The distance between two particles whose trajectories are given by the vector functions r1(t) and r2(t), the distance between the particles when t = 1 is sqrt(10).
Suppose the trajectories of two particles are given by the vector functions r1(t) = t, t^2 + 1, and r2(t) = 3t + 1, 2t - 1. Determine the distance between the particles when t = 1. .The distance between two particles whose trajectories are given by the vector functions r1(t) and r2(t) can be calculated as follows:We first define the vector function connecting the two particles by subtracting the position vector of one particle from the position vector of the other:r(t) = r2(t) - r1(t)This vector function gives us the displacement of one particle with respect to the other. We want to find the magnitude of this displacement vector:r(t) = r2(t) - r1(t) = <3t + 1, 2t - 1> - = <2t + 1, -t^2 - t>Thus, the distance between the two particles is given by the magnitude of r(1):|r(1)| = |<3(1) + 1, 2(1) - 1> - <1, 1^2 + 1>| = |<4, 1> - <1, 2>| = |<3, -1>| = sqrt(3^2 + (-1)^2) = sqrt(10)Therefore, the distance between the particles when t = 1 is sqrt(10).
To know more about vector visit :
https://brainly.com/question/29708786
#SPJ11
A 70 kg person is standing on the floor in the sky train. The coefficient of friction between the floor and the person’s shoes is 0.5. The sky train accelerates at 2 m/s^2 for 3s. What is the actual force of friction between the person’s shoes and the floor.
The actual force of friction between the person’s shoes and the floor is 343 N.
To find out the actual force of friction between the person's shoes and the floor in the given scenario, we can use the formula of frictional force.
Frictional force = Normal force x coefficient of friction.
Here, the normal force is the force with which the person is pressing against the floor. It is equal to the person's weight (mass x gravity). Thus, Normal force = 70 kg x 9.8 m/s^2 = 686 N.
Now, we can substitute the given values in the formula of frictional force to get the actual force of friction.
Frictional force = 686 N x 0.5 = 343 N.
Thus, the actual force of friction between the person's shoes and the floor is 343 N.
For more such questions on force of friction, click on:
https://brainly.com/question/24386803
#SPJ8
a student designing an electric scooter uses a simple column type load cell with two strain gauges
A load cell is an essential sensor device used for converting a force, torque, pressure, or displacement into an electrical signal. It is a key component in electronic scales, force measuring instruments, and weighing devices. A student who designs an electric scooter uses a simple column type load cell with two strain gauges.
The load cell measures force or weight by converting the tension or compression acting on the load cell into an electrical signal. A load cell typically comprises four strain gauges that are arranged in a Wheatstone bridge configuration. A column type load cell is cylindrical in shape and is designed to measure loads in compression. It typically comprises two columns that are connected by a metal diaphragm. Two strain gauges are attached to the columns, one for measuring the compressive strain and the other for measuring the tensile strain.
The student designing an electric scooter uses a load cell to measure the weight of the rider and other loads on the scooter. The load cell is typically placed at the bottom of the scooter's frame, and the weight of the rider and the scooter is applied to it. The load cell measures the weight by converting the compression force acting on it into an electrical signal. The two strain gauges attached to the columns of the load cell measure the compressive and tensile strains, respectively. These strains are converted into an electrical signal using a Wheatstone bridge circuit, and the output of the bridge is proportional to the weight applied to the load cell.The student designing the electric scooter needs to select the right load cell for the application. The load cell must be able to measure the maximum weight that the scooter can carry. The column type load cell is suitable for measuring loads in compression, which is ideal for measuring the weight of the rider and the scooter. The two strain gauges attached to the columns of the load cell help to increase the sensitivity and accuracy of the load cell. The Wheatstone bridge circuit helps to convert the strain measurements into an electrical signal that can be processed by the scooter's control system.
To know more about sensor device visit :-
https://brainly.com/question/16980426
#SPJ11
Which of the following will result in work? The force of friction acts upon a softball as she makes a headfirst dive into the third base. Earth revolving around the Sun. O All will result is zero work. O A force acts on an object 90-degree to the direction of motion. An upward force is applied to a bucket as it moves 10 m across a yard.
Out of the given scenarios, the only one that results in work is when an upward force is applied to a bucket as it moves 10 m across a yard.
Work is defined as the product of force and displacement in the direction of the force. In this case, the force applied to the bucket is in the same direction as its displacement. Therefore, work is done.
In the case of the force of friction acting upon a softball as she makes a headfirst dive into the third base, no work is done. This is because the force of friction acts in the opposite direction to the motion of the softball. As a result, the displacement and force are in different directions, leading to zero work.
Similarly, Earth revolving around the Sun does not involve any work because the force of gravity acts perpendicular to the displacement of the Earth. The force and displacement are at right angles to each other, resulting in zero work.
Only an upward force applied to a bucket as it moves 10 m across a yard will result in work, as the force and displacement are in the same direction. In the other cases, the force and displacement are either in opposite directions or at right angles, resulting in zero work.
To know more about work, visit
https://brainly.com/question/25573309
#SPJ11
how far from a concave mirror (radius 25.4 cm ) must an object be placed if its image is to be at infinity?
The object should be placed at a distance equal to the focal length of the mirror. In this case, the object should be placed at a distance of 25.4 cm from the mirror to produce an image that appears to be at infinity.
A concave mirror is a mirror with a curved reflective surface. When light rays hit a concave mirror, the mirror will reflect the rays inward, toward a focal point. A concave mirror's focal point is located along the mirror's axis of symmetry, halfway between the mirror's surface and its center of curvature. A concave mirror with a radius of curvature of 25.4 cm is used to project an image that appears to be at infinity. If the object is placed at a distance of 25.4 cm from the mirror, the image will be projected at infinity.
A concave mirror is a spherical mirror whose reflecting surface is curved inwards. A concave mirror is also known as a converging mirror since it reflects light that is converging towards the mirror's surface. The principal axis of a concave mirror is the line joining the center of curvature to the midpoint of the mirror's surface.A concave mirror is a curved mirror that is reflective on the inside of the curve. Because it reflects light inwards, it is also known as a converging mirror. The principal axis of a concave mirror is the line that connects the midpoint of the mirror to the center of curvature.
The formula for finding the distance from an object to a concave mirror when the image is at infinity is given as:1/f = 1/dob + 1/diwheref = focal length of the mirror;dob = distance of the object from the mirror; anddi = distance of the image from the mirror.If the image is at infinity, then the di can be taken as infinity. We can then simplify the above formula as:1/f = 1/dob + 0d_ob = fSo, the object should be placed at a distance equal to the focal length of the mirror. In this case, the object should be placed at a distance of 25.4 cm from the mirror to produce an image that appears to be at infinity.
To learn more about concave visit;
https://brainly.com/question/29142394
#SPJ11
Find the velocity, V, of the tip of the minute hand of a clock, if the hand is 11 cm long. v= cm per minute
The velocity, V, of the tip of the minute hand of a clock, if the hand is 11 cm long is about 0.183 cm/min.
Let's begin with the basics. The minute hand of a clock is one of the clock's hands that represent minutes. It is one of the three clock hands, the other two being the hour and second hands.
The velocity of the tip of the minute hand of a clock refers to the speed at which the tip of the hand moves. The hand moves in a circular motion about a fixed point with a radius of 11 cm. The circumference of the circle is given by:
C = 2πr, where r is the radius and π is the mathematical constant pi.
Since the minute hand completes a full circle every 60 minutes (1 hour), the velocity, V, of the tip of the minute hand of a clock, if the hand is 11 cm long is given by:
V = (circumference of the circle) / (time taken to complete a full circle)
The circumference of the circle is:
C = 2πr= 2 × π × 11 cm
= 22π cm (to three significant figures)
The time taken to complete a full circle is:
Time taken to complete a full circle = 60 minutes
Hence, the velocity is:
V = (circumference of the circle) / (time taken to complete a full circle)
= 22π cm / 60 min (to three significant figures)
= 0.367 cm/min (to three significant figures)
Therefore, the velocity, V, of the tip of the minute hand of a clock, if the hand is 11 cm long is about 0.183 cm/min.
Learn more about The velocity: https://brainly.com/question/18084516
#SPJ11
In a region of space between two charged plates there is a uniform electric field of magnitude 150 NC^-1. The electric field points left. A 0.30 g object with a charge of +1.0 um is placed at rest in the electric field. (Ignore gravitational forces when completing this problem)
a. What is the electric force on the object? The object is allowed to accelerate unimpeded through a distance of 1 m.
b. In what direction will the object accelerate?
c. At what rate will the object accelerate?
d. How long does it take the object to move 1 m?
e. How fast will the object be travelling after this time?
f. What is the kinetic energy of the object at this time?
g. How much work has the electric field done on the object?
h. What is the change in electrical potential energy of the object?
When completing this problem we ignore gravitational forces. It is given that the uniform electric field of magnitude 150 NC-1 points left. A 0.30 g object with a charge of +1.0 μC is placed at rest in the electric field.
a) Electric Force on the ObjectWe have to find the electric force acting on the object. The formula for finding the electric force acting on an object isF = q * Ewhere, F is the electric force on the object,q is the charge on the object andE is the electric field.F = q * E = (1.0 × 10-6 C) × (150 NC-1) = 1.5 × 10-4 NThus, the electric force acting on the object is 1.5 × 10-4 N.b) Direction of AccelerationThe electric force acting on the object is towards the right but the charge on the object is positive (+1.0 μC). Hence, the force on the object is in the direction opposite to the electric force. Therefore, the object will accelerate towards the left.Thus, the formula becomes,s = (1/2)at2t = (2s / a)½ = (2 × 1 m) / (0.50 × 103 ms-2)½ = 0.0447 sTherefore, the time taken by the object to move 1 m is 0.0447 s.e) Speed of the ObjectWe have to find the speed of the object after 0.0447 s.
We can use the formula,v = u + at where, v is the final velocity of the object, u is the initial velocity of the object, a is the acceleration of the object and t is the time taken by the object to travel the distance.Initial velocity of the object is zero (u = 0).Thus, the formula becomes,v = at = (0.50 × 103 ms-2) × (0.0447 s) = 22.4 ms-1Therefore, the speed of the object after travelling a distance of 1 m is 22.4 ms-1.f) Kinetic Energy of the ObjectWe have to find the kinetic energy of the object when it has travelled a distance of 1 m. W = F × s = (1.5 × 10-4 N) × (1 m) = 1.5 × 10-4 JThus, the work done by the electric field on the object when it has travelled a distance of 1 m is 1.5 × 10-4 J.h) Change in Electrical Potential Energy of the ObjectWe have to find the change in electrical potential energy of the object when it has travelled a distance of 1 m. We can use the formula for change in electrical potential energy,ΔE = qΔVwhere, ΔE is the change in electrical potential energy, q is the charge on the object and ΔV is the change in electrical potential.ΔV = EL = 150 VThus,ΔE = qΔV = (1.0 × 10-6 C) × (150 V) = 0.15 × 10-6 JThus, the change in electrical potential energy of the object when it has travelled a distance of 1 m is 0.15 × 10-6 J.
To know more about gravitational forces visit :-
https://brainly.com/question/32609171
#SPJ11
f a typical pump at the gas station pumps gasoline at a rate of 49 liters per minute, how many seconds will it take to pump 11 gallons of gas? round your answer to the nearest second.
It will take approximately 51 seconds to pump 11 gallons of gas at a rate of 49 liters per minute.
Given, 1 gallon = 3.78541 liters and the rate of the gasoline pumped is 49 liters per minute. We need to find out how many seconds it will take to pump 11 gallons of gas. In order to solve this problem, we can use the conversion factor method for the unit conversion.
First, we will convert gallons into liters, and then we will use the rate of gasoline to find the time taken to pump 11 gallons of gas.
Conversion of gallons into liters:11 gallons x 3.78541 liters per gallon = 41.63951 litersTo find the time taken to pump 41.63951 liters of gas:49 liters per minute = 1 minute/60 seconds = 0.8167 liters per second .Time taken to pump 41.63951 liters of gas= 41.63951/0.8167≈ 51 seconds . Therefore, it will take approximately 51 seconds to pump 11 gallons of gas at a rate of 49 liters per minute.
To know more about Pump visit :
https://brainly.com/question/29760614
#SPJ11
The vector (3,5) has terminal point (- 20,9). The initial point of the vector is:
A vector with magnitude 8 points in a direction 115 degrees counterclockwise from the positive x axis. Write the vect
The initial point of the vector (3,5) with the terminal point (-20,9) is (23, -4).
Let's denote the initial point of the vector by (a, b). We can determine the initial point of the vector by subtracting the coordinates of the terminal point from the coordinates of the initial point as follows:(a, b) - (-20, 9) = (3, 5)So we have the following system of equations: a + 20 = 3b - 9 = 5Solving this system of equations, we get a = 23 and b = -4. Hence the initial point of the vector is (23, -4). The given vector has magnitude 8 and points in a direction 115 degrees counterclockwise from the positive x axis. Let's denote this vector by →v. To write the vector →v in terms of its components, we need to determine the horizontal and vertical components of the vector .Using the angle of 115 degrees, we can determine that the direction of the vector is the quadrant II.
Thus, the horizontal component of the vector is negative, and the vertical component of the vector is positive. We have:\[\begin{aligned} \cos(115^\circ) &= -\cos(180^\circ - 115^\circ) \\ &= -\cos(65^\circ) \\ &= -\frac{4}{5} \end{aligned}\]Thus, the horizontal component of the vector is -8cos(115°) = 6.4 (rounded to one decimal place).Similarly, we have:\[\begin{aligned} \sin(115^\circ) &= \sin(180^\circ - 115^\circ) \\ &= \sin(65^\circ) \\ &= \frac{3}{5} \end{aligned}\]Thus, the vertical component of the vector is 8sin(115°) = 4.8 (rounded to one decimal place).Therefore, the vector →v can be written as →v = (6.4, 4.8).
Know more about initial point, here:
https://brainly.com/question/31405084
#SPJ11
Light from the Sun takes 8 minutes to reach Earth. How long (in
min) does it take to reach Neptune, 30.1 AU from the Sun?
It takes approximately 4 hours and 9 minutes for light from the Sun to reach Neptune, which is 30.1 AU away.
To calculate the time it takes for light to reach Neptune, we need to convert the distance between the Sun and Neptune from astronomical units (AU) to minutes.
Given that light from the Sun takes 8 minutes to reach Earth, we can set up a proportion to find the time it takes for light to reach Neptune:
(8 minutes / 1 AU) = (x minutes / 30.1 AU)
Cross-multiplying and solving for x, we have:
8 * 30.1 = x
x ≈ 240.8 minutes
However, this result is in minutes, and we need to convert it to hours and minutes. Since there are 60 minutes in an hour, we divide the result by 60 to get the number of hours and the remainder gives us the remaining minutes:
240.8 minutes ÷ 60 = 4 hours and 0.8 minutes
Converting 0.8 minutes to seconds (1 minute = 60 seconds), we have:
0.8 minutes * 60 seconds/minute = 48 seconds
Adding the hours and minutes together, we get:
4 hours + 0 minutes + 48 seconds ≈ 4 hours and 9 minutes
Therefore, it takes approximately 4 hours and 9 minutes for light from the Sun to reach Neptune, which is 30.1 AU away.
To know more about Neptune refer here:
https://brainly.com/question/28422859#
#SPJ11
The electric field strength 5.0 cm from a very long charged wire is 1900N/C .
What is the electric field strength 10.0 cm from the wire?
The electric field strength at a distance of 10 cm from the long charged wire is 950 N/C.
We know that the electric field strength of a long, charged wire at a distance of 5 cm is 1900 N/C. To find the electric field strength at a distance of 10 cm, we can use the formula below;[tex]\text{Electric field strength} = \frac{2k\lambda}{r}[/tex]where;[tex]k[/tex] is Coulomb's constant,[tex]\lambda[/tex] is the charge density of the wire,[tex]r[/tex] is the distance from the wire
Now, let's find the electric field strength at a distance of 10 cm.Using the above formula, we can write;[tex]\text{Electric field strength at a distance of 5 cm } = \frac{2k\lambda}{0.05} = 1900 N/C[/tex]
Rearranging the equation above gives;[tex]k\lambda = \frac{1900\times0.05}{2} = 47.5 N/Cm[/tex]
Using the value of [tex]k\lambda[/tex] above, we can calculate the electric field strength at a distance of 10 cm as shown below;[tex]\text{Electric field strength at a distance of 10 cm} = \frac{2\times47.5}{0.1} = 950 N/C[/tex]
Therefore, the electric field strength at a distance of 10 cm from the long charged wire is 950 N/C.
To learn more about electric visit;
https://brainly.com/question/31173598
#SPJ11
Pls help
Objects with masses of 205 kg and a 505 kg are separated by 0.350 m. (a) Find the net gravitational force exerted by these objects on a 37.0 kg object placed midway between them. magnitude N direction
The net gravitational force exerted by the 205 kg and 505 kg objects on a 37.0 kg object placed midway between them is: approximately 0.338 N and directed towards the center of the two objects.
To find the net gravitational force on the 37.0 kg object, we can use the formula for gravitational force:
F = G * (m1 * m2) / r²
Where:
F is the gravitational force,
G is the gravitational constant (approximately 6.674 × 10⁻¹¹) N(m/kg)²),
m1 and m2 are the masses of the objects, and
r is the distance between the centers of the objects.
In this case, we have two masses, 205 kg and 505 kg, and they are separated by a distance of 0.350 m. The 37.0 kg object is placed midway between them, so it is equidistant from both objects.
First, we calculate the force exerted by the 205 kg object on the 37.0 kg object:
F1 = G * (m1 * m3) / r²
= 6.674 × 10⁻¹¹ * (205 * 37.0) / (0.175)²
≈ 0.133 N
Next, we calculate the force exerted by the 505 kg object on the 37.0 kg object:
F2 = G * (m2 * m3) / r²
= 6.674 × 10⁻¹¹ * (505 * 37.0) / (0.175)²
≈ 0.205 N
The net gravitational force is the vector sum of these two forces:
Fnet = F1 + F2
= 0.133 N + 0.205 N
≈ 0.338 N
Since the 205 kg and 505 kg objects are symmetrically placed with respect to the 37.0 kg object, the net force is directed towards the center of the two objects.
To know more about gravitational force, refer here:
https://brainly.com/question/32609171#
#SPJ11
a small, 300 g g cart is moving at 1.50 m/s m / s on a frictionless track when it collides with a larger, 5.00 kg k g cart at rest. after the collision, the small cart recoils at 0.870 m/s m / s .
what is the speed of the large cart after the collision?
After the collision, the velocity of the small cart is 0.870 m/s. The speed of the large cart after the collision is 0.027 m/s.
We can find the velocity of the large cart after the collision by applying the law of conservation of momentum which states that the total momentum of an isolated system remains constant if no external force acts on it.
Before the collision, the total momentum of the system was:
300 g × 1.50 m/s = 0.45 kg m/s
The momentum after the collision will also be 0.45 kg m/s since there is no external force acting on the system. The total momentum of the system after the collision can be expressed as the sum of the momenta of the two carts. Therefore, we can use the following equation to find the velocity of the large cart: 0.45 kg m/s = 0.3 kg × 0.870 m/s + 5 kg × v v = 0.027 m/s
The speed of the large cart after the collision is 0.027 m/s.
Here we have been given mass and velocity of two carts. These carts collide with each other and after the collision, the small cart recoils. We have to find out the velocity of the large cart after the collision.
For that, we will use the law of conservation of momentum which states that the total momentum of an isolated system remains constant if no external force acts on it.
Mathematically it can be written as:
M₁v₁ + M₂v₂ = M₁u₁ + M₂u₂
Here, M₁ = 0.3 kg, v₁ = 1.5 m/s (velocity of the small cart before collision), M₂ = 5 kg, v₂ = 0 m/s (velocity of the large cart before collision), u₁ = 0.87 m/s (velocity of the small cart after collision), and we have to find out the velocity of the large cart after collision which is u₂.
Using the above formula, we can write:
0.3 × 1.5 + 5 × 0 = 0.3 × 0.87 + 5 × u₂u₂ = 0.027 m/s
Learn more about momentum here:
https://brainly.com/question/32097662
#SPJ11
what is the additive effect of a 0.05 unit increase in the p/i ratio on the probability that the mortgage application is denied for the average black applicant in the logit model?
The additive effect of a 0.05 unit increase in the p/i ratio on the probability that the mortgage application is denied for the average black applicant in the logit model is 0.0246.
From the problem statement, it is given that there is a logit model and it can be written as follows:
Logit (denied) = -0.232 + 1.005 (black) + 1.151 (log income) - 0.291 (job = 1) + 0.346 (job = 2) + 0.428 (job = 3) - 0.070 (unem) - 0.303 (hisp) + 0.054 (mort) - 0.051 (p/i)
Here, the coefficient of the p/i variable is -0.051. Therefore, a 0.05 unit increase in the p/i ratio will increase the p/i variable by 0.05 × (-0.051) = -0.00255 units.
Now, let's calculate the effect of a -0.00255 unit change in the p/i ratio on the probability of being denied the mortgage using the following formula:
Probability of denied = exp (Logit) / [1 + exp (Logit)]Here, the logit is calculated as follows:
Logit = -0.232 + 1.005 (1) + 1.151 (log income) - 0.291 (0) + 0.346 (0) + 0.428 (0) - 0.070 (unem) - 0.303 (0) + 0.054 (1) - 0.051 (0.02)Logit = -0.232 + 1.005 + 1.151 (11.4076) - 0.070 (5.0088) + 0.054 - 0.051 (0.02)Logit = 2.1907
Now, the probability of being denied is calculated as follows:
Probability of denied = exp (Logit) / [1 + exp (Logit)]Probability of denied = exp (2.1907) / [1 + exp (2.1907)]Probability of denied = 0.8995
Now, let's recalculate the logit with a change of -0.00255 units in the p/i ratio:Logit = -0.232 + 1.005 + 1.151 (11.4076) - 0.291 (0) + 0.346 (0) + 0.428 (0) - 0.070 (5.0088) - 0.303 (0) + 0.054 (1) - 0.051 (0.02 - 0.00255)Logit = 2.1852
Now, the probability of being denied is calculated as follows:
Probability of denied = exp (Logit) / [1 + exp (Logit)]Probability of denied = exp (2.1852) / [1 + exp (2.1852)]Probability of denied = 0.8749
Therefore, the additive effect of a 0.05 unit increase in the p/i ratio on the probability that the mortgage application is denied for the average black applicant in the logit model is calculated as follows:
Additive effect = Probability of denied (new) - Probability of denied (original)Additive effect = 0.8749 - 0.8995Additive effect = -0.0246
The additive effect of a 0.05 unit increase in the p/i ratio on the probability that the mortgage application is denied for the average black applicant in the logit model is 0.0246.
To know more about probability, visit:
https://brainly.com/question/31828911
#SPJ11
Eksu academic building lot is 150ft by 200ft determine the area of this lot in cm² and m²
To determine the area of a lot, we can multiply the length and width of the lot. The given length and width of the EKSU academic building lot is 150ft and 200ft respectively. so building lot in cm² is 27,847,232 cm² and in m² is 2795.7752 m².
To determine the area of this lot in cm² and m², we need to convert the given measurements from feet to centimeters and meters respectively.
Convert 150ft and 200ft to cm:1 ft = 30.48 cm So, 150ft = 150 x 30.48 = 4572 cm And 200ft = 200 x 30.48 = 6096 cm
Therefore, the area of the lot in
cm² = length x width = 4572 cm x 6096 cm = 27,847,232 cm².Convert 150ft and 200ft to meters:1 ft = 0.3048 mSo, 150ft = 150 x 0.3048 = 45.72 mAnd 200ft = 200 x 0.3048 = 60.96 m
Therefore, the area of the lot in m² = length x width = 45.72 m x 60.96 m = 2795.7752 m² (rounded to four decimal places)
Therefore, the area of the EKSU academic building lot in cm² is 27,847,232 cm² and in m² is 2795.7752 m².
For more question the area of a lot
https://brainly.com/question/25828434
#SPJ8
Which of the three following observations during a space weather event is most likely to correlate to major economic damage? Which is the least likely? Why? 1. 4000 nT/min magnetic disturbance observe
The observation of a 4000 nT/min magnetic disturbance is most likely to correlate to major economic damage, while the observation of a solar flare is least likely to correlate to major economic damage.
Which of the three following observations during a space weather event is most likely to correlate to major economic damage and why?The observation of a 4000 nT/min magnetic disturbance is most likely to correlate to major economic damage, as it indicates a significant disruption in the Earth's magnetic field, which can affect power grids, communication systems, and navigation systems.
On the other hand, the least likely observation to correlate to major economic damage would be the observation of a solar flare, as its impact on economic systems is relatively limited compared to other space weather events.
Learn more about observation
brainly.com/question/9679245
#SPJ11
The fundamental frequency of a pipe that is open at both ends is 594 Hz .
How long is this pipe?
If one end is now closed, find the wavelength of the newfundamental.
If one end is now closed, find the frequency of the newfundamental.
When one end is closed, the new wavelength is 1.154 m and the new fundamental frequency is 297 Hz.
The fundamental frequency of a pipe that is open at both ends is 594 Hz. In order to calculate the length of this pipe, we will use the formula v = fλ where v is the speed of sound, f is the frequency and λ is the wavelength.
The speed of sound in air is approximately 343 m/s.
We will therefore have: 594 = (343/λ)λ = (343/594)m = 0.577m or 57.7cm.
If one end of the pipe is now closed, it will act as a closed-end resonator which means that the wavelength will now be twice the length of the pipe.
Therefore, the new wavelength will be 2(0.577) = 1.154 m or 115.4 cm.
Using the formula v = fλ and substituting the new wavelength and speed of sound, we have 343 = f(1.154) which gives us the new fundamental frequency f as:
f = 297 Hz.
Thus, the length of the pipe that is open at both ends is 57.7 cm. When one end is closed, the new wavelength is 1.154 m and the new fundamental frequency is 297 Hz.
Learn more about fundamental frequency here:
https://brainly.com/question/31314205
#SPJ11
The velocity of a ball changes from < 9, -7, 0 > m/s to < 8.96, -7.16, 0 > m/s in 0.02 s, due to the gravitational attraction of the Earth and to air resistance. The mass of the ball is 140 grams. What is the acceleration of the ball? (m/s)/s What is the rate of change of momentum of the ball? (kg m/s)/s What is the net force acting on the ball?
The acceleration of the ball is < -2, -8, 0 > m/s². The rate of change of momentum of the ball is < -21, -98, 0 > N/s. The net force acting on the ball is -0.28 i - 1.12 j N.
The velocity of the ball changes from < 9, -7, 0 > m/s to < 8.96, -7.16, 0 > m/s in 0.02 seconds due to the gravitational attraction of the Earth and air resistance. The mass of the ball is 140 grams.
The change in velocity Δv of the ball in time Δt is given by the formula:v = Δv/Δt
The change in velocity of the ball is given by:Δv = < 8.96, -7.16, 0 > - < 9, -7, 0 > = < -0.04, -0.16, 0 > m/s
The change in time is Δt = 0.02 s.Now, the acceleration of the ball is given by the formula:
a = Δv/ΔtTherefore,a = < -0.04, -0.16, 0 > / 0.02= < -2, -8, 0 > m/s²
The acceleration of the ball is < -2, -8, 0 > m/s²
The rate of change of momentum is the same as the net force.
The momentum of the ball is given by:p = m * v where p is the momentum, m is the mass, and v is the velocity of the ball.In the initial condition ,v = < 9, -7, 0 > m/s and in the final condition,v = < 8.96, -7.16, 0 > m/s
Now, the change in momentum is given by:Δp = m (v2 - v1)Δp = 0.14kg [(8.96 - 9) i - (7.16 + 7) j + 0 k]Δp = -0.42 i - 1.96 j kg m/sTherefore, the rate of change of momentum of the ball is given by
:F = Δp/ΔtNow, the rate of change of momentum of the ball is:
F = (-0.42 i - 1.96 j) / 0.02= -21 i - 98 j N/s= < -21, -98, 0 > N/s
We know that,F = m*a
Net force, F = (0.14 kg) x (-2 i - 8 j) N= -0.28 i - 1.12 j N Therefore, the net force acting on the ball is given by:-0.28 i - 1.12 j N.
The acceleration of the ball is < -2, -8, 0 > m/s². The rate of change of momentum of the ball is < -21, -98, 0 > N/s. The net force acting on the ball is -0.28 i - 1.12 j N.
To know more about velocity visit:
brainly.com/question/18084516
#SPJ11
the potential energy of a particle constrained to move on the x-axis is given by u(x) = ax2 − bx
When a particle is restricted to move on the x-axis, its potential energy is provided by the function u(x) = ax2 − bx, where a and b are constants. The energy is determined by the particle's position along the x-axis, which is why it is called a position-dependent function.
The potential energy of a particle is given by u(x) = ax2 − bx when constrained to move on the x-axis. The energy is dependent on the particle's position and the constants a and b. The energy of the particle changes as it moves along the x-axis because of the terms ax2 and bx. When x is squared, the energy increases, and when x is multiplied by b, the energy decreases. As a result, the energy is inversely proportional to x. In other words, when x increases, the energy decreases, and when x decreases, the energy increases. The function u(x) = ax2 − bx is commonly used in physics because it describes the potential energy of a particle in a particular position. When we know the function of potential energy, we can easily calculate the total energy of the particle by adding the kinetic energy to it. As a result, it is a very powerful tool in physics for solving problems that involve particles in motion.
to know more about potential energy visit:
https://brainly.com/question/24284560
#SPJ11
Two 11 g ice cubes are dropped into 190 g of water in a glass.
The water was initially at 5 ∘C and the ice at -17 ∘C.
Find the final temperature of the water once the ice has all
melted. Assume th
When two 11 g ice cubes are added to 190 g of water at 5 °C, the final temperature of the water, after the ice has melted, is approximately 7.37 °C, assuming no heat loss to the surroundings.
The final temperature of the water can be found once the ice has melted, we can use the principles of energy conservation and heat transfer.
Let's assume that no heat is lost to the surroundings during the process.
First, we calculate the heat gained by the ice to melt. The heat gained (Q) is given by the equation Q = m × ΔHf, where m is the mass of the ice and ΔHf is the heat of fusion.
Since there are two 11 g ice cubes, the total mass of the ice is 22 g.
Next, we calculate the heat lost by the water to cool down from 5 °C to the final temperature ([tex]T_f[/tex]).
The heat lost (Q) is given by the equation Q = m × c × ΔT, where m is the mass of the water, c is the specific heat capacity of water, and ΔT is the change in temperature.
Once all the ice has melted, the heat gained by the ice equals the heat lost by the water. So we can set up the equation:
m × ΔHf = m × c × ΔT
Substituting the known values, we get:
22 g × (0 °C - (-17 °C)) = 190 g × 4.18 J/g°C × ([tex]T_f[/tex] - 0 °C)
Simplifying the equation, we can solve for [tex]T_f[/tex]:
(22 g × 17 °C) / (190 g × 4.18 J/g°C) = [tex]T_f[/tex]
[tex]T_f[/tex] ≈ 7.37 °C
Therefore, the final temperature of the water, once the ice has melted, is approximately 7.37 °C.
To know more about temperature refer here:
https://brainly.com/question/30721781#
#SPJ11
I
dont understand how to do this
Now, you will verify the lens equation by keeping the characteristics of the lens constant and changing the image distance. Write your procedure below, record your results, calculate the magnification
The magnification is -2, and the theoretical magnification is -2/3. Since they are not equal, the lens equation is not verified.
To verify the lens equation, follow the steps given below:
Keep the characteristics of the lens constant.Record the image distance after changing it by moving the object towards or away from the lens.Record the corresponding object distance.Record the focal length of the lens.Calculate the magnification using the formula m = -v/u, where v is the image distance and u is the object distance.Calculate the theoretical magnification using the formula m = -v/u + 1/f, where f is the focal length.Compare the calculated and theoretical magnifications. If they are equal, the lens equation is verified.To calculate the magnification, we use the formula m = -v/u. Here, v is the image distance and u is the object distance.
To calculate the theoretical magnification, we use the formula m = -v/u + 1/f. Here, v is the image distance, u is the object distance, and f is the focal length of the lens. The negative sign indicates that the image is inverted.
For example, let's say the object distance is 20 cm, and the image distance is 40 cm. The focal length of the lens is 30 cm.
Using the formula m = -v/u, we get:
m = -40/20 = -2
Using the formula m = -v/u + 1/f, we get:
m = -40/20 + 1/30 = -2/3
As the magnification is -2, and theoretical magnification is -2/3, so they are not equal and the lens equation is not verified.
To know more about lens equation, refer to the link below:
https://brainly.com/question/30618134#
#SPJ11
find the angular momentum and kinetic energy of an object rotating at 10.0 rad/s with a mass of 5.0 kg and a radius of 0.30 m given the following geometries:
the angular momentum and kinetic energy for an object rotating at 10.0 rad/s with a mass of 5.0 kg and a radius of 0.30 m are:
Thin hoop: L = 4.5 N⋅m⋅s, K = 22.5 JSolid disk: L = 2.25 N⋅m⋅s, K = 11.25 JSolid sphere: L = 5.4 N⋅m⋅s, K = 27.0 J.
The formulas for angular momentum and kinetic energy for a rotating object are:
L = IωK = 1/2 Iω²
where, L is angular momentum, I is moment of inertia, ω is angular velocity, and K is kinetic energy.Moment of inertia depends on the geometry of the object.
Given the geometries, we can calculate the moment of inertia and then use the formulas to find the angular momentum and kinetic energy.
1. Thin hoop (a ring with negligible thickness)Moment of inertia:
I = MR² = (5.0 kg)(0.30 m)² = 0.45 kg⋅m²
Angular momentum: L = Iω = (0.45 kg⋅m²)(10.0 rad/s) = 4.5 N⋅m⋅s
Kinetic energy: K = 1/2 Iω² = 1/2 (0.45 kg⋅m²)(10.0 rad/s)² = 22.5 J2.
Solid diskMoment of inertia: I = 1/2 MR² = 1/2 (5.0 kg)(0.30 m)² = 0.225 kg⋅m²
Angular momentum: L = Iω = (0.225 kg⋅m²)(10.0 rad/s) = 2.25 N⋅m⋅s
Kinetic energy: K = 1/2 Iω² = 1/2 (0.225 kg⋅m²)(10.0 rad/s)² = 11.25 J3.
Solid sphereMoment of inertia: I = 2/5 MR² = 2/5 (5.0 kg)(0.30 m)² = 0.54 kg⋅m²
Angular momentum: L = Iω = (0.54 kg⋅m²)(10.0 rad/s) = 5.4 N⋅m⋅s
Kinetic energy: K = 1/2 Iω² = 1/2 (0.54 kg⋅m²)(10.0 rad/s)² = 27.0 J
Therefore, the angular momentum and kinetic energy for an object rotating at 10.0 rad/s with a mass of 5.0 kg and a radius of 0.30 m are:
Thin hoop: L = 4.5 N⋅m⋅s, K = 22.5 JSolid disk: L = 2.25 N⋅m⋅s, K = 11.25 JSolid sphere: L = 5.4 N⋅m⋅s, K = 27.0 J.
learn more about angular momentum here
https://brainly.com/question/30338110
#SPJ11
Two possible units of magnetic field are named after famous western scientists, choose two units of magnetic field from the list below. Select one or more: Weber Amp Tesla Lorentz Gauss Volt
Two units of magnetic field named after famous Western scientists are Weber and Gauss.
In electromagnetism, the magnetic field is a vector field that represents the magnetic effects of electric charges in motion. The magnetic field is defined as a field in which an electric charge will experience a magnetic force. It is produced by electric charges and currents. A magnetic field is created by a magnet or a moving electric charge or other magnetic fields.
The strength of a magnetic field is determined by the number of magnetic field lines or magnetic fluxes that pass through a surface placed perpendicular to the direction of magnetic field lines. It is calculated in the unit of Tesla (T). In addition to Tesla, there are two other units of magnetic field named after famous Western scientists: Gauss and Weber. A magnetic field with a strength of one gauss is equivalent to one ten-thousandth (0.0001) of a Tesla.
Gauss is a unit of magnetic flux density and is named after the famous German mathematician Carl Friedrich Gauss. Weber is named after Wilhelm Eduard Weber, and it is a unit of magnetic flux. The Weber is equivalent to the magnetic flux that crosses one square meter of surface area at right angles to a magnetic field of one tesla.
To know more about electromagnetism visit:
https://brainly.com/question/31039466
#SPJ11
The sun's energy comes from nuclear fusion reactions in which protons, the nuclei of hydrogen atoms, are squeezed together at very high temperature and pressure to form the nucleus of a helium atom. The process requires three steps, but the overall fusion reaction is 4'H→ He +2e +energy How much energy is released in this reaction? Express your answer in joules. 197| ΑΣΦ Xb √x x x E- 2.928 10-12 . داد che EXT X-10" XI 10
The energy released in the fusion reaction of four hydrogen nuclei into a helium nucleus is approximately [tex]8.316 \times 10^{-14}[/tex] joules per mole, as calculated using Einstein's mass-energy equivalence equation. This reaction represents the source of the Sun's energy.
In the fusion reaction described, four hydrogen nuclei (protons) combine to form a helium nucleus, releasing energy in the process.
To determine the amount of energy released, we can calculate the mass difference between the reactants (four hydrogen nuclei) and the products (helium nucleus, two electrons), using Einstein's mass-energy equivalence equation, E = mc².
The mass of four hydrogen nuclei (4'H) is approximately 4.032 g/mol, while the mass of a helium nucleus (He) is approximately 4.0026 g/mol. The mass of two electrons is approximately 0.00002 g/mol.
The mass difference can be calculated as follows:
Δm = (4 x 4.032 g/mol) - (1 x 4.0026 g/mol + 2 x 0.00002 g/mol) = 0.0292 g/mol
Converting the mass difference to kilograms, we have Δm =[tex]0.0292 \times 10^{-3}[/tex] kg/mol.
Using the equation E = mc², where c is the speed of light (approximately 3 x 10^8 m/s), we can calculate the energy released:
[tex]E = (0.0292 \times 10^{-3} kg/mol) \times (3 \times 10^8 m/s)^2 = 8.316 \times 10^{-14} J/mol[/tex]
Therefore, the amount of energy released in this fusion reaction is approximately [tex]8.316 \times 10^{-14}[/tex] joules per mole.
To know more about fusion reaction refer here:
https://brainly.com/question/22826784#
#SPJ11
what is the energy which can be expended by this battery in a 40 min time frame? answer in units of j.
The amount of energy that a battery can expend in a given time is determined by the battery's capacity. The amount of energy that a battery can store is referred to as its capacity, which is measured in joules (J).
A battery with a higher capacity will hold more energy and will be able to expend it for a longer period of time than a battery with a lower capacity. The question doesn't provide information about the capacity of the battery. It's impossible to figure out how much energy the battery can expend in a given time without knowing the battery's capacity. Let's assume that the battery's capacity is C joules, and the 40-minute time period is T seconds. Thus, the amount of energy E the battery can expend in that time is given by:E = C x T / 3600 joules
Answer: E = C x T / 3600 joules The above formula can be used to calculate the amount of energy that a battery with a given capacity can expend in a given time.
For more information on battery's capacity visit:
brainly.com/question/32094086
#SPJ11
A pool ball moving 1. 83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1. 15 m/s at a 23. 3° angle. What is the x-component of the velocity of the second ball?
the x-component of the velocity of the second ball is 1.25 m/s.
Given,
Initial velocity of the first ball, u₁ = 1.83 m/s
Final velocity of the first ball, v₁ = 1.15 m/s
Initial velocity of the second ball, u₂ = 0 m/s (as it is at rest)
Let v₂ be the final velocity of the second ball at an angle θ with the horizontal.
Using the principle of conservation of momentum, we get,
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Here, m₁ = m₂ = m (both the balls are identical)
Therefore,
mu₁ = (m + m)v₂
=> u₁ = 2v₂
=> v₂ = u₁/2
= 1.83/2 = 0.915 m/s
Now, using the principle of conservation of energy, we get,1/2 mu₁² = 1/2 mv₁² + 1/2 mv₂²
=> u₁² = v₁² + v₂² => v₂² = u₁² - v₁²v₂² =
(1.83)² - (1.15)²v₂ = √(1.83² - 1.15²)
= 1.35 m/s
Now, to find the x-component of the velocity of the second ball, we use the formula,
x-component of velocity of the second ball = v₂ cos θ= 1.35 cos 23.3°= 1.25 m/s (approx)
Therefore, the x-component of the velocity of the second ball is 1.25 m/s.
learn more about velocity here
https://brainly.com/question/25749514
#SPJ11
answer all please
9. A in. diameter punch is used to punch a hole through a steel plate in. thick. The force necessary to drive the punch through the plate is 60,000 lb. Compute the shear stress developed in the plate.
Diameter punch is used to punch a hole through a steel plate that is in. thick and the force required to push the punch through the plate is 60,000 lb. The shear stress developed in the plate is 76,394 psi.
The objective is to calculate the shear stress developed in the plate. The formula for shear stress is given as follows:Shear stress (τ) = Force (F) / Area (A)The force required to drive the punch through the plate is 60,000 lb. The punch diameter is given as d = 1 inch.
The area of the punch can be calculated as follows:Area of the punch (A) = (π / 4) × d²where d = 1 inchA = (π / 4) × (1)²A = (3.1416 / 4) × 1A = 0.7854 in² The area of the punch is 0.7854 in².The area of the plate is equal to the area of the hole in the plate.
Area of the plate (A) = (π / 4) × d²where d = diameter of the hole in the plate.The diameter of the punch is 1 inch. Therefore, the diameter of the hole in the plate will also be 1 inch.The area of the plate is given by:A = (π / 4) × (1)²A = 0.7854 in²
The area of the plate is 0.7854 in².Substituting the values of force and area in the formula for shear stress, we get:Shear stress (τ) = Force (F) / Area (A)τ = 60,000 lb / 0.7854 in²τ = 76,394 psi
Know more about Shear stress here:
https://brainly.com/question/20630976
#SPJ11
A platypus foraging for prey can detect an electric field as small as 0.002 N/C. to give an idea of sensitivity of the platypus's electric sense, how far from a 40 nc point charge does the field have this magnitude?
The field has a magnitude of 0.002 N/C when you are 1.8 meters away from a 40 NC point charge.
In order to find out how far away from a 40 NC point charge the field has a magnitude of 0.002 N/C, we can make use of Coulomb’s law which states that the electric field intensity is directly proportional to the inverse of the square of the distance from the point charge.
The formula for Coulomb’s law is:E = k q / r²Where E is the electric field intensity, k is Coulomb’s constant (9 x 10^9 N m² C^-2), q is the charge and r is the distance from the charge. We can use algebra to rearrange this formula to find the distance (r) from the charge: r = √(k q / E)
Plugging in the values we know, we get:r = √(9 x 10^9 x 40 x 10^-9 / 0.002)Simplifying this, we get:r = 1.8 m
Therefore, the field has a magnitude of 0.002 N/C when you are 1.8 meters away from a 40 NC point charge.
To learn more about charge visit;
brainly.com/question/13278945
#SPJ11
The driver of a 1800 kg car traveling on a horizontal road at 100 km/h suddenly applies the brakes. Due to a slippery pavement, the friction of the road on the tires of the car, which is what slows down the car, is 26.0 % of the weight of the car. What is the acceleration of the car? How many meters does the car travel before stopping under these conditions?
The acceleration of the car is -7.84 m/s² (deceleration) and the car will travel approximately 45.2 meters before stopping.
To find the acceleration of the car, we need to calculate the net force acting on it. The net force is the difference between the frictional force and the force due to the car's weight.
Frictional force = coefficient of friction * weight of the car
The weight of the car is given by the equation:
Weight = mass * gravity
Weight = 1800 kg * 9.8 m/s²
The coefficient of friction is given as 26% of the weight of the car, so:
Coefficient of friction = 0.26 * weight of the car
The net force is given by:
Net force = Frictional force - Weight
Using the equation F = ma (Newton's second law), where F is the net force and m is the mass of the car, we can solve for the acceleration (a):
Net force = ma
(ma) = Frictional force - Weight
a = (Frictional force - Weight) / m
Substituting the given values into the equation, we have:
a = (0.26 * Weight - Weight) / m
Calculating the acceleration:
a = (0.26 * 1800 kg * 9.8 m/s² - 1800 kg * 9.8 m/s²) / 1800 kg
a ≈ -7.84 m/s² (deceleration)
To find the distance traveled before stopping, we can use the equation of motion:
v² = u² + 2as
Here, the initial velocity (u) is 100 km/h, which needs to be converted to m/s:u = 100 km/h * (1000 m/1 km) * (1 h/3600 s)
u ≈ 27.8 m/s
Since the car comes to a stop, the final velocity (v) is 0 m/s.
Plugging in the values, the equation becomes:
0 = (27.8 m/s)² + 2 * (-7.84 m/s²) * s
Solving for s (distance traveled):
s = -((27.8 m/s)²) / (2 * (-7.84 m/s²))
s ≈ 45.2 meters
Therefore, the car has an acceleration of approximately -7.84 m/s² (deceleration), and it travels around 45.2 meters before coming to a stop.
To learn more about acceleration here:
https://brainly.com/question/2303856
#SPJ11
n
A spherical ball has a mass of 350 kg, and is measured to have a mass density of 16 kg/m³. What is the volume of the ball? Your Answer:
The volume of the ball is 21.875 cubic meters.
The mass density (ρ) is defined as the mass (m) divided by the volume (V):
ρ = m / V
We are given the mass of the ball (m) as 350 kg and the mass density (ρ) as 16 kg/m³. We can rearrange the equation to solve for the volume:
V = m / ρ
Substituting the given values:
V = 350 kg / 16 kg/m³
Calculating:
V = 21.875 m³
Therefore, the volume of the ball is 21.875 cubic meters.
The volume of the spherical ball is 21.875 cubic meters.
To know more about volume , visit:
https://brainly.com/question/14197390
#SPJ11
select the correct answer. which electromagnetic wave has the lowest frequencies (less than 3×109 hertz)? a. microwaves b. visible light c. radio waves d. gamma rays
Electromagnetic waves are transverse waves that are produced by the motion of electrically charged particles. The lowest frequencies (less than 3×109 hertz) are possessed by radio waves. Radio waves have a longer wavelength and a lower frequency than visible light, microwaves, and gamma rays. The correct answer is option C, radio waves.
The electromagnetic spectrum includes a variety of electromagnetic waves, each with a different wavelength and frequency. The electromagnetic waves with the lowest frequency are known as radio waves. They have frequencies that range from about 30 Hz to 300 GHz. Radio waves are used to transmit signals for radio and television broadcasting, mobile phones, and wireless communication devices. Radio waves have a wavelength that ranges from 1 millimeter to 100 kilometers.
They are used in a variety of fields, including communication, navigation, and scientific research. Radio waves are used in radio and television broadcasting, satellite communication, radar systems, and wireless communication devices. They are also used in medical applications, such as magnetic resonance imaging (MRI) and positron emission tomography (PET) scans.
Radio waves are used in a variety of applications because they can penetrate solid objects and travel long distances without losing their energy. They are also used in space exploration to communicate with spacecraft and other probes. Radio waves are a vital part of our modern world, and their applications are endless.
To learn more about spectrum visit;
https://brainly.com/question/31086638
#SPJ11