Answer:
A.
Explanation:
Refraction light rays are bent as they pass into a different medium where its speed is different. As refracted light rays pass from a fast medium to a slow medium, the light ray bends toward the normal to the boundary between the two medium. Light refracts as it travels at an angle into a medium with a different refractive index.
A 3.6 kg block moving with a velocity of 4.3 m/s makes an elastic collision with a stationary block of mass 2.1 kg.
(a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. 1.1315 m/s (for the 3.6 kg block) 5.43 m/s (for the 2.1 kg block)
(b) Check your answer by calculating the initial and final kinetic energies of each block. 33.282 J (initially for the 3.6 kg block) J (initially for the 2.1 kg block) J (finally for the 3.6 kg block) J (finally for the 2.1 kg block) Are the two total kinetic energies the same?
Answer:
a) Velocity of the block of mass 3.6 kg after collision = 1.13 m/s
Velocity of the block of mass 2.1 kg after collision = 5.43 m/s
b) Initial energy of the 3.6 kg block = 33.282 J
Final energy of the 3.6 kg block = 2.3 J
Initial energy of the 2.1 kg block = 0J
Final energy of the 2.1 kg block = 30.96 J
The two total kinetic energies are the same = 33.30 J
Explanation:
Check the attached files for the complete solution and explanations.
List and describe the steps of energy transfers that occur that allow a digital recording to be played through a speaker and ultimately become sound waves.
Answer:
In the production of sound, Electrical, mechanical, and wave energies are involved.
Explanation:
First, all the components of a digital recorder are powered and driven by electrical energy. This relates to all the internal workings which include decoding of the recorded data which is stored magnetically and the transmission of same to the speakers.
As electricity travels through the coil, it causes the coil to vibrate thus converting electrical energy into mechanical energy. The coil is a copper spiral that is inserted into a magnet and is connected to a lightweight paper membrane or a diaphragm.
As electricity travels through the magnet encircled coil, it causes it to vibrate. The vibration, in turn, causes the diaphragm attached it to also vibrate. The vibration triggers a physical wave of energy. This wave energy travels to the listener.
Cheers!
28.18. Consider two conducting spheres with one having a larger radius than the other. Both spheres carry the same amount of excess charge. Which one of the following statements concerning the electric potential of the two spheres is true?a) The electric potential of the larger sphere is greater than that of the smaller sphere.b) The electric potential of the larger sphere is the same as that of the smaller sphere.c) The electric potential of the larger sphere is less than that of the smaller sphere.
Answer:
b) The electric potential of the larger sphere is the same as that of the smaller sphere
Explanation:
An electric potential is the amount of work needed to move a unit of charge from a reference point to a specific point inside the field without producing an acceleration. The reference point is typically the Earth or a point at infinity, although any point can be used.
It is proportional to the charge on a particle and inversely proportional to its relative distance to the electric field.
E = kQ/r
Where k = 1/4¶E°
Where E° is permittivity of free space 8.85x10^-12 F/m
(20) A rocket is launched vertically. At time t = 0 seconds, the rocket’s engine shuts down. At the time, the rocket has reached an altitude of 500m and is rising at a velocity of 125 m/s. Gravity then takes over. The height of the rocket as a function of time is h(t)=-9.8/2 t^2+125t+500,t>0. Using your function file from HW2A: Generate a plot of height (vertical axis) vs. time (horizontal axis) from 0 to 30 seconds. Include proper axis labels. Find the maximum height and the time at which it occurs: Analytically, showing your steps and equations. This part should be done entirely in the write-up: no coding Using the data cursor on the plot. Using the MAX function on your data from part (a) Using FMINSEARCH on your m file Comment on the differences between the methods. How closely does each method match the "true" (analytical) value? Find the time when the rocket hits the ground: Analytically, showing your equations. This part should be done entirely in the write-up: no coding Using the data cursor on the plot. Using FZERO on your m file Comment on the differences between the methods in each of part (B) and (C). How closely does each method match the "true" (analytical) value? Use a quantitative comparison to make your argument.
Answer:
Explanation:
Given that,
h(t) = -9.8t² / 2 + 125t + 500
for t > 0.
At t = 0, the rocket is at height h = 500m, at a velocity of Vo = 125m/s.
We want to find the maximum height reached by rocket
Using mathematics maxima and minima
let find the turning point when dh/dt = 0
dh/dt = -9.8t + 125
dh / dt = 0 = -9.8t + 125
9.8t = 125
t = 125 / 9.8
t = 12.76s
Let find the turning point to know if this time t = 12.76 is maximum or minimum point
Let find d²h / dt²
d²h / dt² = -9.8
Since, d²h/dt² < 0, then, at t = 12.76s is the maximum points.
Then, the maximum height reached is
h = -9.8t² / 2 + 125t + 500
h = -9.8(12.76)² / 2 + 125(12.76) + 500
h = -797.80 + 1595 + 500
h = 1297.2 m
The maximum height reached is 1297.2 m
From the attachment, the maximum height is 1297.2m at t = 12.76sec.
Comment, the result are the same for both the analysis aspect and the graphical aspect.
Q7:
A 4 kg toy is lifted off the ground and falls at 3 m/s. What is the toy's energy?
Answer:
The toy's energy is 18 J.
Explanation:
We have, a 4 kg toy is lifted off the ground and falls at 3 m/s. It is required to find toy's energy.
The toy will have kinetic energy due to its motion. The energy is given by :
[tex]E=\dfrac{1}{2}mv^2\\\\E=\dfrac{1}{2}\times 4\times 3^2\\\\E=18\ J[/tex]
So, the toy's energy is 18 J.
PIUDICITIS CONSECulvely and Circle your aliswers. Lilyo
proper significant digits.
53. When you turn on your CD player, the turntable accelerates from zero to 41.8 rad/s in
3.0 s. What is the angular acceleration?
or
Answer:
The angular acceleration of CD player is [tex]13.93\ rad/s^2[/tex].
Explanation:
Initial angular speed of a CD player is 0 and final angular speed is 41.8 rad/s. Time to change the angular speed is 3 s.
It is required to find the angular acceleration. The change in angular speed of the CD player divided by time taken is called its angular acceleration. It can be given by :
[tex]a=\dfrac{\omega_f-\omega_i}{t}\\\\a=\dfrac{41.8-0}{3}\\\\a=13.94\ rad/s^2[/tex]
So, the angular acceleration of CD player is [tex]13.93\ rad/s^2[/tex].
A cube, 1 m on each edge, is held 0.75 m below the surface of a pool of water by a rope. The mass of the cube is 700 kg, and the weight distribution is such that one face remains parallel to the surface of the water. a. Find the tension in the rope. b. Assuming the rope is cut, how far will the cube protrude from the water
Answer:
Explanation:
The mass of cube = 700 kg
volume = 1 m³
density = 700 kg / m²
Its density is less than that of water so it will try to float on the surface .
Tension in rope will be equal to net upward force
upthrust = volume x density of water x g
= 1 x 10³ x 9.8
= 9800 N
weight of cube = mass x g
= 700 x 9.8
= 6860 N .
Net upward force = 9800 - 6860
= 2940 N.
Tension in the rope = 2940 N.
Rope will hold the cube inside and not allow it to go outside water .
b )
If rope is cut , cube being lighter , will float on surface of water .
Part of cube inside water while floating
= 6860 / 9800
= .7
.7 m will remain inside water
part floating outside
= 1 - 0.7
= 0.3 m .
1. When in the past have you pushed your personal limits? Give at least one
example. How did it affect you? (5 points)
Answer:
Umm that's a personal question. All u have to do is say when have u pushed your personal limits....... Ummm one for me is when i had to try out for a select soccer and that is past my comfort zone.
Explanation:
Answer:
You typically push past your personal limits when you are tired or worn out. As an athlete I tend to do this a lot, whether it’s in practice or in a game. One time I pushed past my personal limits is when I came back home to play football (soccer) on break, and ended up playing in a tournament with my team. We had made it to the finals and the other team had their two biggest, most physical guys marking me. They ended up stepping on my foot a few times and getting a bit too physical resulting in fouls, which I typically shrugged off, but one time they got me right in my toe joint. This made it extremely difficult to run and kick the ball due to the severe pain in my strong foot. I was also really tired considering I had been putting a lot of effort into making runs as a winger. To make matters even worse, my team had nobody to sub on for me, considering I’m the only one my coach uses for left wing. I ended up playing through these conditions and winning the tournament with my team, however I ended up being injured for the next 1-2 weeks.
This is more of a personal question but since you asked I'll answer
"You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 9.00 s after it was thrown. What is the speed of the rock just before it reaches the water 21.0 m below the point where the rock left your hand
Answer:
48.54 m/s
Explanation:
If the rock takes 9 seconds to reach your position after being thrown, it reaches its maximum height in 4.5 seconds.
The height the rock reaches above your position is ...
h = (1/2)gt^2 = (4.9 m/s^2)(4.5 s)^2 = 99.225 m
This height is an additional 21 m above the water, so the maximum height above the water is ...
99.225 m +21.0 m = 120.225 m
The velocity (v) achieved when falling from this distance is found from ...
v^2 = 2gh
v = √(2(9.8)(120.225)) = √2356.41 ≈ 48.543 . . . . m/s
The speed of the rock when it hits the water is about 48.54 m/s.
You expend 1000 W of power in moving a piano 5 meters in 5 seconds. How much force did you exert?
Answer:B
Explanation:
Power=1000 watts
Time=5 seconds
Distance=5 meters
Force=(power x time) ➗ distance
Force=(1000 x 5) ➗ 5
Force=5000 ➗ 5
Force=1000
Force=1000N
Answer:1,000
Explanation:
ape.x
Each propeller of the twin-screw ship develops a full-speed thrust of F = 285 kN. In maneuvering the ship, one propeller is turning full speed ahead and the other full speed in reverse. What thrust P must each tug exert on the ship to counteract the effect of the ship's propellers?
Answer:
tug_tug = 570 10³ l
Explanation:
In this problem, each propeller creates a force that makes the boat rotate, so the tugs have to create a die of equal magnitude rep from the opposite direction
∑ τ = 0
F1 la+ (-F1) (-l) = τ-tug
τ-tug = 2 f1 l
τ-tug = 2 28510³ l
tug_tug = 570 10³ l
where the is the distance from the propane axis to the point where the ship turns
This force may be less depending on where the tug is.
Which elements is malleable and ductile
Answer:
The 38 elements in groups 3 through 12 of the periodic table are called "transition metals."
As with all metals, the transition elements are both ductile and malleable, and conduct electricity and heat.
Their valence electrons are present in more than one shell.
Explanation:
See Attached.
A cylindrical specimen of some metal alloy having an elastic modulus of 108 GPa and an original cross-sectional diameter of 3.7 mm will experience only elastic deformation when a tensile load of 1890 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.45 mm.
Answer:
L= 276.4 mm
Explanation:
Given that
E= 180 GPa
d= 3.7 mm
F= 1890 N
ΔL= 0.45 mm
We know that ,elongation due to load F in a cylindrical bar is given as follows
[tex]\Delta L =\dfrac{FL}{AE}[/tex]
[tex]L=\dfrac{\Delta L\times AE}{F}[/tex]
Now by putting the values in the above equation we get
[tex]L=\dfrac{0.45\times 10^{-3}\times \dfrac{\pi}{4}\times (3.7\times 10^{-3})^2\times 108\times 10^9}{1890}\ m[/tex]
L=0.2764 m
L= 276.4 mm
Therefore the length of the specimen will be 276.4 mm
"It is impossible to devise a process which may convert heat, extracted from a single
reservoir, entirely into work without leaving any change in the working system”.
Use the Second Law of Thermodynamics to state our inability to utilize the heat contents
of oceans and atmosphere which contains a large amount of heat energy but cannot be
converted into useful mechanical work You may use the concept of heat engine to discuss
this
Answer:
According to the second law of thermodynamics, we are unable to use the heat of the ocean and the atmosphere because we do not have a reservoir that has a temperature lower than the ocean or the atmosphere.
Explanation:
As you already know, the ocean and atmosphere have a lot of thermal energy, however, we are unable to convert this energy into mechanical energy that would be useful for our activities. This can be explained by the second law of thermodynamics, since it states that the presence of two bodies with different temperatures is necessary for it to be possible to transform heat into work.
In this case, to transform the thermal energy of the ocean and the atmosphere into mechanical energy we would need the existence of a thermal motor, which is only possible to be established when there is a body with high thermal energy and a sink, a reservoir, with low thermal energy, which will be the place where the heat will be expelled, to be converted into work. We do not have a reservoir with less thermal energy than the ocean and the atmosphere, so we cannot use their energy.
The main component of all computer memory is
Answer: R.A.M
Explanation:
Electric fields are MOST associated with ________.
plzzz help will mark the brainliest
Einstein developed much of his understanding of relativity through the use of gedanken, or thought, experiments. In a gedanken experiment, Einstein would imagine an experiment that could not be performed because of technological limitations, and so he would perform the experiment in his head. By analyzing the results of these experiments, he was led to a deeper understanding of his theory. In each the following gedanken experiments, Albert is in the exact center of a glass-sided freight car speeding to the right at a very high speed vvv relative to you. Albert has a flashlight in each hand and directs them at the front and rear ends of the freight car. Albert switches the flashlights on at the same time.
In Albert's frame of reference, which beam of light travels at a greater speed, the one directed toward the front or the one toward the rear of the train, or do they travel at the same speed? Which beam travels faster in your frame of reference? Enter the answers for Albert's frame of reference and your frame of reference separated by a comma using the terms front, rear, and same. For example, if in Albert's frame of reference the beam of light directed toward the front of the train travels at a greater speed and in your frame of reference the two beams travel at the same speed, then enter front,same.
Answer:
For eintein's frame of reference, both beam travel at the same speed.
For my own frame of reference, both beams travel at the same speed.
Explanation:
According to special relativity, the speed of light is the same in all direction on all reference frame. If not for this law we will assume the from beam will have a relative speed that will be the speed of light plus the speed of the fright car. This is not so and it violates the speed limit of light which according to the first law is the highest speed possible and nothing can go beyond that.
Three point charges are positioned on the x axis. If the charges and corresponding positions are +32 µC at x = 0, +20 µC at x = 40 cm, and –60 µC at x = 60 cm, what is the magnitude of the electrostatic force on the +32-µC charge? *
Answer:
Magnitude of the electrostatic force on the +32 µC charge, [tex]F_{net} = 12 N[/tex]
Explanation:
Let q₁ = +32 µC, x₁ = 0
q₂ = +20 µC, x₂ = 40 cm = 0.4 m
q₃ = -60 µC, x₃ = 60 cm = 0.6 m
Let magnitude of the electrostatic force on the +32 µC charge due to the + 20 µC charge = F₁ (i.e force on q₁ due to q₂)
[tex]F_{2} = \frac{kq_{1}q_{2} }{x_{2}^2 }[/tex]
[tex]F_{2} = \frac{9 * 10^{9} * 32 * 10^{-6} * 20 * 10^{-6} }{0.4^2 }\\F_{2} = 36 N[/tex]
Let magnitude of the electrostatic force on the +32 µC charge due to the -60 µC charge = F₂ (i.e force on q₁ due to q₃)
[tex]F_{3} = \frac{kq_{1}q_{3} }{x_{3}^2 }[/tex]
[tex]F_{3} = -\frac{9 * 10^{9} * 32 * 10^{-6} * 60 * 10^{-6} }{0.6^2 }\\F_{3} =-48 N[/tex]
The electrostatic force on the 32 µC charge, [tex]F_{net} = |F_{2} + F_{3}|[/tex]
[tex]F_{net} =| 36 + (-48)| \\F_{net} =|- 12 N| \\ F_{net} = 12 N[/tex]
7. A light source has two spectral components, one with unknown wavelength and the other with wavelength 620 nm. When light from the source is incident to a thin rectangular slit, a screen behind the slit shows the second diffraction minimum from the 620 nm component at the exact same location as the third diffraction minimum from the unknown wavelength component. What is the unknown wavelength?
Answer:
Explanation:
Problem relates to diffraction of light . Location for 2 nd diffraction minima is
[tex]x=2\times\frac{\lambda D}{d}[/tex] where λ is wavelength of light , D is distance of screen , d is slit width .
Puting the values
[tex]x=2\times\frac{620D}{d}[/tex]
for unknown wavelength , position of third diffraction is
[tex]x=3\times\frac{\lambda D}{d}[/tex]
from these two equations
[tex]x=2\times\frac{620D}{d}[/tex][tex]=3\times\frac{\lambda D}{d}[/tex]
λ = 413.33 nm .
How is the particle displacement related to the direction of wave movement in a longitude wave?
Answer:
The displacement of particles is perpendicular to the direction of wave motion.
The telescopes on some commercial surveillance satellites can resolve objects on the ground as small as 89 cm across (see Google Earth), and the telescopes on military surveillance satellites reportedly can resolve objects as small as 13 cm across. Assume first that object resolution is determined entirely by Rayleigh's criterion and is not degraded by turbulence in the atmosphere. Also assume that the satellites are at a typical altitude of 414 km and that the wavelength of visible light is 542 nm. What would be the required diameter of the telescope aperture for (a) 89 cm resolution and (b) 13 cm resolution? (c) Now, considering that turbulence is certain to degrade resolution and that the aperture diameter of the Hubble Space Telescope is 2.4 m, what can you say about the answer to (b), i.e. is the military surveillance resolution accomplished?
Answer:
Explanation:
minimum angle that can be resolved is given by the expression
1.22 λ / D , λ is wavelength of light , D is aperture of telescope.
distance that can be resolved = d x 1.22 λ / D
d is the distance by which observation is being made.
a )
89 x 10⁻² = 1.22 x 542 x 10⁻⁹ x 414 x 10³ / D₁
D₁ = 30.76 cm
b )
13 x 10⁻² = 1.22 x 542 x 10⁻⁹ x 414 x 10³ / D₂
D₂ = 2.1 m
c ) Hubble space telescope diameter is 2.4 m which is more than that of military surveillance telescope . Since diameter increases the power of resolution , it is capable of resolving two points situated even less than 13 cm apart . But , due to atmospheric turbulence , this power may not be achieved .
Geologists have divided rocks into three different categories based on ______
use the formula P=IV to detine how much current is a 120-watt light bulb is connected to a 120-V outlet
Answer:
1 A
Explanation:
P = IV
120 W = I (120 V)
I = 1 A
The spaceship Lilac, based on the Purple Planet, is 721 m long when measured at rest. When the Lilac passes Earth, observers there measure its length to be 661 m. At what speed v is the Lilac moving with respect to Earth? Express your answer as a multiple of the speed of light c.
Answer:
The speed of Lilac is 0.399c.
Explanation:
The size of spaceship Lilac measured at the rest position = 721 m
The length of Lilac when it passes Earth = 661 m
Below is the calculation for speed at which Lilac is moving.
Here, L, is the length of spaceship when it passes the earth.
[tex]L_{0}[/tex] is the length of spaceship measured at rest.
V is the speed.
[tex]L = L_{0}\sqrt{1-\frac{v^{2}}{c^{2}}} \\[/tex]
[tex]1-\frac{v^{2}}{c^{2}} = \left ( \frac{L}{L_{0}} \right )^{2} \\[/tex]
[tex]\frac{v}{c} = \sqrt{1-\left ( \frac{L}{L_{0}} \right )^{2}} \\[/tex]
[tex]\frac{v}{c} = \sqrt{1-\left ( \frac{661}{721} \right )^{2}} \\[/tex]
[tex]v = 0.399c[/tex]
Arm OA rotates counterclockwise with a constant angular velocity of ω = 5 rad/s. As the arm passes the horizontal position, a 6 kg ball is placed at the end of the arm. As the arm moves upward, the ball begins to roll, with negligible rolling resistance, towards the pivot O. It is noted that at θ = 30 ◦ , the ball is 0.9 meters from the pivot and moving towards O along the length of the arm. The ball moves with a speed of 0.4 m/s along the bar. What is the normal force that the arm applies to the ball at this instant? Please, indicate which principle you are applying and explain why.
Answer:
26.92 N
Explanation:
The normal reaction of the ball is due to two force component acting on it.
The normal reaction as a result of the weight of the ballThe normal reaction due to the component of the acceleration of the ball with the rod.However ; the acceleration is in polar coordinate which is given by the relation:
[tex]a^ { ^ \to} = (r- r \omega^2) \hat {e_r} + ( r \theta + 2 r \omega ) \hat {e_ \theta}[/tex]
[tex]a_{\theta} = r \theta + 2 r \omega[/tex]
Given that :
ω = 5 rad/s
mass m = 6 kg
θ = 30 ◦
r = 0.9 m
speed v = 0.4 m/s
[tex]a_{\theta} = 0 + 2(-0.4)*5[/tex]
[tex]a_{\theta}= -4 \ m/s[/tex]
The normal force reaction (N) that the arm applies to the ball at this instant is :
N = mg cos θ + [tex]ma_{\theta}[/tex]
N = (6 × 9.8× cos 30) + (6 ×(-4))
N = 26.92 N
1. Deri had a large tank of oil (s-0.8) and was requested to determine the viscosity of that fluid. To assist with the process, she was given a 0.25-inch-diameter steel ball (sphere, s=8.0) to conduct the test. From the tests, she found that the terminal velocity of the sphere was 2.5 fpm. What is the viscosity of the oil? Remember, the volume of a sphere is (pi D3 /6). ANS. viscosity is 0.258 lb-s/ft2
Answer:
0.25916 lb-s/ft^2
Explanation:
Given:-
- The specific gravity of oil, SGo = 0.8
- The specific gravity of sphere, SGo = 8
- Terminal velocity of sphere, v = 2.5 fpm
- The diameter of sphere, D = 0.25 in
Find:-
What is the viscosity of the oil?
Solution:-
- Consider a sphere completely submerged into oil and travelling with terminal velocity ( v ).
- Develop a free body diagram for the sphere. There are forces acting on the sphere.
- The downward acting force is due to the weight of the sphere ( W ):
[tex]W = m_s*g[/tex]
Where,
The mass ( m_s ) of the sphere is given as:
[tex]m_s = S.G_s*p_w*V_s[/tex]
Where,
ρ_w : Density of water = 1.940 slugs/ft3
V_s: The volume of object ( sphere )
- The volume of sphere is expressed as a function of radius:
[tex]V_s = \frac{\pi *D^3}{6}[/tex]
Hence,
[tex]W = S.G_s*p_w*\frac{\pi*D^3 }{6}* g\\\\W = 8*1.940*\frac{\pi*(0.25/12)^3 }{6}*32\\\\W = 0.00235 lb[/tex]
- One of the upward acting force is the buoyant force ( Fb ) that is proportional to the volume of fluid displaced by the immersed object.
- The buoyant force ( Fb ) is given by:
[tex]F_b = S.G_o*p_w*V_s*g[/tex]
- Therefore the buoyant force ( Fb ) becomes:
[tex]F_b = 0.8*1.94*\frac{\pi*(0.25/12)^3 }{6} *32\\\\F_b = (4.73451*10^-^6)*(49.664)\\\\F_b = 0.00023 lb[/tex]
- The other upward acting force is the frictional drag ( F_d ) i.e the resistive frictional force acting on the contact points of the sphere and the fluid oil.
- From stokes formulations the drag force acting on a spherical object which is completely immersed in a fluid is given as:
[tex]F_d = 3*\pi*D*u*v[/tex]
Where,
μ: The viscosity of fluid
v : The velocity of object
Therefore,
[tex]F_d = 3*\pi*\frac{0.25}{12} *u*0.041666\\\\F_d = 0.00818*u\\[/tex]
- Apply Newton's second law of motion for the sphere travelling in the fluid:
[tex]F_n_e_t = m_s*a[/tex]
Where,
a: Acceleration of object = 0 ( Terminal velocity condition )
[tex]F_n_e_t = 0[/tex]
- Plug in the three forces acting on the metal sphere:
[tex]F_d + F_b - W = 0\\\\F_d = W - F_b\\\\0.00818*u = 0.00235 - 0.00023\\\\u = \frac{0.00212}{0.00818} = 0.25916 \frac{lb-s}{ft^2}[/tex]
5.00 kg of liquid water is heated to 100.0 °C in a closed system. At this temperature, the density of liquid water is 958 kg/m3 . The pressure is maintained at atmospheric pressure of 1.01 x 105 Pa. A moveable piston of negligible weight rests on the surface of the water. The water is then converted to steam by adding an additional amount of heat to the system. When all of the water is converted, the final volume of the steam is 8.50 m3 . The latent heat of vaporization of water is 2.26 x 106 J/kg. Calculate how much work is done and the change in the internal energy during this isothermal process.
Answer:
1.04 x 107 J.
Explanation:
We can use the following method to do the calculation
Total energy given to water to convert intosteam
dQ = m* l
dQ = 5.00* 2.26 * 106
= 1.13* 107 J
Work done at constantpressure dW = P* dV
Initialvolume V1 = 5.00kg / 958
= 5.22* 10-3 m3
Finalvolume = 8.50 m3
=> dW = 1.01* 105 * ( 8.50 - 5.22 * 10-3)
= 8.58* 105 J
First law of thermodynamicsis dQ = ΔU + dW
Change in internalenergy ΔU = 1.13* 107 - 8.58 *105
= 1.04 x 107 J as our answer
Minority group
A shared identity based on
cultural elements such as
heritage, language, and
religion
Ethnicity
A socially constructed
group of people who share
physical characteristics
that are considered
significant by a society
and that are used to
distinguish them from
other groups
Majority group
People who are singled
out for unequal treatment
and who regard
themselves as objects of
collective discrimination
Race
A group's subset that
consists of more than half
of the entire group's
members
Answer:
Minority group - People who are singled out for unequal treatment and who regard themselves as objects of collective discrimination.
Ethnicity - A shared identity based on cultural elements such as heritage, language, and religion.
Majority group - A group's subset that consists of more than half of the entire group's members.
Race - A socially constructed group of people who share physical characteristics that are considered significant by a society and that are used to distinguish them from other groups.
Explanation:
To better understand the above-mentioned definitions we would use some examples:
Elder people can be considered as a minority group in the United States because of their reduced status as a consequence of popular discrimination and prejudice against them. In contrast to them, young men consisting of more than half the population in the age category is an example of the majority group.
Groups of people like Hispanic Americans, Jews, Italian America, Irish are some examples of people belonging to different ethnic backgrounds residing in the U.S.
African Americans who are distinguished based on their skin color is an example of race.
What happens if you move a magnet near a could of wire
Answer:
The wire would stick to the magnet????????????????????????
Explanation: