 1]

Since ln(1) = 0, the second term on the right side becomes 0:

A = -5ln(5) + 5

Learn more about area here :-

https://brainly.com/question/16151549

#SPJ11

Use the Laplace transform to solve the given initial value problem. y" - 12y85y = 0; y(0) = 6, y'(0) = 58 y(t) = [

Answers

The solution to the initial value problem is y(t)  = [tex]2e^(-5t) + 4e^(-17t)[/tex].

To solve the given initial value problem using the Laplace transform, we'll follow these steps:

Take the Laplace transform of both sides of the differential equation using the linearity property and the derivatives property of the Laplace transform.

Solve for the Laplace transform of the unknown function, denoted as Y(s).

Apply the initial conditions to find the values of the Laplace transform at s=0.

Inverse Laplace transform Y(s) to obtain the solution y(t).

Let's solve the initial value problem:

Step 1:

Taking the Laplace transform of the differential equation, we have:

s²Y(s) - sy(0) - y'(0) - 12(sY(s) - y(0)) + 85Y(s) = 0

Step 2:

Simplifying the equation and isolating Y(s), we get:

(s² + 12s + 85)Y(s) = s(6) + 58 + 12(6)

Y(s) = (6s + 130) / (s² + 12s + 85)

Step 3:

Applying the initial conditions, we have:

Y(0) = (6(0) + 130) / (0² + 12(0) + 85) = 130 / 85

Step 4:

Inverse Laplace transforming Y(s), we can use partial fraction decomposition or the table of Laplace transforms to find the inverse Laplace transform. In this case, we'll use partial fraction decomposition:

Y(s) = (6s + 130) / (s² + 12s + 85)

= (6s + 130) / [(s + 5)(s + 17)]

Using partial fraction decomposition, we can write:

Y(s) = A / (s + 5) + B / (s + 17)

Multiplying both sides by (s + 5)(s + 17), we get:

6s + 130 = A(s + 17) + B(s + 5)

Expanding and equating coefficients, we have:

6 = 17A + 5B

130 = 5A + 17B

Solving these equations simultaneously, we find A = 2 and B = 4.

Therefore, Y(s) = 2 / (s + 5) + 4 / (s + 17)

Taking the inverse Laplace transform

y(t) = [tex]2e^(-5t) + 4e^(-17t)[/tex].

So the solution to the initial value problem is y(t)  = [tex]2e^(-5t) + 4e^(-17t)[/tex].

To know more about initial value problem here

https://brainly.com/question/30782698

#SPJ4

hi
please help ne with the correct answer
5m 1. Evaluate the exact value of (sin + cos² (4 Marks)

Answers

The exact value of sin(θ) + cos²(θ) is 1.

To evaluate the exact value of sin(θ) + cos²(θ), we need to apply the trigonometric identities. Let's break it down step by step:

Start with the identity: cos²(θ) + sin²(θ) = 1.

This is one of the fundamental trigonometric identities known as the Pythagorean identity.

Rearrange the equation: sin²(θ) = 1 - cos²(θ).

By subtracting cos²(θ) from both sides, we isolate sin²(θ).

Substitute the rearranged equation into the original expression:

sin(θ) + cos²(θ) = sin(θ) + (1 - sin²(θ)).

Replace sin²(θ) with its equivalent expression from step 2.

Simplify the expression: sin(θ) + (1 - sin²(θ)) = 1.

By combining like terms, we obtain the final result.

Therefore, the exact value of sin(θ) + cos²(θ) is 1.

Learn more about Pythagorean Identity here: https://brainly.com/question/95257.

#SPJ11

Show that the ellipse

x^2/a^2 + 2y^2 = 1 and the hyperbola x2/a^2-1 - 2y^2 = 1 intersect at right angles

Answers

We have shown that the ellipse and hyperbola intersect at right angles.

To show that the ellipse and hyperbola intersect at right angles, we need to prove that their tangent lines at the point of intersection are perpendicular.

Let's first find the equations of the ellipse and hyperbola:

Ellipse: x^2/a^2 + 2y^2 = 1   ...(1)

Hyperbola: x^2/a^2 - 2y^2 = 1   ...(2)

To find the point(s) of intersection, we can solve the system of equations formed by (1) and (2). Subtracting equation (2) from equation (1), we have:

2y^2 - (-2y^2) = 0

4y^2 = 0

y^2 = 0

y = 0

Substituting y = 0 into equation (1), we can solve for x:

x^2/a^2 = 1

x^2 = a^2

x = ± a

So, the points of intersection are (a, 0) and (-a, 0).

To find the tangent lines at these points, we need to differentiate the equations of the ellipse and hyperbola with respect to x:

Differentiating equation (1) implicitly:

2x/a^2 + 4y * (dy/dx) = 0

dy/dx = -x / (2y)

Differentiating equation (2) implicitly:

2x/a^2 - 4y * (dy/dx) = 0

dy/dx = x / (2y)

Now, let's evaluate the slopes of the tangent lines at the points (a, 0) and (-a, 0) by substituting these values into the derivatives we found:

At (a, 0):

dy/dx = -a / (2 * 0) = undefined (vertical tangent)

At (-a, 0):

dy/dx = -(-a) / (2 * 0) = undefined (vertical tangent)

Since the slopes of the tangent lines at both points are undefined (vertical), they are perpendicular to the x-axis.

Learn more about hyperbola here :-

https://brainly.com/question/27799190

#SPJ11

Suppose that $600 are deposited at the beginning of each quarter for 10 years into an account that pays 5.6% interest compounded quarterly. Find the total amount accumulated at the end of 10 years.

Answers

The total amount accumulated at the end of 10 years is approximately $1268.76. Hence, the amount accumulated is $1268.76.

Principal deposited (P): $600

Annual interest rate (r): 5.6%

Number of times interest compounded per year (n): 4

Time in years (t): 10

To find: The total amount accumulated at the end of 10 years.

Solution:

We will use the compound interest formula:

A = P * (1 + r/n)^(nt)

Substituting the given values:

A = 600 * (1 + 0.056/4)^(4 * 10)

Simplifying the expression:

A = 600 * (1.014)^40

Calculating the value:

A ≈ 600 * 2.1146

A ≈ 1268.76

Therefore, , the total money amassed after ten years is around $1268.76.

As a result, the total sum accumulated is $1268.76.

Learn more about interest compounded

https://brainly.com/question/14295570

#SPJ11



Multiply. (5+2√5)(7+4 √5)

Answers

The solution as 75 + 34√5 while solving (5+2√5)(7+4 √5).

To get the product of the given two binomials, (5+2√5) and (7+4√5), use FOIL multiplication method. Here, F stands for First terms, O for Outer terms, I for Inner terms, and L for Last terms. Then simplify the expression. The solution is shown below:

First, multiply the first terms together which give: (5)(7) = 35.

Second, multiply the outer terms together which give: (5)(4 √5) = 20√5.

Third, multiply the inner terms together which give: (2√5)(7) = 14√5.

Finally, multiply the last terms together which give: (2√5)(4√5) = 40.

When all the products are added together, we get; 35 + 20√5 + 14√5 + 40 = 75 + 34√5

Therefore, (5+2√5)(7+4√5) = 75 + 34√5.

Thus, we got the solution as 75 + 34√5 while solving (5+2√5)(7+4 √5).

Know more about binomials here,

https://brainly.com/question/30339327

#SPJ11

5. Sketch graphs of the following polar functions. Give the coordinates of intersections with 0 = 0 and 0 = π/2. ady = 0/4c. with 0 < 0 < 4. bir sin(201 dr−1+cost d) r = 1- cos(20) e) r = 1- 2 sin

Answers

a) The graph originates at the origin( 0, 0) and spirals in exterior as θ increases. b) The graph have two loops centered at the origin. c) The graph is a cardioid. d) The  graph has bigger loop at origin and the innner loop inside it.. e) The graph is helical that starts at the point( 1, 0) and moves in inward direction towards the origin.

a) The function with polar equals is given by dy = θ/( 4π) with 0< θ< 4.

We've to find the crossroad points with θ = 0 and θ = π/ 2,

When θ = 0

dy = 0/( 4π) = 0

therefore, when θ = 0, the function intersects the origin( 0, 0).

Now, θ = π/ 2

dy = ( π/ 2)/( 4π) = 1/( 8)

thus, when θ = π/ 2, the polar function intersects the y- axis at( 0,1/8).

b) The polar function is given by r = sin( 2θ).

We've to find the corners with θ = 0 and θ = π/ 2,

When θ = 0

r = sin( 2 * 0) = sin( 0) = 0

thus, when θ = 0, the polar function intersects the origin( 0, 0).

Now, θ = π/ 2

r = sin( 2 *( π/ 2)) = sin( π) = 0

thus, when θ = π/ 2, the polar function also intersects the origin( 0, 0).

c) The polar function is given by r = 1 cos( θ).

To find the corners with θ = 0 and θ = π/ 2,

At θ = 0

r = 1 cos( 0) = 1 1 = 2

thus, when θ = 0, the polar function intersects thex-axis at( 2, 0).

At θ = π/ 2

r = 1 cos( π/ 2) = 1 0 = 1

thus, when θ = π/ 2, the polar function intersects the circle centered at( 0, 0) with compass 1 at( 1, π/ 2).

d) The polar function is given by r = 1- cos( 2θ).

To find the corners with θ = 0 and θ = π/ 2

At θ = 0

r = 1- cos( 2 * 0) = 1- cos( 0) = 0

thus, when θ = 0, the polar function intersects the origin( 0, 0).

At θ = π/ 2

r = 1- cos( 2 *( π/ 2)) = 1- cos( π) = 2

therefore, when θ = π/ 2, the polar function intersects the loop centered at( 0, 0) with compass 2 at( 2, π/ 2).

e) The polar function is given by r = 1- 2sin( θ).

To find the point of intersection with θ = 0 and θ = π/ 2,

When θ = 0

r = 1- 2sin( 0) = 1- 2( 0) = 1

thus, when θ = 0, the polar function intersects the circle centered at( 0, 0) with compass 1 at( 1, 0).

When θ = π/ 2

r = 1- 2sin( π/ 2) = 1- 2( 1) = -1

thus, when θ = π/ 2, the polar function intersects the negative y-axis at( 0,-1).

Learn more about polar;

https://brainly.com/question/29197119

#SPJ4

The correct question is given below-

Sketch graphs of the following polar functions. Give the coordinates of intersections with theta = 0 and theta = π/2. a.dy = theta/4pi. with 0 < 0 < 4. b.r =sin(2theta) c.r=1+costheta d) r = 1- cos(2theta) e) r = 1- 2 sin(theta)

Incorrect. If y₁ and y2 are linearly independent solutions of ty" + 2y' + test y = 0 and if W(y₁, y2)(1) = 2, find W(y₁, y2)(3). Round your answer to two decimal places. W(y₁, y2)(3) = i 0.53

Answers

The given answer of i 0.53 is incorrect. The correct value is 2.

W(y₁, y₂)(3), we can use the Wronskian determinant formula.

W(y₁, y₂) = y₁y₂' - y₂y₁'

Let's first calculate the derivative of y₂:

y₂' = (d/dt)(y₂)

Next, we can substitute the given values into the formula to find

W(y₁, y₂)W(y₁, y₂)(1) = y₁(1)y₂'(1) - y₂(1)y₁'(1)

Since W(y₁, y₂)(1) is given as 2, we can set up the equation:

2 = y₁(1)y₂'(1) - y₂(1)y₁'(1)

Now, we need to find W(y₁, y₂)(3). To do this, we can use the fact that the Wronskian determinant is constant for linear homogeneous differential equations. Therefore, W(y₁, y₂)(3) will also be equal to 2.

So, W(y₁, y₂)(3) = 2.

learn more about Wronskian determinant formula

https://brainly.com/question/31058673

#SPJ11

Show that y = Ae²+ Be-³x, where A and B are constants, is the general solution of the differential equation y"+y'-6y=0. Hence, find the solution when y(1) = 2e²-e³ and y(0)=1.

Answers

The solution of the given differential equation when y(1) = 2e²-e³ and y(0)=1 is given by   y = (1/6)e² + (2/3)e-³

Differential equation is y" + y' - 6y = 0

To show that y = Ae²+ Be-³x is the general solution of the given differential equation, first, we need to find the derivatives of y.

Now,y = Ae²+ Be-³x

Differentiating w.r.t 'x' , we get y' = 2Ae² - 3Be-³x

Differentiating again w.r.t 'x', we get y" = 4Ae² + 9Be-³x

On substituting the derivatives of y in the given differential equation, we get4Ae² + 9Be-³x + (2Ae² - 3Be-³x) - 6(Ae²+ Be-³x) = 0

Simplifying this expression, we getA(6e² - 1)e² + B(3e³ - 2)e-³x = 0

Since this equation should hold for all values of x, we have two possibilities either

A(6 e² - 1) = 0 and

B(3 e³ - 2) = 0or

6 e² - 1 = 0 and

3 e³ - 2 = 0i.e.,

either A = 0 and B = 0 or A = 1/6 and B = 2/3

So, the general solution of the given differential equation is given by

y = A e²+ B e-³x

where A and B are constants, A = 1/6 and B = 2/3

On substituting the given initial conditions, we get

y(1) = 2e²-e³

Ae²+ B e-³y(0) = 1

= Ae²+ Be-³x

Putting A = 1/6 and B = 2/3, we get

2e²-e³ = (1/6)e² + (2/3)e-³And,

1 = (1/6) + (2/3)

Therefore, the solution of the given differential equation when y(1) = 2e²-e³ and y(0)=1 is given by   y = (1/6)e² + (2/3)e-³

Learn more about differential equation :

brainly.com/question/25731911

#SPJ11

The DE (x - y³ + y² sin x) dx = (3xy² - 2ycos y)dy is an exact differential equation. Select one: True False
The Bernoulli's equation dy y- + x³y = (sin x)y-¹, dx will be reduced to a linear equation by using the substitution u = = y². Select one: True False
Consider the model of population size of a community given by: dP dt = 0.5P, P(0) = 650, P(3) = 710. We conclude that the initial population is 650. Select one: True False
Consider the model of population size of a community given by: dP dt = 0.5P, P(0) = 650, P(3) = 710. We conclude that the initial population is 650. Select one: True False Question [5 points]: Consider the model of Newton's law of cooling given by: Select one: dT dt True False = k(T 10), T(0) = 40°. The ambient temperature is Tm - = 10°.

Answers

Finally, the model of Newton's law of cooling, dT/dt = k(T - 10), with initial condition T(0) = 40° and ambient temperature Tm = 10°, can be explained further.

Is the integral ∫(4x³ - 2x² + 7x + 3)dx equal to  x⁴ - (2/3)x³ + (7/2)x² + 3x + C, where C is the constant of integration?

The given differential equation, (x - y³ + y² sin x) dx = (3xy² - 2ycos y)dy, is an exact differential equation.

The Bernoulli's equation, dy y- + x³y = (sin x)y-¹, will not be reduced to a linear equation by using the substitution u = y².

In the model of population size, dP/dt = 0.5P, with initial conditions P(0) = 650 and P(3) = 710, we can conclude that the initial population is 650.

Learn more about ambient temperature

brainly.com/question/33568952

#SPJ11

Consider the set S={f1,f2,f3} where f1(t)=t2−2t−3,f2(t)=t2−4t−2 and f3(t)=t2+2t−5 a) Determine if f is in the span of S, where f(t)=t2−t−1. Provide a clear justification.
b) Determine if S is a set of linearly independent functions or not. Can S span P2 ? Explain what is the set Span{f1,f2,f3}. Provide a clear justification.

Answers

By solving the system of equations and checking the solutions, we can determine if S is linearly independent and if it spans P₂.

a) To determine if the function f(t) = t² - t - 1 is in the span of S = {f₁, f₂, f₃}, we need to check if we can find scalars a, b, and c such that f(t) = af₁(t) + bf₂(t) + cf₃(t).

Let's set up the equation:

f(t) = a(f₁(t)) + b(f₂(t)) + c(f₃(t))

f(t) = a(t² - 2t - 3) + b(t² - 4t - 2) + c(t² + 2t - 5)

f(t) = (a + b + c)t² + (-2a - 4b + 2c)t + (-3a - 2b - 5c)

For f(t) to be in the span of S, the coefficients of t², t, and the constant term in the above equation should match the coefficients of t², t, and the constant term in f(t).

Comparing the coefficients, we get the following system of equations:

a + b + c = 1

-2a - 4b + 2c = -1

-3a - 2b - 5c = -1

By solving this system of equations, we can find the values of a, b, and c. If a solution exists, then f(t) is in the span of S.

b) To determine if S = {f₁, f₂, f₃} is a set of linearly independent functions, we need to check if the only solution to the equation a₁f₁(t) + a₂f₂(t) + a₃f₃(t) = 0 is when a₁ = a₂ = a₃ = 0.

Let's set up the equation:

a₁f₁(t) + a₂f₂(t) + a₃f₃(t) = 0

a₁(t² - 2t - 3) + a₂(t² - 4t - 2) + a₃(t² + 2t - 5) = 0

(a₁ + a₂ + a₃)t² + (-2a₁ - 4a₂ + 2a₃)t + (-3a₁ - 2a₂ - 5a₃) = 0

For S to be linearly independent, the only solution to the above equation should be a₁ = a₂ = a₃ = 0.

To check if S spans P₂, we need to see if every polynomial of degree 2 can be expressed as a linear combination of the functions in S. If the only solution to the equation a₁f₁(t) + a₂f₂(t) + a₃f₃(t) = p(t) is when a₁ = a₂ = a₃ = 0, then S spans P₂.

Know more about coefficients here:

https://brainly.com/question/1594145

#SPJ11

Liam had an extension built onto his home. He financed it for 48 months with a loan at 4.9% APR. His monthly payments were $750. How much was the loan amount for this extension?
$32,631
$34,842
$36,000
$38,420
$37,764

Answers

The loan amount for this extension is approximately $32,631. The correct option is (A) $32,631.

To find the loan amount for the extension Liam built onto his home, we can use the loan formula:

Loan formula:

PV = PMT * [{1 - (1 / (1 + r)^n)} / r]

Where,

PV = Present value (Loan amount)

PMT = Monthly payment

r = rate per month

n = total number of months

PMT = $750

r = 4.9% per annum / 12 months = 0.407% per month

n = 48 months

Putting the given values in the loan formula, we get:

PV = $750 * [{1 - (1 / (1 + 0.00407)^48)} / 0.00407]

PV ≈ $32,631 (rounded off to the nearest dollar)

Therefore, This extension's loan amount is roughly $32,631. The correct answer is option (A) $32,631.

Learn more about loan amount

https://brainly.com/question/29346513

#SPJ11

Question 4: Consider a general utility function U(x₁, x₂). Let's now solve for the optimal bundle generally using the Lagrangian Method. 1. Write down the objective function and constraint in math. 2. Set up the Lagrangian Equation. 3. Fnd the first derivatives. 4. Find the firs

Answers

1. Objective function: U(x₁, x₂), Constraint function: g(x₁, x₂) = m.

2. Lagrangian equation: L(x₁, x₂, λ) = U(x₁, x₂) - λ(g(x₁, x₂) - m).

3. First derivative with respect to x₁: ∂L/∂x₁ = ∂U/∂x₁ - λ∂g/∂x₁ = 0, First derivative with respect to x₂: ∂L/∂x₂ = ∂U/∂x₂ - λ∂g/∂x₂ = 0.

4. First derivative with respect to λ: ∂L/∂λ = g(x₁, x₂) - m = 0.

1. The objective function can be written as: U(x₁, x₂).

The constraint function can be written as: g(x₁, x₂) = m, where m represents the amount of money.

2. To set up the Lagrangian equation, we multiply the Lagrange multiplier λ to the constraint function and subtract it from the objective function. Therefore, the Lagrangian equation is given as: L(x₁, x₂, λ) = U(x₁, x₂) - λ(g(x₁, x₂) - m).

3. To find the first derivative of L with respect to x₁, we differentiate the Lagrangian equation with respect to x₁ and set it to zero as shown below: ∂L/∂x₁ = ∂U/∂x₁ - λ∂g/∂x₁ = 0.

Similarly, to find the first derivative of L with respect to x₂, we differentiate the Lagrangian equation with respect to x₂ and set it to zero as shown below: ∂L/∂x₂ = ∂U/∂x₂ - λ∂g/∂x₂ = 0.

4. Finally, we find the first derivative of L with respect to λ and set it equal to the constraint function as shown below: ∂L/∂λ = g(x₁, x₂) - m = 0.

Learn more about function

https://brainly.com/question/30721594

#SPJ11

Pete must buy 1200 shirts for his
department stores to sell. Two of Pete's
suppliers are offering deals on bulk
purchases of shirts. Ana is offering the
shirts at $10 each, with a "Buy 5, Get 1
Free discount. Jun is offering the shirts at
$8 each.
Complete the statements below to
compare the offers.
What would Pete pay Ana for the shirts?
The ratio of shirts Pete pays for to
all the shirts Pete gets is 5:
of 1200 is
* $10-$
What would Pete pay Jun for the shirts?
1200 × $8=$
DONE

Answers

The ratio for Pete is 5:6 which is equivalent to 1000 shirts, therefore we will pay $10,000 to Ana, and he will pay $9600 to June.

How much will Pete pay to each supplier?

Ana:

Ana is offering a promotion, which is to buy 5 and get 1 free. Based on this, the ratio would be 5:6 (pay 5 but get 6). Using this ratio, let's calculate the number of shirts that Pete would pay:

1200 / 6 =  200 x 5 = 1000 shirts

1000  shirts x $10 = $10,000

Jun:

The price with Jun is fixed as he will need to pay $8 for each shirt:

1200 shirts x $8 = $9600

Learn more about ratios in https://brainly.com/question/13419413

#SPJ1

Write the system of equations represented by each matrix. 2 1 1 1 1 1 1 2 1 -1 1 -2

Answers

The system of equations represented by the given matrix is:

2x + y + z = 1

x + y + z = 1

x - y + z = -1

x - 2y = -2

To interpret the given matrix as a system of equations, we need to organize the elements of the matrix into a coefficient matrix and a constant matrix.

The coefficient matrix is obtained by taking the coefficients of the variables in each equation and arranging them in a matrix form:

2 1 1

1 1 1

1 -1 1

1 -2 0

The constant matrix is obtained by taking the constants on the right-hand side of each equation and arranging them in a matrix form:

1

1

-1

-2

By combining the coefficient matrix and the constant matrix, we can write the system of equations:

2x + y + z = 1

x + y + z = 1

x - y + z = -1

x - 2y + 0z = -2

Here, x, y, and z represent variables, and the numbers on the right-hand side represent the constants in the equations.

The system of equations can be solved using various methods, such as substitution, elimination, or matrix operations.

Learn more about matrix here: brainly.com/question/29132693

#SPJ11

If tax on food is 4%, how much tax is paid on a grocery bill of
$147.56?

Answers

The tax paid on a grocery bill of $147.56, with a tax rate of 4%, amounts to $5.90.

To calculate this, we multiply the total amount of the bill ($147.56) by the tax rate (4% expressed as 0.04). This gives us the tax amount: $147.56 * 0.04 = $5.90.

Tax amount = Bill amount * Tax rate

In this case, the bill amount is $147.56 and the tax rate is 4% (or 0.04).

Tax amount = $147.56 * 0.04 = $5.90

Therefore, the tax paid on the grocery bill is $5.90.

Learn more about Tax rate here

https://brainly.com/question/30629449

#SPJ11

Find the solution to the following lhec recurrence: an=9a n−1 for n≥2 with the initial condition a1=−6. an=

Answers

The result of the recurrence: an=9a n−1 for n≥2 with the initial condition a1=−6. an=  -6 × (-9)n-1

There is the recurrence relation: an = 9an - 1 with the initial condition a1 = -6. The task is to find the solution to the recurrence relation. Let's use the backward substitution method to solve the recurrence relation. In the backward substitution method, we start from the value of an and use the relation an = 9an - 1 to calculate an - 1, then use an - 1 = 9an - 2 to calculate an - 2, and so on until we reach the given initial value.

Here, a1 = -6, so we can start with a2. Using the relation an = 9an - 1, we get:

a2 = 9a1 = 9(-6) = -54

Using the relation an = 9 an - 1, we get:

a3 = 9a2 = 9(-54) = -486

Using the relation an = 9an - 1, we get:

a4 = 9a3 = 9(-486) = -4374

Similarly, we can calculate a5:

a5 = 9a4 = 9(-4374 ) = -39366

So, the result of the recurrence relation with the initial condition a1 = -6 is:

an = -6 × (-9)n-1

You can learn more about recurrence at: brainly.com/question/6707055

#SPJ11



Consider the recursive model shown below.

a₁=5

aₙ₊₁=a_{n}-7


What is an explicit formula for this sequence?

F. aₙ=-7+5 n

G. aₙ=5-7 n

H. aₙ=-7+5(n-1)

I. aₙ=5-7(n-1)

Answers

The explicit formula for the sequence is H. aₙ=-7+5(n-1).

The recursive formula given is a₁=5 and aₙ₊₁=a_{n}-7. This means that the first term of the sequence is 5 and the common difference is -7.

To write an explicit formula for the sequence, we can use the following formula:

aₙ=a₁+(n-1)d

where aₙ is the nth term of the sequence, a₁ is the first term, and d is the common difference.

In this case, a₁=5 and d=-7. So, we can write the explicit formula as follows:

aₙ=5+(n-1)(-7)

or

aₙ=-7+5(n-1)

Therefore, the explicit formula for the sequence is H. aₙ=-7+5(n-1).

Learn more about explicit formula here:

brainly.com/question/28584458

#SPJ11

Define a relation R on the set J={0,1,3,4,5,6} as follows: For all x,y∈J,xRy⇔4∣x^2+y^2
a) Draw a directed graph of the relation R. (you may insert a picture of your work under the question). b) Is the relation R reflexive, symmetric, or transitive? Justify your answer using the elements of J.

Answers

b. The relation R is reflexive, symmetric, and transitive.

The relation R is reflexive because 4 divides x2 + x2 = 2x2 for any x in J.Because addition is commutative, if xRy holds, then yRx also holds. As a result, the relationship R is symmetric.It can be seen that if both xRy and yRz hold, then xRz also holds. As a result, the relation R is transitive.

a) Here is the directed graph representing the relation R on the set J={0,1,3,4,5,6}:

In this graph, there is a directed edge from x to y if and only if xRy. For example, there is a directed edge from 0 to 4 because 4 divides 0^2+4^2.

b) To determine if the relation R is reflexive, symmetric, or transitive, let's examine the elements of J.

Reflexive: A relation R is reflexive if every element of the set is related to itself. In this case, for every x in J, we need to check if xRx. Since 4 divides x^2 + x^2 = 2x^2 for all x in J, the relation R is reflexive.

Symmetric: A relation R is symmetric if for every x and y in J, if xRy, then yRx. We need to check if for every pair of elements (x, y) in J, if 4 divides x^2 + y^2, then 4 divides y^2 + x^2. Since addition is commutative, if xRy holds, then yRx holds as well. Therefore, the relation R is symmetric.

Transitive: A relation R is transitive if for every x, y, and z in J, if xRy and yRz, then xRz. We need to check if for every triple of elements (x, y, z) in J, if 4 divides x^2 + y^2 and 4 divides y^2 + z^2, then 4 divides x^2 + z^2. It can be observed that if both xRy and yRz hold, then xRz holds as well. Therefore, the relation R is transitive.

In summary, the relation R is reflexive, symmetric, and transitive.

Learn more about symmetric

https://brainly.com/question/31184447

#SPJ11

In a certain mathematics class, the probabilities have been empirically determined for various numbers of absentees on any given day. These values are shown in the table below. Find the expected number of absentees on a given day. Number absent 0 1 2 3 4 5 6
Probability 0.02 0.04 0.15 0.29 0.3 0.13 0.07
The expected number of absentees on a given day is (Round to two decimal places as needed.)

Answers

The expected number of absentees on a given day is 3.48

Finding the expected number of absentees on a given day

from the question, we have the following parameters that can be used in our computation:

Number absent 0 1 2 3 4 5 6

Probability 0.02 0.04 0.15 0.29 0.3 0.13 0.07

The expected number of absentees on a given day is calculated as

E(x) = ∑xP(x)

So, we have

E(x) = 0 * 0.02 + 1 * 0.04 + 2 * 0.15 + 3 * 0.29 + 4 * 0.3 + 5 * 0.13 + 6 * 0.07

Evaluate

E(x) = 3.48

Hence, the expected number is 3.48

Read more about expected value at

https://brainly.com/question/15858152

#SPJ4

Let S be the set of all functions satisfying the differential equation y ′′+2y ′−y=sinx over the interval I. Determine if S is a vector space

Answers

The set S is a vector space.



To determine if S is a vector space, we need to check if it satisfies the ten properties of a vector space.

1. The zero vector exists: In this case, the zero vector would be the function y(x) = 0, which satisfies the differential equation y'' + 2y' - y = 0, since the derivative of the zero function is also zero.

2. Closure under addition: If f(x) and g(x) are both functions satisfying the differential equation y'' + 2y' - y = sin(x), then their sum h(x) = f(x) + g(x) also satisfies the same differential equation. This can be verified by taking the second derivative of h(x), multiplying by 2, and subtracting h(x) to check if it equals sin(x).

3. Closure under scalar multiplication: If f(x) is a function satisfying the differential equation y'' + 2y' - y = sin(x), and c is a scalar, then the function g(x) = c * f(x) also satisfies the same differential equation. This can be verified by taking the second derivative of g(x), multiplying by 2, and subtracting g(x) to check if it equals sin(x).

4. Associativity of addition: (f(x) + g(x)) + h(x) = f(x) + (g(x) + h(x))

5. Commutativity of addition: f(x) + g(x) = g(x) + f(x)

6. Additive identity: There exists a function 0(x) such that f(x) + 0(x) = f(x) for all functions f(x) satisfying the differential equation.

7. Additive inverse: For every function f(x) satisfying the differential equation, there exists a function -f(x) such that f(x) + (-f(x)) = 0(x).

8. Distributivity of scalar multiplication over vector addition: c * (f(x) + g(x)) = c * f(x) + c * g(x)

9. Distributivity of scalar multiplication over scalar addition: (c + d) * f(x) = c * f(x) + d * f(x)

10. Scalar multiplication identity: 1 * f(x) = f(x)

By verifying that all these properties hold, we can conclude that the set S is indeed a vector space.

To know more about "vector space"

https://brainly.com/question/11383

#SPJ11

need help pls!!!!!!!!!!!!!!!!!

Answers

Answer:

Step-by-step explanation:



Alice and Becky live on Parkway East, at the intersections of Owens Bridge and Bay Bridge, respectively. Carl and David live on Parkway West, at the intersections of Bay Bridge and Owens Bridge, respectively. Parkway East is a one-way street running east. Parkway West is one-way running west. Both bridges are two-way.


c. Calculate T². What does the matrix model? Explain.

Answers

The resulting matrix T² represents the probabilities of individuals moving between intersections after two time steps.

To calculate T²,  to first understand what the matrix T represents. Let's define the matrix T:

T = | t11 t12 |

| t21 t22 |

In this context, T is a transition matrix that describes the movement of individuals between the four intersections: Owens Bridge on Parkway East (OE), Bay Bridge on Parkway East (BE), Bay Bridge on Parkway West (BW), and Owens Bridge on Parkway West (OW).

Each entry tij of the matrix T represents the probability of an individual moving from intersection i to intersection j. For example, t11 represents the probability of someone moving from Owens Bridge on Parkway East (OE) back to Owens Bridge on Parkway East (OE), t12 represents the probability of someone moving from Owens Bridge on Parkway East (OE) to Bay Bridge on Parkway East (BE), and so on.

The transition matrix T should be constructed based on the given information about the movement of individuals between these intersections. The entries should be probabilities, meaning they should be between 0 and 1, and the sum of each row should be equal to 1 since a person must move to one of the four intersections.

Once the matrix T is defined, calculating T² means multiplying T by itself:

T² = T × T

To know more about matrix here

https://brainly.com/question/29132693

#SPJ4

If f(x)=7x+3 ,what is f^-1(x)?

Answers

Answer:

[tex]\displaystyle{f^{-1}(x)=\dfrac{x}{7}-\dfrac{3}{7}}[/tex]

Step-by-step explanation:

Swap f(x) and x position of the function, thus:

[tex]\displaystyle{x=7f(x)+3}[/tex]

Then solve for f(x), subtract 3 both sides and then divide both by 7:

[tex]\displaystyle{x-3=7f(x)}\\\\\displaystyle{\dfrac{x}{7}-\dfrac{3}{7}=f(x)}[/tex]

Since the function has been inverted, therefore:

[tex]\displaystyle{f^{-1}(x)=\dfrac{x}{7}-\dfrac{3}{7}}[/tex]

And we can prove the answer by substituting x = 1 in f(x) which results in:

[tex]\displaystyle{f(1)=7(1)+3 = 10}[/tex]

The output is 10, now invert the process by substituting x = 10 in [tex]f^{-1}(x)[/tex]:

[tex]\displaystyle{f^{-1}(10)=\dfrac{10}{7}-\dfrac{3}{7}}\\\\\displaystyle{f^{-1}(10)=\dfrac{7}{7}=1}[/tex]

The input is 1. Hence, the solution is true.

Rewrite 156+243 using factoring

Answers

Answer:

3.(52+81).

Step-by-step explanation:

Hello,

Answer:

[tex]\red{\large{\boxed{156+243 =3(52+81)}}}[/tex]

Let f(x) be a polynomial with positive leading coefficient, i.e. f(x) = anx"+ -1 + • + a₁x + ao, where an > 0. Show that there exists NEN such that f(x) > 0 for all x > N.

Answers

For a polynomial f(x) with a positive leading coefficient, it can be shown that there exists a value N such that f(x) is always greater than zero for all x greater than N.

Consider the polynomial f(x) = anx^k + ... + a₁x + ao, where an is the leading coefficient and k is the degree of the polynomial. Since an > 0, the polynomial has a positive leading coefficient.

To show that there exists a value N such that f(x) > 0 for all x > N, we need to prove that as x approaches infinity, f(x) also approaches infinity. This can be done by considering the highest degree term in the polynomial, anx^k, as x becomes large.

Since an > 0 and x^k dominates the other terms for large x, the polynomial f(x) becomes dominated by the term anx^k. As x increases, the term anx^k becomes arbitrarily large and positive, ensuring that f(x) also becomes arbitrarily large and positive.

Therefore, by choosing a sufficiently large value N, we can guarantee that f(x) > 0 for all x > N, as the polynomial grows without bound as x approaches infinity.

Learn more about polynomial : brainly.com/question/1496352

#SPJ11

1. Differentiate the following functions: 2-3 a. f(s) = s+1 b. y = (3x+2)³(x²-2) C. e(2-x) 2x+1 y = -

Answers

a. Differentiate the function is f'(s) = 1

b. dy/dx = 9(3x + 2)² * (x² - 2) + 4(3x + 2)³ * x

c. dy/dx = (-e^(2 - x)(2x + 1) - 2e^(2 - x)) / (2x + 1)²

a. Differentiating the function [tex]\(f(s) = s + 1\)[/tex]:

The derivative of (f(s)) with respect to \(s\) is simply 1. Since the derivative of a constant (1 in this case) is always zero, the derivative of \(s\) (which is the variable in this case) is 1.

So, the derivative of [tex]\(f(s) = s + 1\)[/tex] is [tex]\(f'(s) = 1\)[/tex].

b. Differentiating [tex]\(y = (3x + 2)^3(x^2 - 2)\)[/tex]:

To differentiate this function, we can use the product rule and the chain rule.

Let's break it down step by step:

First, differentiate the first part [tex]\((3x + 2)^3\)[/tex] using the chain rule:

[tex]\(\frac{d}{dx} [(3x + 2)^3] = 3(3x + 2)^2 \frac{d}{dx} (3x + 2) = 3(3x + 2)^2 \cdot 3\)[/tex]

Now, differentiate the second part [tex]\((x^2 - 2)\)[/tex]:

[tex]\(\frac{d}{dx} (x^2 - 2) = 2x \cdot \frac{d}{dx} (x^2 - 2) = 2x \cdot 2\)[/tex]

Using the product rule, we can combine the derivatives of both parts:

[tex]\(\frac{dy}{dx} = (3(3x + 2)^2 \cdot 3) \cdot (x^2 - 2) + (3x + 2)^3 \cdot (2x \cdot 2)\)[/tex]

Simplifying further:

[tex]\(\frac{dy}{dx} = 9(3x + 2)^2 \cdot (x^2 - 2) + 4(3x + 2)^3 \cdot 2x\)[/tex]

So, the derivative of [tex]\(y = (3x + 2)^3(x^2 - 2)\)[/tex] is [tex]\(\frac{dy}{dx} = 9(3x + 2)^2 \cdot (x^2 - 2) + 4(3x + 2)^3 \cdot 2x\)[/tex].

c. Differentiating [tex]\(y = \frac{e^{2 - x}}{(2x + 1)}\)[/tex]:

To differentiate this function, we can use the quotient rule.

Let's break it down step by step:

First, differentiate the numerator, [tex]\(e^{2 - x}\)[/tex], using the chain rule:

[tex]\(\frac{d}{dx} (e^{2 - x}) = e^{2 - x} \cdot \frac{d}{dx} (2 - x) = -e^{2 - x}\)[/tex]

Now, differentiate the denominator, [tex]\((2x + 1)\)[/tex]:

[tex]\(\frac{d}{dx} (2x + 1) = 2\)[/tex]

Using the quotient rule, we can combine the derivatives of the numerator and denominator:

[tex]\(\frac{dy}{dx} = \frac{(e^{2 - x} \cdot (2x + 1)) - (-e^{2 - x} \cdot 2)}{(2x + 1)^2}\)[/tex]

Simplifying further:

[tex]\(\frac{dy}{dx} = \frac{(-e^{2 - x}(2x + 1) + 2e^{2 - x})}{(2x + 1)^2} = \frac{(-e^{2 - x}(2x + 1) - 2e^{2 - x})}{(2x + 1)^2}\)[/tex]

So, the derivative of [tex]\(y = \frac{e^{2 - x}}{(2x + 1)}\) is \(\frac{dy}{dx} = \frac{(-e^{2 - x}(2x + 1) - 2e^{2 - x})}{(2x + 1)^2}\).[/tex]

Learn more about function

https://brainly.com/question/30721594

#SPJ11

Other Questions
Consider a diffraction grating with a grating constant of 500 lines/mm. The grating is illuminated with a monochromatic light source of unknown wavelength. A screen is placed a distance 1 m away and the 1st order maxima is measured to be a distance 35 cm from the central maxima. What is the wavelength of the light expressed in nm? 3. A patient needs to receive 0.045 g of a drug IM. If the drug vial is labeled 20 mg/mL, how many milliliters will you prepare for the patient? 4. The prescriber ordered clindamycin HCl 250 mg IM qoh to treat a clostridium infection. The label reads 1 mL = 150 mg. How many mil- liliters will you give in total per day? Mr. Michaluk has a $50,000 personal (revolving) line of credit with the Canadian Imperial Bank of Commerce (CIBC). The loan is on a demand basis at a floating rate of prime plus 1.5%. On the fifteenth of each month, a payment equal to the greater of $100 or 3% of the combined principal and accrued interest is deducted from his chequing account. The principal balance after a payment on September 15 stood at $23,465.72.Prepare the loan repayment schedule from September 15 up to and including the payment on January 15. Assume that he makes the minimum payments and the prime rate remains at 5.25%. (Round your final answers to 2 decimal places.) An investor is considering purchasing a share of stock. Earnings are expected to be $6 per share and the price next year is expected to be $100. Suppose risk-free interest rates fall and the required rate of return decreases from 7% to 6%. Nothing else changes. What is new price the investor is wiling to pay for the stock? Answer in dollars and do not enter a $ sign. Round to two decimal places.please explain step by step Make a cylindrical box with height -x, and radius = 1/2 - x.Find the maximum volume A nichrome wire has thickness d=0.21mm and L= 0.58m. N=4148 turns to form a solenoid. A=5.7cm^2 and solenoid length= 26cm. The battery connected to the solenoid has V=48V and switch is for a while. What is B (magnetic field strength) inside the coil. Answer in mT in hundredth place What are your thoughts on Canada's approach to the Opioid Crisis? Does Canada's approach to the Opioid Crisis take into consideration the Bio-Psycho-Social-Spiritual model of addiction? The following data was extracted from the records of DT Ltd on 28 February 2021, the end of their financial year:R Share capital (900 000 shares at R2 par value) 1 800 000 Retained income 160 000 Non-Current Assets 1 750 000 Inventories 220 000Receivables 600 000Cash/Bank 300 000Payables 730 000Loans at 15% p.a. 180 000 Net profit after tax 765 000Market price of share 270c Dividends per share 65c Required:1.1. Calculate and comment on each of the following ratios:1.1.1. Current ratio (last year 2.33 : 1) (4)1.1.2. Acid test ratio (last year 1.58 : 1) (4)1.2. Calculate the Price Earnings (PE) ratio and explain what a low PE ratio could mean. (4)1.3. Calculate the earnings per share. Will shareholders be happy with this? Why? (4)1.4. Calculate the market to book ratio and explain the significance of this ratio. (4)1.5. Calculate and comment on the debt equity ratio. (3)1.6. Calculate the retained for the year' Amalgamated Industries' preferred stock pays an annual dividend of $2.00. If investors require a return of 14%, what price should the preferred stock sell for? $14.29 $14.86 $15.43 $16.00 $16.29 All the following characteristics contribute to the mechanism of adaptation in the phasic pressure receptors, EXCEPT which one? a. The threshold of receptor membrane tissue distortion needed for depolarization b. Elasticity of the tissue surrounding the nerve terminal c. Presence or absence of a tissue capsule d. Physical characteristics of capsule enclosing the receptor The orbit of the moon about the carth is approximately circular, with a moun radius of 3.84 x 109 m. It takes 27.3 days for the moon to complete a revolution about the earth. Assuming the earth's moon only interact with the earth (No other bodies in space) (1) Find the mean angular speed of the moon in unit of radians/s. (2) Find the mean orbital speed of the moon in unit of m/s. 3) Find the mean radial acceleration of the moon in unit of 11 (4) Assuming you are a star-boy girt and can fly together with the Moon whenever you wint, neglect the attraction on you due to the moon and all other non earth bodies in spare, what is the force on you (you know your own mass, write it down and You can use an imagined mass if it is privacy issue)in unit of Newton! IW2: Elec. Charge & Fields Begin Date: 3/14/2022 12:01:00 AM - Due Date: 3/21/2022 11:59:00 PM End Date: 5/20/2022 11:59:00 PM (14%) Problem 7: A proton, starting from rest, is accelerated by a uniform electric field of magnitude 175 N/C. accordance with Expert TA'S Tems of Service copying this information to say to sharing wertlyftid D termination of your Experi TA Acco 50% Part (a) Through what distance, in meters, has the proton traveled when its kinetic energy reaches 2.8 x10-6 J7 -0.967 * Attempts Remain 50% Part (b) How much time has elapsed, in seconds, when the kinetic energy of the proton reaches 2.3x10-16 37 I= Grade Summary Deductions Potential 100% A fuel with the chemical formula of C4H10 is fully burned in a SI engine operating with equivalence ratio of 0.89. Calculate the exhaust gas composition. Pick a neurologic disease and research signs and symptoms andcurrent treatment options. 3 recent medical journals within last 5years). APA formatting. citations and references. 1000 words. Do anADP 3. Set up the equation of motion of a pendulum attached to the end of a massless string. Is this equation a linear ODE? Justify why (or why not)? Solve the equation for small oscillations (0 < 1). (10). what must be the radius (in cm) of a disk of mass 9kg, so that ithas the same rotational inertia as a solid sphere of mass 5g andradius 7m?Give your answer to two decimal places to calculate the total energy for an isolated system you should use Work-energy theoremexpanded work-energy theoremconservation of energyconservation of momentum Explain the significance of each of the following.Dred Scott v. Sandford What are the top 3 mechanisms that create positive change inyour organization (Doctor's office ). The First Pass Effect means that _____are responsible for _______ hormones and toxines Hepatocyte enzymes, secreting Hepatocyte synes, degrading Bile duct degrading Bile ducts secreting