if the equation has infinitely many solutions for xxx, what is the value of bbb ?

Answers

Answer 1

If A is the scale image of B, the value of x is 20.

What is an expression?

An expression is a way of writing a statement with more than two variables or numbers with operations such as addition, subtraction, multiplication, and division.

Example: 2 + 3x + 4y = 7 is an expression.

We have,

From the figure,

A is a scale image of B.

This means,

12.5/10 = x/16

x = (12.5 x 16) / 10

x =  200/10

x = 20

Thus,

The value of x is 20.

Learn more about expressions here:

brainly.com/question/3118662

#SPJ11


Related Questions

The Frisco Roughriders need help with determining which of the following queuing systems is better for their new food vending area. They have the option of installing a two server system that has less automation or a new one server system in which drinks are automatically filled. They have 1 person per minute show up. The service rate for the automated system is 100 customers per hour and each server for the 2 server is 40 customers per hour. They have a few key metrics that they are trying to determine and need your help in deciding which system to install:
a. probability that no one is in line
b. total number of people in the system
c. total wait time in the system

Answers

a. For the two-server system, the probability of no one being in line is 0.975 while for the one-server system, it is 0.99.

b. For the two-server system, the average number of customers in the system is 2/3 while for the one-server system, it is 3/5.

c.  For the two-server system, the total wait time in the system is 80/3 minutes while for the one-server system, it is 60 minutes.

Based on the given metrics, the one-server system with automated drink filling appears to be better in terms of the probability of no one being in line, total wait time in the system, and potentially providing a better customer experience.

What is the probability that no one is in line?

a. Probability that no one is in line:

For the two-server system:

λ = 1 person per minute

μ = 40 customers per hour (per server)

ρ = λ/μ = 1/40 = 0.025

Using the M/M/2 queuing model, the probability of no one being in line is given by:

P(0) = 1 - ρ = 1 - 0.025 = 0.975

For the one-server system:

μ = 100 customers per hour

ρ = λ/μ = 1/100 = 0.01

The probability of no one being in line is:

P(0) = 1 - ρ = 1 - 0.01 = 0.99

Comparing the probabilities, the one-server system has a higher probability of no one being in line, indicating better performance in terms of avoiding queues.

b. Total number of people in the system:

For the two-server system,  the M/M/2 queuing model is used to calculate the average number of customers in the system.

L = λ / (2μ - λ)

L = (1/40) / (2 * (40/60) - 1/40) = 2/3

For the one-server system, the M/M/1 queuing model is used to calculate the average number of customers in the system.

L = λ / (μ - λ)

L = (1/100) / (100/60 - 1/100) = 3/5

Comparing the average number of customers in the system, the two-server system has a higher value, indicating a higher number of customers on average.

c. Total wait time in the system:

The total wait time in the system can be calculated using Little's Law.

For the two-server system:

W = L / λ

W = (2/3) / (1/40) = 80/3 minutes

For the one-server system:

W = L / λ

W = (3/5) / (1/100) = 60 minutes

Comparing the total wait times, the one-server system has a lower wait time on average, indicating faster service.

Learn more about probability at: https://brainly.com/question/24756209

#SPJ4

The joint density of X and Y is given by e f(x, y): Compute E[X²|Y=y]. Y 0

Answers

The conditional expectation E[X²|Y=y] will be the same as the unconditional expectation of X². Hence, E[X²|Y=y] = E[X²].

To compute E[X²|Y=y], we need to find the conditional expectation of the random variable X² given the value of Y = y.

The conditional expectation is defined as:

E[X²|Y=y] = ∫x² * f(x|y) dx,

where f(x|y) is the conditional density function of X given Y = y.

Since the joint density f(x, y) is given as e^(-x-y), we can calculate the conditional density f(x|y) using the joint density and the marginal density of Y.

First, let's find the marginal density of Y:

fY(y) = ∫f(x, y) dx = ∫e^(-x-y) dx,

To integrate with respect to x, we treat y as a constant:

fY(y) = ∫e^(-x-y) dx = e^(-y) * ∫e^(-x) dx,

Using the exponential integral, the integral of e^(-x) dx equals -e^(-x). Applying the limits of integration, we get:

fY(y) = e^(-y) * (-e^(-x)) |_0^∞ = e^(-y) * (-0 - (-1)) = e^(-y).

Now, let's find the conditional density f(x|y):

f(x|y) = f(x, y) / fY(y) = (e^(-x-y)) / e^(-y) = e^(-x).

We can observe that the conditional density f(x|y) is independent of y, meaning that the value of y does not affect the distribution of X. Therefore, the conditional expectation E[X²|Y=y] will be the same as the unconditional expectation of X².

Hence, E[X²|Y=y] = E[X²].

Since we are not provided with any specific information about the distribution of X, we cannot further simplify the expression or provide a numerical value for the expectation E[X²].

Learn more about conditional expectation here

https://brainly.com/question/32598577

#SPJ11

Exit Cynthia has a bag of jellybeans. There are four red jellybeans, ten yellow jellybeans, and fourteen black jellybeans in her bag. Cynthia grabs two jellybeans and gives them to her friend, Pedro, and he eats them. Which answer choice best describes this event? A. This is an independent event because Cynthia is putting the jellybeans back into the bag. B. This is a dependent event because Cynthia is putting the jellybeans back into the bag. C. This is an independent event because Pedro ate the jellybeans, and they cannot be replaced. D. This is a dependent event because Pedro ate the jellybeans, and they cannot be replaced.

Answers

Answer:

B

Step-by-step explanation:

117 63two adjacent angles form a resulting angle of 135°. ∠1=(2x)° and ∠2=(2x 7)°. what are the two unknown angles?(1 point)

Answers

The two unknown angles are ∠1 = 64° and ∠2 = 71°.

From the given information, we have:

∠1 = (2x)°∠2 = (2x + 7)°∠1 + ∠2 = 135°

Now, substituting the given values of ∠1 and ∠2 in the third equation we get:

(2x)° + (2x + 7)° = 135°

Simplifying this equation, we get:

4x + 7 = 135

Subtracting 7 from both sides, we get:

4x = 128

Dividing both sides by 4, we get:x = 32

Now, substituting the value of x in ∠1 and ∠2, we get:

∠1 = (2 × 32)°= 64°∠2 = (2 × 32 + 7)°= 71°

Therefore, the two unknown angles are ∠1 = 64° and ∠2 = 71°.

To know more about angles visit:

https://brainly.com/question/31818999

#SPJ11

A coordinate grid with 2 lines. One line, labeled f(x) passing through (negative 2, 4), (0, 2), and the point (1, 1). The other line is labeled g(x) and passes through (negative 3, negative 3), (0, 0) and the point (1, 1). Which input value produces the same output value for the two functions on the graph?

Answers

The input value that produces the same output value for f(x) and g(x) on the graph is x = 1.To find the input value that produces the same output value for both functions, we need to determine the x-coordinate of the point(s) where the two lines intersect.

These points represent the values of x where f(x) and g(x) are equal.

The line labeled f(x) passes through the points (-2, 4), (0, 2), and (1, 1). Using these points, we can determine the equation of the line using the slope-intercept form (y = mx + b). Calculating the slope, we get:

m = (2 - 4) / (0 - (-2)) = -2 / 2 = -1

Substituting the point (0, 2) into the equation, we can find the y-intercept (b):

2 = -1(0) + b

b = 2

Therefore, the equation for f(x) is y = -x + 2.

Similarly, for the line labeled g(x), we can use the points (-3, -3), (0, 0), and (1, 1) to determine the equation. The slope is:

m = (0 - (-3)) / (0 - (-3)) = 3 / 3 = 1

Substituting (0, 0) into the equation, we can find the y-intercept:

0 = 1(0) + b

b = 0

Thus, the equation for g(x) is y = x.

To find the input value that produces the same output for both functions, we can set the two equations equal to each other and solve for x:

-x + 2 = x

Simplifying the equation:

2x = 2

x = 1.

For more such questions on Intersect:

https://brainly.com/question/28744045

#SPJ8

If sin(x) = − 20/29 and x is in quadrant III, find the exact values of the expressions without solving for x. (a) sin(x/2) (b) cos(x/2) (c) tan (x/2)

Answers

The exact values of the expressions is (a) sin(x/2) = ±√(4/29)(b) cos(x/2)

= ±√(25/29)(c) tan(x/2)

= −2/5.

Given that sin(x) = − 20/29 and x is in quadrant III.

We are to find the exact values of the expressions without solving for x. (a) sin(x/2) (b) cos(x/2) (c) tan (x/2).

As we know that x is in quadrant III, sin(x) is negative because in this quadrant, the sine is negative. We are given sin(x) = − 20/29.

Using the formula of half-angle identity

sin(x/2) = ±√[(1 - cos(x))/2]cos(x/2)

= ±√[(1 + cos(x))/2]tan(x/2)

= sin(x)/[1 + cos(x)]

Substituting the value of sin(x) = − 20/29 in the above formulas, we have;

sin(x/2) = ±√[(1 - cos(x))/2]sin(x/2)

= ±√[(1 - cos(x))/2]sin(x/2)

= ±√[(1 - √[1 - sin²x])/2]sin(x/2)

= ±√[(1 - √[1 - (−20/29)²])/2]sin(x/2)

= ±√[(1 - √[1 - 400/841])/2]sin(x/2)

= ±√[(1 - √(441/841))/2]sin(x/2)

= ±√[(1 - 21/29)/2]sin(x/2)

= ±√[(29 - 21)/58]sin(x/2)

= ±√(8/58)sin(x/2)

= ±√(4/29)cos(x/2)

= ±√[(1 + cos(x))/2]cos(x/2)

= ±√[(1 + cos(x))/2]cos(x/2)

= ±√[(1 + √[1 - sin²x])/2]cos(x/2)

= ±√[(1 + √[1 - (−20/29)²])/2]cos(x/2)

= ±√[(1 + √(441/841))/2]cos(x/2)

= ±√[(1 + 21/29)/2]cos(x/2)

= ±√[(50/29)/2]cos(x/2)

= ±√(25/29)tan(x/2)

= sin(x)/[1 + cos(x)]tan(x/2)

= (−20/29)/[1 + cos(x)]tan(x/2)

= (−20/29)/[1 + √(1 - sin²x)]tan(x/2)

= (−20/29)/[1 + √(1 - (−20/29)²)]tan(x/2)

= (−20/29)/[1 + √(441/841)]tan(x/2)

= (−20/29)/[1 + 21/29]tan(x/2)

= (−20/29)/(50/29)tan(x/2)

= −20/50tan(x/2)

= −2/5

To know more about  expressions visit:

https://brainly.com/question/28170201

#SPJ11

Suppose that Y₁, Y₂,,Y, constitutes a random sample from the normal distribution with a mean of zero Is this and variance o², such that ² > 0. Further, it has been shown that in the MLE for o²

Answers

The MLE (Maximum Likelihood Estimate) is a method for determining the parameter values of a model that will most likely produce the observed data. The MLE estimates are the values of the parameters that maximize the likelihood function. The MLE is a popular method for estimating the parameters of a model when the model is assumed to be normally distributed.

Suppose that Y₁, Y₂,,Y, constitutes a random sample from the normal distribution with a mean of zero and variance o², such that ² > 0. Further, it has been shown that the MLE for o² is:  ² = (1/n) * ∑ (Yᵢ²)This is the formula for the MLE for the variance of a normal distribution. It is the sum of the squared deviations of the sample values from the mean, divided by the sample size. In this case, the mean is zero, so the variance is just the sum of the squared sample values divided by n.

To know more about Maximum Likelihood Estimate visit:

https://brainly.com/question/32608862

#SPJ11

Problem 2: Given the joint density function 6-x+y 64 ; -1 < x < 1, f(x, y) = 0

Answers

The joint density function f(x, y) [tex]= \frac{(6 - x + y)}{64}[/tex] describes the probability density of the random variables x and y within the range -1 < x < 1. Outside this range, the joint density function is zero, indicating no probability density.

The given joint density function is represented as:

f(x, y) = [tex]\frac{(6 - x + y)}{64}[/tex]

This function describes the probability density of two random variables, x and y, within a specified region.

The function is defined over the range -1 < x < 1,

The density is normalized such that its integral over the entire range is equal to 1.

For any given pair of values (x, y) within the specified range,

plugging them into the function will give the probability density at that point.

The function value is obtained by substituting the values of x and y into the expression

[tex]\frac{(6 - x + y)}{64}[/tex].

However, the function is not defined outside the range

-1 < x < 1,

As the density is specified only for this interval.

For any values of x outside this range,

the joint density function is equal to zero

(f(x, y) = 0).

For such more question on density function

https://brainly.com/question/30403935

#SPJ11

Suppose that X is a random variable with moment generating function Mx. Give an expression for E[X*] + Var (X²) in terms of Mx and its derivatives.

Answers

The expression for E[X*] + Var(X²) in terms of the MGF Mx and its derivatives is Mx'(0) + Mx''''(0) - (Mx''(0))².

To express E[X*] + Var(X²) in terms of the moment-generating function (MGF) Mx and its derivatives, we can use the properties of MGFs and moment calculations.

Let's break down the expression step by step:

E[X*]:

The expectation of X* is given by the first derivative of the MGF evaluated at t=0:

E[X*] = Mx'(0)

Var(X²):

The variance of X² can be calculated as Var(X²) = E[(X²)²] - (E[X²])²

To find E[(X²)²], we need the fourth derivative of the MGF evaluated at t=0:

E[(X²)²] = Mx''''(0)

And to find E[X²], we need the second derivative of the MGF evaluated at t=0:

E[X²] = Mx''(0)

Putting it all together:

E[X*] + Var(X²) = Mx'(0) + Mx''''(0) - (Mx''(0))²

learn more about derivative here:
https://brainly.com/question/29144258

#SPJ11

Customers arrive at a shop according to a Poisson process at a mean rate of 2 customers every ten minutes. The shop opens at 9am. (a) Let X denote the waiting time (in hours, counted from the shop ope

Answers

(a) The pdf for X is [tex]f(x) = 12e^(-12x).[/tex]

(b) The probability that the first customer arrives within the first hour is approximately 0.632.

(c) The expected value or mean waiting time for the first customer to arrive is 1/12 hours, approximately 5 minutes.

(a) Let X denote the waiting time (in hours, counted from the shop opening at 9am) for the first customer to arrive. We are given that customers arrive at a mean rate of 2 customers every ten minutes, which can be converted to a rate of 12 customers per hour.

Since the arrival rate follows a Poisson process, the probability density function (pdf) for X can be expressed as:

[tex]f(x) = λe^(-λx)[/tex]

Where λ is the arrival rate and x is the waiting time.

In this case, λ = 12 customers per hour. Therefore, the pdf for X is:

[tex]f(x) = 12e^(-12x)[/tex]

(b) To find the probability that the first customer arrives within the first hour (0 ≤ X ≤ 1), we need to calculate the integral of the pdf within this range:

[tex]P(0 ≤ X ≤ 1) = ∫[0,1] 12e^(-12x) dx[/tex]

Integrating this expression gives us:

[tex]P(0 ≤ X ≤ 1) \\= [-e^(-12x)] from 0 to 1P(0 ≤ X ≤ 1) \\= -e^(-12) + 1[/tex]

Therefore, the probability that the first customer arrives within the first hour is -e^(-12) + 1, which is approximately 0.632.

(c) To find the expected value or mean of X, we need to calculate the integral of xf(x) over the entire range of X:

[tex]E(X) = ∫[-∞,+∞] x * 12e^(-12x) dx[/tex]

Integrating this expression gives us:

[tex]E(X) = [-xe^(-12x) + (1/12)e^(-12x)] from 0 to ∞\\E(X) = [0 - 0 + (1/12)] - [0 - 0 + (1/12)e^(-12∞)]\\E(X) = 1/12[/tex]

Therefore, the expected value or mean waiting time for the first customer to arrive is 1/12 hours, which is approximately 5 minutes.

To know more about probability, visit:

https://brainly.com/question/31470148

#SPJ11

as a television executive, you have been given 13 shows to choose from to run during your prime time slots each week. if you have 12 time slots, how many ways can you create the schedule for the week?

Answers

As a television executive, there are 13 shows to choose from to run during prime time slots each week and there are 12 time slots.

The total number of ways you can create the schedule for the week can be calculated using the permutation formula: nPr = n! / (n-r)! where n is the total number of items to choose from and r is the number of items to choose.To create the schedule for the week, you need to choose 12 shows out of 13 for the 12 time slots.

So, n = 13 and r = 12.Substituting these values in the formula,nP12 = 13! / (13-12)!nP12 = 13! / 1!nP12 = 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1nP12 = 479001600Therefore, there are 479001600 ways to create the schedule for the week.

To know more about television visit :

https://brainly.com/question/13033512

#SPJ11

.Which choice is the explicit formula for the following geometric sequence?
0.5, –0.1, 0.02, –0.004, 0.0008, ...
A. an = -0.5(-0.2)^(n-1)
B. an = 0.5(-0.2)^(n-1)
C. an = 0.5(0.2)^n
D. an = -0.5(-0.3)^(n-1)

Answers

Therefore, the explicit formula for the given geometric sequence is: B. an = 0.5 * (-0.2)^(n-1).

The given sequence is a geometric sequence, where each term is obtained by multiplying the previous term by a constant ratio. To find the explicit formula for this sequence, we need to determine the common ratio.

Looking at the given sequence, we can see that each term is obtained by multiplying the previous term by -0.2. Therefore, the common ratio is -0.2.

The explicit formula for a geometric sequence is given by:

aₙ = a₁ * rⁿ⁻¹

Where:

aⁿ represents the nth term of the sequence,

a₁ represents the first term of the sequence,

r represents the common ratio of the sequence,

n represents the position of the term.

Using the known values from the sequence, we have:

a₁ = 0.5 (the first term)

r = -0.2 (the common ratio)

Plugging these values into the formula, we get:

[tex]aₙ = 0.5 * (-0.2)^(n-1)[/tex]

To know more about explicit formula,

https://brainly.com/question/27144940

#SPJ11

The explicit formula for the given geometric sequence is an = 0.5(-0.2)^(n-1). The correct answer is B.

To find the explicit formula for the given geometric sequence, we observe that each term is obtained by multiplying the previous term by -0.2.

The general form of a geometric sequence is given by an = a1 * r^(n-1), where a1 is the first term and r is the common ratio.

In this case, the first term (a1) is 0.5, and the common ratio (r) is -0.2.

Plugging these values into the general formula, we get:

an = 0.5 * (-0.2)^(n-1).

Therefore, the explicit formula for the given geometric sequence is option B. an = 0.5 * (-0.2)^(n-1).

Learn more about geometric sequence at https://brainly.com/question/30663456

#SPJ11

approximate ln(1.2) using the 3rd order taylor polynoymial for f(x) = lnx centered at 1 Then, estimate the error of the approximation.

Answers

The error of the approximation is approximately -0.0000031.

The given function is f(x) = ln x.

To approximate ln(1.2) using the third-order Taylor polynomial for f(x) = ln x centered at 1, we can start by finding the derivatives of f(x) up to order

3. 1. f(x)

= ln x f(1)

= 0 f'(x)

= 1/x f'(1) =

1 2. f''(x)

= -1/x² f''(1)

= -1 3. f'''(x)

= 2/x³ f'''(1)

= 2

Now, using the third-order Taylor polynomial, we have:

P₃(x) = f(1) + f'(1)(x - 1) + [f''(1)/2!](x - 1)² + [f'''(1)/3!](x - 1)³P₃(x)

= 0 + 1(x - 1) + [-1/2](x - 1)² + [2/6](x - 1)³P₃(x)

= (x - 1) - (x - 1)²/2 + (x - 1)³/3

Now, we can use this polynomial to approximate ln(1.2):

ln(1.2) ≈ P₃(1.2)ln(1.2)

≈ (1.2 - 1) - (1.2 - 1)²/2 + (1.2 - 1)³/3ln(1.2)

≈ 0.1832

Next, we need to estimate the error of the approximation.

We can use the Lagrange remainder formula to find this error:

R₃(x) = [f⁴(z)/4!](x - 1)⁴, where z is some number between 1 and x.R₃(1.2) = [f⁴(z)/4!](1.2 - 1)⁴

We know that f(x) = ln x and f⁴(x) = -6/x⁵.

Plugging in z = c, where 1 < c < 1.2, we get:

R₃(1.2) = [-6/c⁵ * (1.2 - 1)⁴]/4!R₃(1.2)

≈ -0.0000031

Therefore, the error of the approximation is approximately -0.0000031.

Know more about error here:

https://brainly.com/question/28008941

#SPJ11

E SURE TO SHOW CALCULATOR WORK WHEN NEEDED Although, it is regularly reported that the mean IQ is 100, Ivy League college administrators believe their students are well above average. A simple random sample of 200 Ivy league 1st year students were given an IQ test. These 200 students had a mean IQ of 104.7 with a standard deviation of 14.2. Test the administrator claim at the 0.05 significance level. Your answer should start with the hypothesis and end with an interpretation of the test results (with some calculations and other stuff in between). Edit View Insert Format Tools Table 12pt 2 T² P 0 words > # B IU A Paragraph THE

Answers

Based on the sample data, there is sufficient evidence to conclude that the mean IQ of Ivy League college students is significantly greater than 100 at the 0.05 significance level. We reject the null hypothesis.

To test the administrator's claim about the mean IQ of Ivy League college students, we can set up the following hypotheses:

Null Hypothesis (H0): The mean IQ of Ivy League college students is 100.

Alternative Hypothesis (H1): The mean IQ of Ivy League college students is greater than 100.

We will use a one-sample t-test to test these hypotheses.

The sample size is large (n = 200), we can assume that the sampling distribution of the sample mean will be approximately normal.

The test statistic:

t = (sample mean - population mean) / (sample standard deviation / √n)

  = (104.7 - 100) / (14.2 / √200)

  ≈ 2.045

To determine the critical value at a 0.05 significance level, we need to find the critical t-value with (n-1) degrees of freedom.

With n = 200 and a one-tailed test, the critical t-value is approximately 1.653.

Since the calculated t-value (2.045) is greater than the critical t-value (1.653), we reject the null hypothesis.

To know more about null hypothesis. refer here:

https://brainly.com/question/30821298#

#SPJ11

Which of the following is true? O a. The expected value of equals the mean of the population from whicl»the sample is drawn for any sample size Ob. The expected value of 3 equals the mean of the population from which the sample is drawn only if the sample size is 100 or greater c. The expected value of x equals the mean of the population from which the sample is drawn only if the sample size is 50 or greater d. The expected value of equals the mean of the population from which the sample is drawn only if the sample size is 30 or greater

Answers

Option A is the correct answer. The expected value of X equals the mean of the population from which the sample is drawn for any sample size. It is a measure of the central location of the data that is drawn from the population.

The expected value can be defined as the sum of the products of the possible values of a random variable and their respective probabilities. Expected value can be defined as the average value that is expected from an experiment. It is used to calculate the long-term results of an experiment with a large number of trials. The formula for the expected value is as follows: E(X) = ∑ x_i p_i where, x_i is the possible value of the random variable, p_i is the probability of that value occurring The expected value of X equals the mean of the population from which the sample is drawn for any sample size. Therefore, option A is the correct answer.

To know more about data visit:

brainly.com/question/29117029

#SPJ11

Question 2 (1 point) A pizza parlour allows you to choose between 3 types of meat, 3 types of vegetables, and 4 types of cheese. How many different types of pizzas can you make from these selections i

Answers

By multiplying the number of choices for each category, we find that there are 36 different types of pizzas that can be made from the selections of 3 types of meat, 3 types of vegetables, and 4 types of cheese.

To determine the total number of different types of pizzas, we need to consider the choices available for each category: meat, vegetables, and cheese.

For the meat category, we have 3 options to choose from.

For the vegetable category, we also have 3 options available.

And for the cheese category, there are 4 options to select from.

To calculate the total number of different pizza combinations, we need to multiply the number of choices for each category: 3 (meat options) * 3 (vegetable options) * 4 (cheese options) = 36.

So, you can make a total of 36 different types of pizzas by selecting one option from each category.

the number of unique pizzas that can be created from the given choices of 3 types of meat, 3 types of vegetables, and 4 types of cheese is 36.

By multiplying the number of choices for each category, we find that there are 36 different types of pizzas that can be made from the selections of 3 types of meat, 3 types of vegetables, and 4 types of cheese.

To know more about multiplying follow the link:

https://brainly.com/question/10873737

#SPJ11

A dog breeder claims that the mean adult weight of the miniature Maltese puppies it sells is at most 5 pounds. Bridget questions this claim and decides to perform a hypothesis test. Assuming Bridget's hypothesis test is conducted correctly, what conclusion, expressed in nontechnical terms, would she make if evidence in the hypothesis test leads her to reject the null hypothesis. Your answer should not contain any statistical jargon; instead, it should contain common English words that clearly convey the specific conclusion that can be drawn about the average (mean) adult weight of this breeder's Maltese puppies. The justification you provide to support your answer must include the null and alternative hypotheses (expressed using the appropriate symbols) for this hypothesis test.

Answers

The average adult weight of miniature Maltese puppies sold by this breeder exceeds 5 pounds. The null hypothesis is that the mean weight of the Maltese puppies is at most 5 pounds. The alternative hypothesis is that the mean weight of the Maltese puppies is higher than 5 pounds.

Bridget is trying to check whether the claim of the dog breeder, who asserts that the mean adult weight of the miniature Maltese puppies they sell is at most 5 pounds, is valid. Bridget uses a hypothesis test to validate or reject the dog breeder's assertion. In this case, the null hypothesis is that the mean weight of the Maltese puppies is at most 5 pounds.

The alternative hypothesis is that the mean weight of the Maltese puppies is higher than 5 pounds. If the hypothesis test results lead Bridget to reject the null hypothesis, she will conclude that the breeder's claim is invalid. This implies that the average adult weight of miniature Maltese puppies sold by this breeder exceeds 5 pounds.

In hypothesis testing, the null hypothesis (H0) is the hypothesis being tested, while the alternative hypothesis (Ha) is the one the test attempts to support. The goal of hypothesis testing is to determine whether or not the null hypothesis is valid by examining the sample data.

Bridget performs a hypothesis test to determine whether the mean weight of miniature Maltese puppies sold by a breeder is equal to or greater than 5 pounds. In this case, the null hypothesis is that the mean weight of the Maltese puppies is at most 5 pounds. The alternative hypothesis is that the mean weight of the Maltese puppies is higher than 5 pounds.

If Bridget rejects the null hypothesis based on her hypothesis test, it will imply that the breeder's claim is invalid. She concludes that the average adult weight of miniature Maltese puppies sold by this breeder exceeds 5 pounds. This conclusion will be valid if Bridget's hypothesis test is conducted correctly. If the evidence in the hypothesis test leads Bridget to reject the null hypothesis, she will conclude that the breeder's claim is invalid.

To know more about the  null hypothesis, visit:

brainly.com/question/28920252

#SPJ11

I have two bags (A and B) containing colored balls (blue, white and red). All balls are of the same size, weight, texture... Only their colors differ. A) Let's assume that bag A contains 2 blue, 3 white and 2 red balls. What is the probability of pulling first a blue, then a white and then a red when selecting 3 balls from bag A? When I pull a ball from bag A, I put it back in the bag. P 0.03499 100% B) Let's assume that bag B contains 3 blue, 2 white and 2 red balls. What is the probability of pulling first a blue, then a white and then a red when selecting 3 balls from bag B? When I pull a ball from bag B, I keep it on the table. P 0.057143 ? 100% C) Let's assume that bag A contains 2 blue, 3 white and 2 red balls. Let's assume that bag B contains 3 blue, 2 white and 2 red balls. When I pull a ball from bag A, I put it back in the bag. When I pull a ball from bag B, I keep it on the table. What is the probability of selecting 2 blue balls from bag A when selecting 6 balls from bag A and 2 blue balls and 1 white balls from bag B when selecting 5 balls from bag B? P 0.111 ? x 0%

Answers

A) Probability of pulling first a blue, then a white, and then a red from Bag A (with replacement): Approximately 3.499%.

B) Probability of pulling first a blue, then a white, and then a red from Bag B (without replacement): Approximately 5.7143%.

C) Probability of selecting 2 blue balls from Bag A (with replacement) and 2 blue balls and 1 white ball from Bag B (without replacement): Approximately 0.465%.

A) For Bag A, with replacement, we multiply the probabilities of selecting each color ball: (2/7) * (3/7) * (2/7) ≈ 0.03499.

B) For Bag B, without replacement, we multiply the probabilities of selecting each color ball: (3/7) * (2/6) * (2/5) ≈ 0.057143.

C) For Bag A and Bag B combined, we multiply the probability of selecting 2 blue balls from Bag A (with replacement) by the probability of selecting 2 blue balls and 1 white ball from Bag B (without replacement): 0.081633 * 0.057143 ≈ 0.00465.

learn more about probability here:
https://brainly.com/question/31828911

#SPJ11

Find a parametric representation for the part of the hyperboloid x2+y2-z2=1 that lies to the left of the xz-plane. (Enter your answer as a comma- separated list of equations. Let x, y, and z be in terms of u and/or v.)

Answers

The parametric representation for the part of the hyperboloid [tex]$x^2 + y^2 - z^2 = 1$[/tex] that lies to the left of the [tex]$xz$[/tex]-plane is:

[tex]$$\begin{aligned} x &= \sec u\cos v\\ y &= \sec u\sin v\\ z &= \tan u\\ \pi/2 &\le v \le 3\pi/2 \end{aligned}$$[/tex]

A parametric representation of a surface or curve is a way of expressing it using parameters. Parametric representation can be expressed as:[tex]$$\begin{aligned} x &= f(u, v)\\ y &= g(u, v)\\ z &= h(u, v) \end{aligned}$$[/tex]

Here we need to find a parametric representation for the part of the hyperboloid [tex]$x^2 + y^2 - z^2 = 1$[/tex] that lies to the left of the [tex]$xz$[/tex]-plane.

That is, for the region in the first and fourth quadrants of the [tex]$xz$[/tex]-plane.

For this, we can use the parameterization [tex]$x = \sec u\cos v$[/tex], [tex]$y = \sec u\sin v$[/tex], and [tex]$z = \tan u$[/tex].

With this parameterization, the condition [tex]$x^2 + y^2 - z^2 = 1$[/tex] becomes [tex]$\sec^2 u - \tan^2 u = 1$[/tex] which is always satisfied.

For the part of the hyperboloid that lies to the left of the [tex]$xz$[/tex]-plane, we have to restrict [tex]$v$[/tex] to the range [tex]$\pi/2 \le v \le 3\pi/2$[/tex].

This will ensure that [tex]$x = \sec u\cos v \le 0$[/tex].

Hence, the parametric representation for the part of the hyperboloid [tex]$x^2 + y^2 - z^2 = 1$[/tex] that lies to the left of the [tex]$xz$[/tex]-plane is:

[tex]$$\begin{aligned} x &= \sec u\cos v\\ y &= \sec u\sin v\\ z &= \tan u\\ \pi/2 &\le v \le 3\pi/2 \end{aligned}$$[/tex]

To know more about parametric representation, visit:

https://brainly.com/question/28990272

#SPJ11

A random variable follows a normal distribution with a mean of 16.73 and a standard deviation of 2.18. A randomly selected individual from the previous normal distribution has 33% of observation above it.', find the z-score associated with that individual. Important, do not forget the negative sign if your z-score is negative.

Answers

The z-score associated with the individual is approximately 0.439.

To obtain the z-score associated with an individual who has 33% of the observations above them in a normal distribution with a mean of 16.73 and a standard deviation of 2.18, we can use the standard normal distribution table or a calculator.

Since we want to find the z-score for the upper tail of the distribution (33% above), we subtract the given percentage (33%) from 100% to find the area in the lower tail: 100% - 33% = 67%.

Now, we look up the corresponding z-score for an area of 67% in the standard normal distribution table.

Alternatively, using a calculator or statistical software, we can find the inverse of the cumulative distribution function (CDF) for a normal distribution with a mean of 0 and a standard deviation of 1.

The z-score associated with the individual can be calculated as follows:

z = invNorm(0.67, 0, 1)

Using a calculator or statistical software, the result is approximately 0.439.

To know more about z-score refer here:

https://brainly.com/question/31871890#

#SPJ11

In a recent​ year, the scores for the reading portion of a test
were normally​ distributed, with a mean of 22.5 and a standard
deviation of 5.9. Complete parts​ (a) through​ (d) below.
(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 21 The probability of a student scoring less than 21 is (Ro

Answers

The probability of a student scoring less than 21 is 0.3979 (approx).

Given: Mean=22.5, Standard Deviation=5.9, and X=21 (score that is less than 21). We need to find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 21.Using the z-score formula, we can find the probability: z = (X - μ) / σWhere, X = 21, μ = 22.5, and σ = 5.9z = (21 - 22.5) / 5.9 = -0.25424P(z < -0.25424) = 0.3979 (using the standard normal table)T

Probability refers to potential. A random event's occurrence is the subject of this area of mathematics. The range of the value is 0 to 1. Mathematics has incorporated probability to forecast the likelihood of various events. The degree to which something is likely to happen is basically what probability means. You will understand the potential outcomes for a random experiment using this fundamental theory of probability, which is also applied to the probability distribution. Knowing the total number of outcomes is necessary before we can calculate the likelihood that a specific event will occur.

Know more about probability here:

https://brainly.com/question/14210034

#SPJ11

Find a basis for and the dimension of the solution space of the homogeneous system of linear equations. x + 4y - 2z = 0 -5x - 20y + 10z = 0 (a) a basis for the solution space {[] []}

Answers

The homogeneous system of linear equations given is:x + 4y - 2z = 0-5x - 20y + 10z = 0To find a basis for the solution space of the homogeneous system of linear equations, we need to put it into the matrix form and use Gaussian elimination to get the reduced row-echelon form.

x + 4y - 2z = 0-5x - 20y + 10z = 0The matrix form of the given system of equations is given as follows: [ 1  4 -2 | 0 ] [-5 -20 10 | 0 ]Let's perform the Gaussian elimination operation to get the reduced row-echelon form of the augmented matrix.[1 4 -2 | 0]   (1) $\Leftrightarrow$   [1 4 -2 | 0][0 0 0 | 0]     (2) $\Leftrightarrow$   [0 0 0 | 0]From the above row-echelon form, we can write three equations:

1x + 4y - 2z = 00x + 0y + 0z = 0We can write the first equation as:x = -4y + 2zSubstituting x in terms of y and z in the above equation, we get:-4y + 2z = -4y + 2zThus, we get a basis for the solution space as follows:{(-4,1,0), (-2,0,1)}We can see that we have two vectors in the basis of the solution space, which indicates that the dimension of the solution space is 2. The basis for the solution space is {(-4,1,0), (-2,0,1)}.

To know more about  matrix visit:

https://brainly.com/question/29132693

#SPJ11

17.)
18.)
Assume that when adults with smartphones are randomly selected, 59% use them in meetings or classes. If 6 adult smartphone users are randomly selected, find the probability that at least 4 of them use

Answers

The result will give you the probability that at least 4 out of 6 randomly selected adult smartphone users use their phones in meetings or classes.

To find the probability that at least 4 out of 6 randomly selected adult smartphone users use their phones in meetings or classes, we can use the binomial probability formula.

The binomial probability formula is given by:

P(x) = C(n, x) * p^x * q^(n-x)

Where:

P(x) is the probability of getting exactly x successes

n is the number of trials (in this case, the number of adult smartphone users selected)

x is the number of successes (the number of adult smartphone users using their phones in meetings or classes)

p is the probability of success (the proportion of adult smartphone users who use their phones in meetings or classes)

q is the probability of failure (1 - p)

C(n, x) is the combination or binomial coefficient, calculated as n! / (x!(n-x)!), which represents the number of ways to choose x successes out of n trials.

Given that 59% of adults use their smartphones in meetings or classes, the probability of success (p) is 0.59, and the probability of failure (q) is 1 - 0.59 = 0.41.

Now, let's calculate the probability of at least 4 out of 6 adults using their phones:

P(at least 4) = P(4) + P(5) + P(6)

P(4) = C(6, 4) * (0.59)^4 * (0.41)^(6-4)

P(5) = C(6, 5) * (0.59)^5 * (0.41)^(6-5)

P(6) = C(6, 6) * (0.59)^6 * (0.41)^(6-6)

Using the combination formula, C(n, x) = n! / (x!(n-x)!):

P(4) = 15 * (0.59)^4 * (0.41)^2

P(5) = 6 * (0.59)^5 * (0.41)^1

P(6) = 1 * (0.59)^6 * (0.41)^0

Now, calculate each term and sum them up:

P(at least 4) = P(4) + P(5) + P(6) = 15 * (0.59)^4 * (0.41)^2 + 6 * (0.59)^5 * (0.41)^1 + (0.59)^6

Learn more about smartphone   here:

https://brainly.com/question/14875349

#SPJ11

neutral term to signify two events whose co-occurrence strikes us as odd or strange

Answers

An unexpected or rare concomitance of two events is referred to as a "coincidence." A coincidence occurs when two or more events coincide in an unexpected or extraordinary manner.

The events that transpired are unrelated, yet they are connected in a manner that makes them seem meaningful.The events that occurred as a coincidence are not necessarily positive or negative.

For example, a pair of friends who meet one another in a foreign country they were both visiting and had no prior knowledge of the other's travel plans.

The words coincidence or chance occurrence might be used to describe the co-occurrence of two events. When two unrelated occurrences are connected in some way that appears improbable or curious, the term “coincidence” is often used.

When two events appear to be related but are not, they are referred to as coincidences. Coincidences can be positive or negative in nature, but they are not inherently good or bad. They are just a strange coincidence that people sometimes experience. When events occur that are unexpected or extraordinary, it is natural for people to try to find meaning in them. Coincidences can make people feel like there is a deeper significance to the world around them, even if there is not.

To know more about extraordinary visit:

https://brainly.com/question/30761388

#SPJ11

Consider the discrete random variable X given in the table below. Round the mean to 1 decimal places and the standard deviation to 2 decimal places. 3 4 7 14 20 X P(X) 2 0.08 0.1 0.08 0.1 0.55 0.09 JL

Answers

The mean of the discrete random variable X is 9.3 and the standard deviation is 5.43.

To calculate the mean (expected value) of a discrete random variable, we multiply each value by its corresponding probability and sum them up. The formula is as follows:

Mean (μ) = Σ(X * P(X))

Using the provided table, we can calculate the mean:

Mean (μ) = (2 * 0.08) + (3 * 0.1) + (4 * 0.08) + (7 * 0.1) + (14 * 0.55) + (20 * 0.09)

= 0.16 + 0.3 + 0.32 + 0.7 + 7.7 + 1.8

= 9.3

Therefore, the mean of the discrete random variable X is 9.3, rounded to 1 decimal place.

To calculate the standard deviation (σ) of a discrete random variable, we first calculate the variance. The formula for variance is:

Variance (σ²) = Σ((X - μ)² * P(X))

Once we have the variance, the standard deviation is the square root of the variance:

Standard Deviation (σ) = √(Variance)

Using the provided table, we can calculate the standard deviation:

Variance (σ²) = ((2 - 9.3)² * 0.08) + ((3 - 9.3)² * 0.1) + ((4 - 9.3)² * 0.08) + ((7 - 9.3)² * 0.1) + ((14 - 9.3)² * 0.55) + ((20 - 9.3)² * 0.09)

= (7.3² * 0.08) + (6.3² * 0.1) + (5.3² * 0.08) + (2.3² * 0.1) + (4.7² * 0.55) + (10.7² * 0.09)

= 42.76 + 39.69 + 28.15 + 5.03 + 116.17 + 110.52

= 342.32

Standard Deviation (σ) = √(Variance)

= √(342.32)

= 5.43

Therefore, the standard deviation of the discrete random variable X is 5.43, rounded to 2 decimal places.

The mean of the discrete random variable X is 9.3, rounded to 1 decimal place, and the standard deviation is 5.43, rounded to 2 decimal places. These values provide information about the central tendency and spread of the distribution of the random variable X.

To know more about  discrete random variable, visit

https://brainly.com/question/30789758

#SPJ11

(a) For a random variable X-B(n, p). Given that the random variable has a mean and variance respectively as 3.6 and 2.52. Find the following probabilities (1) P(X= 4) (ii)P(X

Answers

1.Fir random variable X-B(n, p), the mean and variance for probability P(X = 4) is n = 21.6 and p ≈ 0.167.

To find P(X = 4), we need to calculate the probability of getting exactly 4 successes in the binomial distribution. The formula to compute this probability is:

P(X = k) = (n C k) * p^k * (1 - p)^(n - k)

Here, k represents the number of successes we want, n is the number of trials, p is the probability of success in a single trial, and (n C k) represents the number of combinations.

Since we do not know the values of n and p directly, we can use the mean and variance to derive them. The mean of a binomial distribution is given by μ = n * p, and the variance is σ^2 = n * p * (1 - p).

From the given information, we have μ = 3.6 and σ^2 = 2.52.

Solving these equations simultaneously, we can find the values of n and p.

μ = n * p

3.6 = n * p

σ^2 = n * p * (1 - p)

2.52 = n * p * (1 - p)

By substituting 3.6/n for p in the second equation, we can solve for n:

2.52 = n * (3.6/n) * (1 - 3.6/n)

2.52 = 3.6 - 3.6^2/n

Now we can solve for n:

2.52n = 3.6n - 12.96

0.6n = 12.96

n = 21.6

Substituting n = 21.6 into the equation μ = n * p:

3.6 = 21.6 * p

p = 3.6/21.6

p ≈ 0.167

Now that we have the values of n = 21.6 and p ≈ 0.167, we can calculate P(X = 4):

P(X = 4) = (21.6 C 4) * (0.167^4) * (1 - 0.167)^(21.6 - 4)

Using a binomial calculator or a statistical software, we can compute this probability. The result will be a decimal value.

(ii) For random variable X-B(n, p), the mean and variance for probability P(X < 4) will be similar to previous one.

To find P(X < 4), we need to calculate the probability of getting fewer than 4 successes. This is the cumulative probability from 0 to 3, which can be written as:

P(X < 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

Using the formula mentioned earlier, we can substitute the values of n and p to calculate each probability. Then, we can sum them up to find the cumulative probability.

The calculation of each probability is similar to the one explained for P(X = 4), and the results will be decimal values.

To know more about probability refer here:

https://brainly.com/question/32117953?#

#SPJ11

3π Write the expression cos in the form a+bi. 4 15 3π [cos ()+ i sin (²) - (Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.) + i sin 4

Answers

The expression cos in the form a+bi is given by the following formula:

cos(θ) + i sin(θ)

where θ is the angle in radians.

Let us apply this formula in the given expression, cos(3π/4) + i sin(3π/4) - cos(15π/4) + i sin(4)

We can simplify this expression as follows:

cos(3π/4) is equal to (-√2)/2 and sin(3π/4) is equal to (√2)/2cos(15π/4) is equal to cos(π/4) and sin(15π/4) is equal to sin(π/4) and they both have the same values i.e.,

(√2)/2cos(π/4) is equal to (√2)/2 and sin(4) is equal to (-0.07)

Therefore, substituting these values in the given expression, we get:(-√2)/2 + (√2)/2i + (√2)/2 - (√2)/2i - (√2)/2(0.07) + i(-0.07)Simplifying this expression, we get:-√2/2 - √2/2(0.07) + i(√2/2 - 0.07)

Hence, the required expression cos in the form a+bi is -√2/2 - √2/2(0.07) + i(√2/2 - 0.07).

To know more about expression visit:

https://brainly.com/question/28170201

#SPJ11

Linear regression has been applied to data for the engine power
on the engine displacement for 20 petrol engines. A linear model y
= 60 * x - 10 has been obtained, where x is in litres, and y is in
ki

Answers

The linear model equation is y = 60 * x - 10.In the given linear regression model, y represents the engine power (in kilowatts) and x represents the engine displacement (in liters) for 20 petrol engines.

This equation implies that for each one-unit increase in the engine displacement (x), the engine power (y) is expected to increase by 60 units of kilowatts, with a constant offset of -10 kilowatts.

It's important to note that this linear model assumes a linear relationship between engine power and engine displacement, with a fixed slope of 60 and a constant offset of -10. The model is used to estimate or predict the engine power based on the engine displacement.

If you have specific data points for the engine displacement (x) of the 20 petrol engines, you can substitute those values into the equation to estimate the corresponding engine power (y) for each engine.

To know more about regression, visit:

https://brainly.com/question/30576892

#SPJ11

Chi Square Crash Course Quiz Part A: We conduct a similar study
using the same two groups we used for the t-Test. Recall
that in this clothing study, the boys were randomly assigned to
wear either sup
You get the following data: I Clothing Condition (1= Superhero, 2= Street Clothes) When do superheroes work harder? Crosstabulation When do superheroes work harder? in their street clothes Total Count

Answers

In this problem, we are given that we conduct a similar study using the same two groups we used for the t-Test. Also, recall that in this clothing study, the boys were randomly assigned to wear either superhero or street clothes.

We have been given the following data for Chi Square Crash Course Quiz Part A: Clothing Condition Street Clothes Superhero Total

When superheroes are loaded with content 832212.

When superheroes are not loaded with content 822224.

Total 165444.

According to the given data, we can construct a contingency table to carry out a Chi Square test.

The formula for Chi Square is: [tex]$$χ^2=\sum\frac{(O-E)^2}{E}$$[/tex].

Here,O represents observed frequency, E represents expected frequency.

After substituting all the values, we get,[tex]$$χ^2=\frac{(8-6.5)^2}{6.5}+\frac{(3-4.5)^2}{4.5}+\frac{(2-3.5)^2}{3.5}+\frac{(2-0.5)^2}{0.5}=7.98$$[/tex].

The critical value of Chi Square for α = 0.05 and degree of freedom 1 is 3.84 and our calculated value of Chi Square is 7.98 which is greater than the critical value of Chi Square.

Therefore, we reject the null hypothesis and conclude that there is a statistically significant relationship between the superhero's clothing condition and working hard. Hence, the given data is loaded with Chi Square.

To know more about Chi Square, visit:

https://brainly.com/question/31871685

#SPJ11

We can conclude that there is not enough evidence to suggest that the clothing type has an effect on how hard the boys work.

Given,Chi Square Crash Course Quiz Part A:

We conduct a similar study using the same two groups we used for the t-Test.

Recall that in this clothing study, the boys were randomly assigned to wear either superhero or street clothes.

in their street clothes Total Count.

Using the data given in the question, let's construct a contingency table for the given data.

The contingency table is as follows:

Superhero Street Clothes Total Hard Work

30                 20                         50

Less Hard Work

20 30 50

Total 50 50 100

The total count of the contingency table is 100.

In order to find when superheroes work harder, we need to perform the chi-squared test.

Therefore, we calculate the expected frequencies under the null hypothesis that the clothing type (superhero or street clothes) has no effect on how hard the boys work, using the formula

E = (Row total × Column total)/n, where n is the total count.

The expected values are as follows:

Superhero Street Clothes TotalHard Work

25                  25                          50

Less Hard Work 25 25 50

Total 50 50 100

The chi-squared statistic is given by the formula χ² = ∑(O - E)² / E

where O is the observed frequency and E is the expected frequency.

The calculated value of chi-squared is as follows:

χ² = [(30 - 25)²/25 + (20 - 25)²/25 + (20 - 25)²/25 + (30 - 25)²/25]χ²

= 2.0

The degrees of freedom for the test is df = (r - 1)(c - 1) where r is the number of rows and c is the number of columns in the contingency table.

Here, we have df = (2 - 1)(2 - 1) = 1.

At a 0.05 level of significance, the critical value of chi-squared with 1 degree of freedom is 3.84. Since our calculated value of chi-squared (2.0) is less than the critical value of chi-squared (3.84), we fail to reject the null hypothesis.

Therefore, we can conclude that there is not enough evidence to suggest that the clothing type has an effect on how hard the boys work.

To know more about contingency table, visit:

https://brainly.com/question/30920745

#SPJ11

1. If we are testing for the difference between the means of two independent populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to: 2. If we are testing for the difference between the means of two paired populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to:

Answers

1. If we are testing for the difference between the means of two independent populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to 38. The degrees of freedom (df) formula for this test is:df = n1 + n2 - 2Let’s break this down to understand why it works:When we test the difference between two independent populations, we have two separate samples, one from each population.

The first sample has n1 observations, and the second sample has n2 observations. We need to account for all the data in both samples, so we add them together:n1 + n2Then we subtract two because we need to estimate two population parameters: the mean of population 1 and the mean of population 2. We use the sample data to estimate these parameters, so they are not known with certainty. When we estimate population parameters from sample data, we sacrifice some information about the variability in the population.

We lose two degrees of freedom for each parameter estimated because of this loss of information.2. If we are testing for the difference between the means of two paired populations with samples of n1 = 20 and n2 = 20, the number of degrees of freedom is equal to 19. The degrees of freedom (df) formula for this test is:df = n - 1Let’s break this down to understand why it works:When we test the difference between two paired populations, we have a single sample of paired observations.

To know more about parameters visit:

https://brainly.com/question/11911877

#SPJ11

Other Questions
find two real numbers that have a sum of 14 and a product of 38 Which of the following are functions of the MAC sublayer? (Select two.)Defining a unique hardware address for each device on the networkMapping hardware addresses to link-layer addressesCreating routing tables based on MAC addressesLetting devices on the network have access to the LAN All of the following species are isoelectronic excepta. S2-.b. Ar.c. Ca2+.d. Cl-.e. Mg2+. why does hip hop planet by james mcbride become best african american essay? An open-ended fund has stocks of three companies: 1,513 shares of K.Kreme currently valued at $14.00. 1,069 shares of Ben & Jerry's currently values at $44.00 and 2,119 shares of Coke currently valued at $53.00. The fund has 3500 shares outstanding. What is the net asset value (NAV) of the fund?Enter your answer rounded to 2 decimals, and without any units. So, for example, if your answer is 64.4568 , then just enter 64.46. All the following statements about sanitary landfills are true EXCEPT: A methane collection system is built into a sanitary landfill Landfills liners are non-destructible, even if hazardous wastes are placed in a landfill designed for municipal solid wastes Landfills are lined with material aimed at protecting underground water supplies A leachate collection system is built into a sanitary landfill Two food trucks are opening up in Harrisonburg: Hamilton's Hot Dogs and Smith's Sandwiches both food truck owners have paid off their debts and neither business has fixed costs. The two businesses produce differentiated products, Hamilton has marginal cost of $5, and Smith has marginal cost of $10. Inverse demand for the products are ph = 45-9h-1.5g, for Hamilton's Hot Dogs, P = 40-q-qh for Smith's Sandwiches, and the two food trucks engage in Cournot competition. (a) Write down a function that gives Smith's Sandwiches total profits as a function of its own output and Hamilton's output. Your function should contain q, 4s, and numerical constants only. (b) Derive Hamilton's best-response function given the output of Smith's Sandwiches. Derive Smith's best-response function given the output of Hamilton's Hot Dogs. (c) What are the Cournot-Nash equilibrium production levels for each firm? What are the profits earned for each firm? How large is consumer surplus for each product? Be careful calculating the vertical intercept for each demand curve. (d) For this final part, assume the firms produce a homogeneous product, compete la Bertrand, and demand is given by q = 45-min(ph. p.). Marginal costs remain as above. Provide one set of prices charged by the two firms that would constitute a Bertrand-Nash equilibrium. No math is necessary and there are multiple correct options. Explain your finding. Think about the technological changes that have occurred sinceyou were born. Do you think those changes have affected thestrategic-planning process? How?400 words for like. On March 15, 2020, South Companys employees earned $48,000 of sales salaries. Withholdings from the employees salaries include FICA Social Security taxes at the rate of 6.2%, FICA Medicare taxes at a rate of 1.45%, $7,200 of federal income taxes, and $200 of union dues. Employer FICA taxes are identical to those on the employees. Of the total salary earned, $18,000 is subject to SUTA taxes, 5.4% and FUTA taxes, 0.6%.a. Record journal entry to accrue payroll, including employee deductions for March 15. Note Use separate account for each payable.b. Record the accrued payroll taxes and other related employment expenses. (Use separate payable accounts).c. Record the cash payment of salaries on March 18.d. Record the March 21st cash payment of all remaining liabilities relating to the March 15th payroll. tacked People gain weight when they take in more energy from food than they expend. James Levine and his collaborators at the Mayo Clinic investigated the link between obesity and energy spent on daily activity. They chose 20 healthy volunteers who didn't exercise. They deliberately chose 10 who are lean and 10 who are mildly obese but still healthy. Then they attached sensors that monitored the subjects' every move for 10 days. The table presents data on the time (in minutes per day) that the subjects spent standing or walking, sitting, and lying down. Time (minutes per day) spent in three different postures by lean and obese subjects Group Subject Stand/Walk Sit Lie Lean 1 511.100 370.300 555.500 607.925 374.512 450.650 319.212 582.138 537.362 584.644 357.144 489.269 578.869 348.994 514.081 543.388 385.312 506.500 677.188 268.188 467.700 555.656 322.219 567.006 374.831 537.031 531.431 504.700 528.838 396.962 260.244 646.281 $21.044 MacBook Pro Lean Lean Lean Lean Lean Lean Lean Lean Lean Obese 2 3 4 5 6 7 9 10 11 Question 2 of 43 > Obese Obese 11 12 13 14 15 Stacked 16 17. 18 19 Attempt 6 260.244 646.281 521.044 464.756 456.644 514.931 Obese 367.138 578.662 563.300 Obese 413.667 463.333 $32.208 Obese 347.375 567.556 504.931 Obese 416.531 567.556 448.856 Obese 358.650 621.262 460.550 Obese 267.344 646.181 509.981 Obese 410,631 572.769 448.706 Obese 20 426.356 591.369 412.919 To access the complete data set, click to download the data in your preferred format. CSV Excel JMP Mac-Text Minitab14-18 Minitab18+ PC-Text R SPSS TI Crunchlt! Studies have shown that mildly obese people spend less time standing and walking (on the average) than lean people. Is there a significant difference between the mean times the two groups spend lying down? Use the four-step process to answer this question from the given data. Find the standard error. Give your answer to four decimal places. SE= incorrect Find the test statistic 1. Give your answer to four decimal places. Incorrect Use the software of your choice to find the P-value. 0.001 < P < 0.1. 0.10 < P < 0.50 P Holtzman Clothiers's stock currently sells for $39.00 a share. It just paid a dividend of $1.75 a share (i.e., D0 = $1.75). The dividend is expected to grow at a constant rate of 8% a year. What stock price is expected 1 year from now? Round your answer to the nearest cent. Which one of the following is not an external user of accounting information? a. Regulatory agencies. Customers. b. C Investors All of these are external users. 6. The time period assumption states that a b. a transaction can only affect one period of time. estimates should not be made if a transaction affects more than one time period. C. adjustments to the enterprise's accounts can only be made in the time period when the business terminates its operations. d. the economic life of a business can be divided into artificial time periods. 7 Which statement is correct? a. As long as a company consistently uses the cash basis of accounting, generally accepted accounting principles allow its use. b The use of the cash basis of accounting violates both the revenue recognition and expense recognition principles. C The cash basis of accounting is objective i because no one can be certain of the amount of revenue until the cash is received d As long as management is ethical, there are not problems with using the cash basis of accounting. 8. The time period assumption is also referred to as the a calendar assumption. b. cyclicity assumption. periodicity assumption fiscal assumption d 9. Which of the following are in accordance with generally accepted accounting principles? a Accrual basis accounting b. Cash basis accounting C di Both accrual basis and cash basis accounting Neither accrual basis nor cash basis accounting 10. The revenue recognition principle dictates that revenue should be recognized in the accounting records A when cash is received when it is eamed at the end of the month in the period that income taxes are paid The expense recognition precipie matches d. Drag the correct response into the blank to complete the sentence. uses this data to personalize an individual customer's experience. filtering is the name for classification of software that monitors trends among customers and :: Collaborative :: Preference :: Prediction :: Information a manager in an industry with some market power can use information about which of the following to determine a profit-maximizing price? multiple choice question. demand elasticity unit elasticity supply elasticity a. You plan to make five deposits of $1,000 each, one every 6 months, with the first payment being made in 6 months. You will then make no more deposits. If the bank pays 4% nominal Interest, compounded semiannually, how much will be in your account after 3 years? Do not round intermediate calculations. Round your answer to the nearest cent $ b. One year from today you must make a payment of $6,000. To prepare for this payment, you plan to make two equal quarterly deposits (at the end of Quarters 1 and 2) in a bank that pays 4% nominal interest compounded quarterly. How large must each of the two payments be? Do not round intermediate calculations. Round your answer to the nearest cent$ a very long straight wire has charge per unit length 1.451010 c/m. at what distance from the wire is the magnitude of the electric field equal to 2.55 n/c ? Based on a study discussed in class, Marijuana users performed ________ on their memory of the first 5 words of a word list compared to non-marijuana controlsGroup of answer choicesbetterworsethe same You have a bubble chart with income on the x-axis, life expectancy on the y-axis, and bubbles representing countries. If the motion of some bubbles is up and to the right, what is the motion doing?Select an answer:a) giving interaction feedbackb) showing change over timec) drawing the eyed) providing transition what are the domain restrictions of the expression h2 3h10h212h 20 ? What reagent(s) would you use to accomplish the following conversion? Show mechanism. CH B) CH3MgBr, H30 A) CH3Br, H30+ D) CH3Br, LiAIH4; H30 C) (CH3)2CuLi; H30+ Section 16-15 E) LiAIH4; CH3MgBr, H30+