the domain of the relation l is the set of all real numbers. for x, y ∈ r, xly if x < y.

Answers

Answer 1

The given relation l can be described as follows; xly if x < y. The domain of the relation l is the set of all real numbers.

Let us suppose two real numbers 2 and 4 and compare them. If we apply the relation l between 2 and 4 then we get 2 < 4 because 2 is less than 4. Thus 2 l 4. For another example, let's take two real numbers -5 and 0. If we apply the relation l between -5 and 0 then we get -5 < 0 because -5 is less than 0. Thus, -5 l 0.It can be inferred from the examples above that all the ordered pairs which will satisfy the relation l can be written as (x, y) where x.

To know more about the domain visit:

https://brainly.com/question/12264811

#SPJ11


Related Questions

1-) a class of students sits two tests. 20% fail the first test,
and 20% fail the second. What proportion of students failed both
tests? Choose from the following options and explain why did you
choos

Answers

From the mutually exclusive events, the proportion of students that failed both tests is 0%

What proportion of students failed both tests?

To determine the proportion of students who failed both tests, we need to consider the intersection of the two groups: those who failed the first test and those who failed the second test.

Given that 20% of students fail the first test and 20% fail the second test, we can assume that these percentages are mutually exclusive. This means that the students who fail the first test are a separate group from those who fail the second test.

Since we are looking for the proportion of students who failed both tests, we need to find the intersection of these two groups. If the percentages are mutually exclusive, we can assume that there is no overlap between the students who failed the first test and those who failed the second test. In other words, the proportion of students who failed both tests is likely to be zero.

Learn more on mutually exclusive events here;

https://brainly.com/question/31994202

#SPJ4

Suppose that the world's current oil reserves is 2030 billion barrels. If, on average, the total reserves is decreasing by 25 billion barrels of oil each year, answer the following, give a linear equation for the total remaining oil reserves(in billions of barrels), R(t), as a function of t, the number of years since now__________________

Answers

The total remaining oil reserves(in billions of barrels), R(t), as a function of t, the number of years since now is R(t) = 2030 - 25t.

Given that the world's current oil reserves is 2030 billion barrels. If, on average, the total reserves is decreasing by 25 billion barrels of oil each year, we have to give a linear equation for the total remaining oil reserves(in billions of barrels), R(t), as a function of t, the number of years since now.

The formula to find the remaining oil reserves is given by;R(t) = R(0) - m × t

Where, R(0) is the original quantity of the oil reserves,R(t) is the remaining quantity of the oil reserves,m is the rate of the decrease in reserves per year,t is the number of years from now.

Using the above formula, the linear equation for the total remaining oil reserves as a function of t is; R(t) = 2030 - 25t

Thus, the total remaining oil reserves(in billions of barrels), R(t), as a function of t, the number of years since now is R(t) = 2030 - 25t.

Know more about the function  here:

https://brainly.com/question/2328150

#SPJ11

A random variable X has moment generating function (MGF) given by 0.9-e²t if t <-In (0.1) Mx(t)=1-0.1-e²t otherwise Compute P(X= 2); round your answer to 4 decimal places. Answer:

Answers

Because X is constant at a particular value and has no variability, the probability P(X = 2) is 0 as a result.

The moment generating function (MGF) is a mathematical method for describing the distribution of a random variable. If t is less than ln(0.1), the irregular variable X's MGF is always 0.9 - e2t, and if t is greater than ln(0.1), Mx(t) is always 1 - 0.1 - e2t.

To determine the probability P(X = 2), we must locate the second moment of X, denoted by Mx''(t), and evaluate it at t = 0. When t is greater than or equal to -ln(0.1), Mx''(t) equals -4e2t, whereas when t is less than or equal to -ln(0.1), Mx''(t) equals -4e2t.

Because the second moment is determined by evaluating Mx'(t) at t = 0, we have Mx'(0) = 0. This shows that X is a single regarded degenerate sporadic variable with no change.

The probability P(X = 2) is 0 because X has no variability and is constant at a given value.

To know more about The moment generating function refer to

https://brainly.com/question/30763700

#SPJ11

(1 point) The probability density function of XI, the lifetime of a certain type of device (measured in months), is given by 0 f(x) = if x ≤ 22 if x > 22 Find the following: P(X > 34)| = The cumulat

Answers

A probability density function (PDF) is a mathematical function that describes the relative likelihood of a random variable taking on a specific value or falling within a particular range of values. Hence, P(X > 34)| = 1.

Given, The probability density function of X(I), the lifetime of a certain type of device (measured in months), is given by f(x) = 0 if x ≤ 22 and f(x) = if x > 22.

Find the following: P(X > 34)| = The cumulative distribution function (CDF) F(x) = P(X ≤ x) for the random variable X can be found out as follows : If 0 ≤ x ≤ 22, then F(x) = ∫f(t)dt from 0 to x= ∫0dt=0If x > 22, then F(x) = ∫f(t)dt from 0 to 22 + ∫f(t)dt from 22 to x = ∫0dt from 0 to 22 + ∫f(t)dt from 22 to x= 22f(x) - 22

Thus, the cumulative distribution function of X is given by F(x) = {0 if x ≤ 22, 22f(x) - 22 if x > 22}

Given, X(I) is a lifetime of a certain type of device.

P(X > 34) = 1 - P(X ≤ 34)P(X ≤ 34) = F(34)= {0 if x ≤ 22, 22f(x) - 22 if x > 22} if x = 34=> P(X > 34) = 1 - P(X ≤ 34) = 1 - {22f(x) - 22} when x > 22So, P(X > 34)| = 1 - {22f(x) - 22} when x > 22= 1 - {22(1) - 22} since x > 22= 1 - 0= 1

To know more about probability density function visit:

https://brainly.com/question/31039386

#SPJ11

The probability density function of XI, the lifetime of a certain type of device (measured in months), is given by f(x) = { 0, if x ≤ 22 if x > 22 }. We are to find P(X > 34).

The answer is Not possible to calculate.

Solution: Given that probability density function is f(x) = { 0, if x ≤ 22 if x > 22 }Also, We need to find the probability P(X > 34)Now we have to find the cumulative distribution function first. The cumulative distribution function (CDF) is given by:

[tex]CDF = \int_0^x f(x) dx[/tex]

[tex]=  \int_0^{22} 0 dx + \int^{22t} f(x) dx[/tex]

(Where  t is the desired upper limit)

[tex]CDF = \int^{22} f(x) dx[/tex]

= ∫²²ᵗ if x ≤ 22 dx + ∫²²ᵗ if x > 22 dx

= ∫²²ᵗ 0 dx + ∫²²ᵗ

if x > 22 dx

= ∫²²ᵗ

if x > 22 dx= ∫₂²ₜ 1 dx

= (t-22)P(X > 34)

= 1 - P(X ≤ 34)

= 1 - CDF (t = 34)

= 1 - (t - 22)

= 1 - (34 - 22)

= 1 - 12

= -11 (Which is not possible)

Conclusion: Therefore, the answer is Not possible to calculate.

To know more about probability visit

https://brainly.com/question/32004014

#SPJ11

for a standard normal distribution, given: p(z < c) = 0.624 find c.

Answers

For a standard normal distribution, given p(z < c) = 0.624, we need to the balance  value of c.

This means that we need to find the z-value that has an area of 0.624 to the left of it in a standard normal distribution.To find this value, we can use a standard normal table or a calculator with a standard normal distribution function.Using a standard normal table:We look up the area of 0.624 in the body of the table and find the z-value in the margins. The closest area we can find is 0.6239, which corresponds to a z-value of 0.31.

Therefore, c = 0.31.Using a calculator:We can use the inverse normal function of the calculator to find the z-value that corresponds to an area of 0.624 to the left of it. The function is denoted as invNorm(area to the left, mean, standard deviation). For a standard normal distribution, the mean is 0 and the standard deviation is 1. Therefore, we have:invNorm(0.624, 0, 1) = 0.31Therefore, c = 0.31.

To know more about balance visit:

https://brainly.com/question/30122278

#SPJ11

Babies born after 40 weeks gestation have a mean length of 52 centimeters (about 20.5 inches). Babies born one month early have a mean length of 47.7 cm. Assume both standard deviations are 2.7 cm and the distributions and unimodal and symmetric. Complete parts (a) through (c) below. *** > a. Find the standardized score (z-score), relative to babies born after 40 weeks gestation, for a baby with a birth length of 45 cm. Z= (Round to two decimal places as needed.) b. Find the standardized score for a birth length of 45 cm for a child born one month early, using 47.7 as the mean. Z= =(Round to two decimal places as needed.) c. For which group is a birth length of 45 cm more common? Explain what that means. Unusual z-scores are far from 0. Choose the correct answer below OA. A birth length of 45 cm is more common for babies born after 40 weeks gestation. This makes sense because the group of babies born after 40 weeks gestation is much larger than the group of births that are one month early. Therefore, more babies will have short birth lengths among babies born after 40 weeks gestation. 0 0 OB. A birth length of 45 cm is more common for babies born one month early. This makes sense because babies grow during gestation, and babies born one month early have had less time to grow. C. A birth length of 45 cm is equally as common to both groups. D. It cannot be determined to which group a birth length of 45 cm is more common. >

Answers

(a) The standardized score (z-score) for a baby with a birth length of 45 cm, relative to babies born after 40 weeks gestation, is approximately -2.59.

(b) The standardized score for a birth length of 45 cm for a child born one month early is approximately -1.

(c) A birth length of 45 cm is more common for babies born after 40 weeks gestation. This is because the standardized score of -2.59 indicates that the observation is farther below the mean compared to the standardized score of -1 for babies born one month early. The larger group of babies born after 40 weeks gestation makes it more likely for more babies to have shorter birth lengths in that group.

(a) The standardized score (z-score) for a baby with a birth length of 45 cm, relative to babies born after 40 weeks gestation, can be calculated using the formula:

Z = (x - μ) / σ

where x is the observed value, μ is the mean, and σ is the standard deviation.

Using the given values:

x = 45 cm

μ = 52 cm

σ = 2.7 cm

Plugging these values into the formula, we get:

Z = (45 - 52) / 2.7 ≈ -2.59

So, the standardized score for a baby with a birth length of 45 cm is approximately -2.59.

(b) To find the standardized score for a birth length of 45 cm for a child born one month early, we use the mean of that group, which is 47.7 cm.

Using the same formula:

Z = (x - μ) / σ

where x is the observed value, μ is the mean, and σ is the standard deviation.

Plugging in the values:

x = 45 cm

μ = 47.7 cm

σ = 2.7 cm

Calculating the standardized score:

Z = (45 - 47.7) / 2.7 ≈ -1

So, the standardized score for a birth length of 45 cm for a child born one month early is approximately -1.

(c) Based on the calculated standardized scores, we can determine which group a birth length of 45 cm is more common for. A lower z-score indicates that the observation is farther below the mean.

In this case, a birth length of 45 cm has a z-score of approximately -2.59 for babies born after 40 weeks gestation, and a z-score of approximately -1 for babies born one month early.

Since -2.59 is farther below the mean (0) than -1, it means that a birth length of 45 cm is more common for babies born after 40 weeks gestation. This makes sense because the group of babies born after 40 weeks gestation is much larger than the group of births that are one month early. Therefore, more babies will have short birth lengths among babies born after 40 weeks gestation.

The correct answer is (OA) A birth length of 45 cm is more common for babies born after 40 weeks gestation.

learn more about standard deviation here:
https://brainly.com/question/29115611

#SPJ11

Find the mean of the data summarized in the given frequency distribution Compare the computed mean to the actual mean of 51.2 miles per hour. Speed (miles per hour) 54-57 58-61 D 42-45 27 46-49 13 50-

Answers

The mean of the data-set in this problem is given as follows:

47.4 minutes.

The computed mean is not close to the actual mean as the difference is of more than 5%.

How to calculate the mean of a data-set?

The mean of a data-set is given by the sum of all observations in the data-set divided by the cardinality of the data-set, which represents the number of observations in the data-set.

For the distribution in this problem, we use the midpoint rule, which states that each observation is half the two bounds of the frequency interval.

Then the mean is given as follows:

M = (22 x 43.5 + 14 x 47.5 + 7 x 51.5 + 4 x 55.5 + 2 x 59.5)/(22 + 14 + 7 + 4 + 2)

M = 47.4.

More can be learned about the mean of a data-set at https://brainly.com/question/1136789

#SPJ4

4. Given a standard normal distribution, find the value k such that a) P(Z < k) = 0.0427 b) P(-0.93 k) = 0.025

Answers

The value of k such that a) P(Z < k) = 0.0427 is -1.76 and b) P(-0.93 < Z < k) = 0.025 is 0.81.

a) P(Z < k) = 0.0427To solve the problem, we use the Z table, which shows the probabilities under the standard normal distribution.

Using the table, we search for the probability value 0.0427 in the body of the table or the left column and the second decimal in the top row or the second decimal place.

This leads to a Z value of -1.76, which is the closest value to 0.0427.

Therefore, k = -1.76.

b) P(-0.93 < Z < k) = 0.025

Using the Z table again, we search for the probability value of 0.025 between the two decimal places in the top row of the table and the first decimal in the left column of the table.

This leads to a Z value of 1.96. Hence, we can set up an equation by substituting the given values into the cumulative distribution function formula: P(Z < k) - P(Z < -0.93) = 0.025P(Z < k) = 0.025 + P(Z < -0.93)P(Z < k) = 0.025 + 0.1772 (from the Z table)

P(Z < k) = 0.2022Using the Z table again, we can find the value of k that corresponds to the probability of 0.2022. This can be found between the second decimal place in the top row of the table and the third decimal place in the left column of the table, which leads to a Z value of 0.81. Therefore, k = 0.81.

The required value is k = 0.81 (correct to two decimal places).

Hence, we can conclude that the value of k such that a) P(Z < k) = 0.0427 is -1.76 and b) P(-0.93 < Z < k) = 0.025 is 0.81.

Know more about probability here,

https://brainly.com/question/31828911

#SPJ11

Let X denote the proportion of allotted time that a randomly selected student spends working on a certain aptitude test. Suppose the p of X is f(x; 0) 1) = {(8 + 1) x ² (0+1)x 0≤x≤ 1 otherwise wh

Answers

The probability density function (pdf) of X, denoted as f(x; 0), is

f(x; 0) = (8 + 1) x^2 (0 + 1) x for 0 ≤ x ≤ 1, and 0 otherwise.

The probability density function (pdf) represents the likelihood of a random variable taking on different values. In this case, X represents the proportion of allotted time that a randomly selected student spends working on a certain aptitude test.

The given pdf, f(x; 0), is defined as (8 + 1) x^2 (0 + 1) x for 0 ≤ x ≤ 1, and 0 otherwise. Let's break down the expression:

(8 + 1) represents the coefficient or normalization factor to ensure that the integral of the pdf over its entire range is equal to 1.

x^2 denotes the quadratic term, indicating that the pdf increases as x approaches 1.

(0 + 1) x is the linear term, suggesting that the pdf increases linearly as x increases.

The condition 0 ≤ x ≤ 1 indicates the valid range of the random variable x.

For values of x outside the range 0 ≤ x ≤ 1, the pdf is 0, as indicated by the "otherwise" statement.

Hence, the pdf of X is given by f(x; 0) = (8 + 1) x^2 (0 + 1) x for 0 ≤ x ≤ 1, and 0 otherwise.

To know more about probability density function refer here:

https://brainly.com/question/31039386

#SPJ11

Use the following data for problems 27-30 Month Sales Jan 48 Feb 62 Mar 75 Apr 68 May 77 June 27) Using a two-month moving average, what is the forecast for June? A. 37.5 B. 71.5 C. 72.5 D. 68.5 28) Using a two-month weighted moving average, compute a forecast for June with weights of 0.4, and 0.6 (oldest data to newest data, respectively). A. 37.8 B. 69.8 C. 72.5 D. 73.4 29) Using exponential smoothing, with an alpha value of 0.2 and assuming the forecast for Jan is 46, what is the forecast for June? A. 61.2 B. 57.3 C. 36.1 D. 32.4 30) What is the MAD value for the two-month moving average? A. 8.67 B. 9.12 C. 10.30 D. 12.36

Answers

The option that is correct for each of the questions is:

27. B. 72.5, 28. D. 73.4, 29. B. 57.3, 30. B. 9.12

Using a two-month moving average, the forecast for June is 72.5. The formula for the moving average is as follows: (48 + 62) / 2 = 55 and (62 + 75) / 2 = 68.5. Therefore, the forecast for June is (55 + 68.5) / 2 = 72.5.

Using a two-month weighted moving average with weights of 0.4 and 0.6 (oldest data to newest data, respectively), the forecast for June is 73.4. The formula for the weighted moving average is: (0.4 x 62) + (0.6 x 75) = 68.8 and (0.4 x 75) + (0.6 x 68) = 71.6. Therefore, the forecast for June is (0.4 x 68.8) + (0.6 x 71.6) = 73.4.

Using exponential smoothing with an alpha value of 0.2 and assuming the forecast for January is 46, the forecast for June is 57.3. The formula for exponential smoothing is as follows: Forecast for June = α (Actual sales for May) + (1 - α) (Previous forecast) = 0.2 (77) + 0.8 (46) = 57.3.

The MAD value for the two-month moving average is 9.12. The formula for MAD (Mean Absolute Deviation) is: |(Actual Value - Forecast Value)| / Number of Periods = [|(27 - 55)| + |(77 - 68.5)|] / 2 = 9.12 (rounded to the nearest hundredth).

To learn more about average, refer below:

https://brainly.com/question/24057012

#SPJ11

Suppose that high temperatures in College Place during the month of January have a mean of 37∘F. If you are told that Chebyshev's inequality says at most 6.6% of the days will have a high of 42.5∘F or more, what is the standard deviation of the high temperature in College Place during the month of January? Round your answer to one decimal place.

Answers

The standard deviation of the high temperature in College Place during the month of January is 8.1 °F

Suppose that high temperatures in College Place during the month of January have a mean of 37∘F.

If you are told that Chebyshev's inequality says at most 6.6% of the days will have a high of 42.5∘F or more, the standard deviation of the high temperature in College Place during the month of January is 8.1 °F (rounded to one decimal place).Step-by-step explanation:We know that the mean of high temperatures in College Place during the month of January is 37 °F.Hence, the average or mean of the random variable X is µ = 37.Also, Chebyshev's inequality states that the proportion of any data set lying within K standard deviations of the mean is at least 1 - 1/K². In other words, at most 1/K² of the data set lies more than K standard deviations from the mean.The formula of Chebyshev's inequality is: P(|X - µ| > Kσ) ≤ 1/K², where P(|X - µ| > Kσ) represents the proportion of values that are more than K standard deviations away from the mean (µ), and σ represents the standard deviation.

Therefore, we can write: P(X ≥ 42.5) = P(X - µ ≥ 42.5 - 37) = P(X - µ ≥ 5.5)

Here, we assume that X represents the high temperature in College Place during the month of January. We also assume that X follows a normal distribution.

So, P(X ≥ 42.5) = P(Z ≥ (42.5 - 37)/σ), where Z is a standard normal random variable.

Since we want to find the maximum proportion of days where the high temperature is above 42.5 °F, we let K = 1/6.6. That is: 1/K² = 100/6.6² = 2.5237.

Hence, we have:P(X ≥ 42.5) = P(Z ≥ (42.5 - 37)/σ) ≤ 1/K² = 2.5237.

Now, we need to find the value of σ. For this, we look up the z-score that corresponds to a proportion of 2.5237% in the standard normal table:z = inv

Norm(0.025237) = 1.81 (rounded to two decimal places).

Now, we substitute z = 1.81 in the equation: P(Z ≥ (42.5 - 37)/σ) = 0.025237So, we get:1.81 = (42.5 - 37)/σσ = (42.5 - 37)/1.81 = 2.7624

So, the standard deviation of the high temperature in College Place during the month of January is 2.7624 °F.

However, we need to round this answer to one decimal place (because the given proportion is given to one decimal place).

Therefore, the standard deviation of the high temperature in College Place during the month of January is 8.1 °F (rounded to one decimal place).

To know more on mean visit:

https://brainly.com/question/1136789

#SPJ11

Next question The ages (in years) of a random sample of shoppers at a gaming store are shown. Determine the range, mean, variance, and standard deviation of the sample data set 12, 15, 23, 14, 14, 16,

Answers

For the given sample data set, the range is 11, the mean is 15.67, the variance is 16.14, and the standard deviation is 4.02.

To determine the range, mean, variance, and standard deviation of the given sample data set: 12, 15, 23, 14, 14, 16, we can follow these steps:

Range: The range is the difference between the maximum and minimum values in the data set.

In this case, the minimum value is 12 and the maximum value is 23. Therefore, the range is 23 - 12 = 11.

Mean: The mean is calculated by summing up all the values in the data set and dividing it by the total number of values.

For this data set, the sum is 12 + 15 + 23 + 14 + 14 + 16 = 94. Since there are 6 values in the data set, the mean is 94/6 = 15.67 (rounded to two decimal places).

Variance: The variance measures the spread or dispersion of the data set.

It is calculated by finding the average of the squared differences between each value and the mean.

We first calculate the squared differences: [tex](12 - 15.67)^2, (15 - 15.67)^2, (23 - 15.67)^2, (14 - 15.67)^2, (14 - 15.67)^2, (16 - 15.67)^2.[/tex]Then, we sum up these squared differences and divide by the number of values minus 1 (since it is a sample).

The variance for this data set is approximately 16.14 (rounded to two decimal places).

Standard Deviation: The standard deviation is the square root of the variance. In this case, the standard deviation is approximately 4.02 (rounded to two decimal places).

For similar question on sample data.

https://brainly.com/question/30395228  

#SPJ8

Please help! Solve for the dimensions (LXW)

Answers

Let's denote the width of the poster as 'w' (in inches).

According to the given information, the length of the poster is 10 more inches than three times its width. So, the length can be expressed as 3w + 10.

The area of a rectangle is calculated by multiplying its length by its width. In this case, the area is given as 88 square inches:

Area = length * width
88 = (3w + 10) * w

To solve for the dimensions of the poster, we can rewrite this equation in quadratic form:

3w^2 + 10w - 88 = 0

Now, we can solve this quadratic equation. There are different methods to solve it, such as factoring, completing the square, or using the quadratic formula. Let's use the quadratic formula in this case.

The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions for x can be found using the formula:

x = (-b ± √(b^2 - 4ac)) / (2a)

In our equation, a = 3, b = 10, and c = -88. Substituting these values into the quadratic formula, we get:

w = (-10 ± √(10^2 - 4 * 3 * -88)) / (2 * 3)

Simplifying further:

w = (-10 ± √(100 + 1056)) / 6
w = (-10 ± √1156) / 6
w = (-10 ± 34) / 6

Now, we can calculate the two possible values of 'w':

w₁ = (-10 + 34) / 6 = 24 / 6 = 4
w₂ = (-10 - 34) / 6 = -44 / 6 = -22/3 ≈ -7.33

Since the width of the poster cannot be negative, we discard the negative value.

Therefore, the width of the poster is 4 inches.

To find the length, we can substitute the value of 'w' into the expression for the length:

Length = 3w + 10 = 3 * 4 + 10 = 12 + 10 = 22 inches

Hence, the dimensions of the poster are length = 22 inches and width = 4 inches.

The searching and analysis of vast amounts of data in order to discern patterns and relationships is known as:
a. Data visualization
b. Data mining
c. Data analysis
d. Data interpretation

Answers

Answer:

b. Data mining

Step-by-step explanation:

Data mining is the process of searching and analyzing a large batch of raw data in order to identify patterns and extract useful information.

The correct answer is b. Data mining. Data mining refers to the process of exploring and analyzing large datasets to discover patterns, relationships, and insights that can be used for various purposes.

Such as decision-making, predictive modeling, and identifying trends. It involves applying various statistical and computational techniques to extract valuable information from the data.

Data visualization (a) is the representation of data in graphical or visual formats to facilitate understanding. Data analysis (c) refers to the examination and interpretation of data to uncover meaningful patterns or insights. Data interpretation (d) involves making sense of data analysis results and drawing conclusions or making informed decisions based on those findings.

To know more about statistical visit-

brainly.com/question/17201668

#SPJ11

Show that the number of different ways to write an integer n as the sum of two squares is the same as the number of ways to write 2n as a sum of two squares.

Answers

To solve the equation using the standard method, we'll start by expanding and simplifying the equation:

8n / (4n + 1) = f(x) / 3

First, let's eliminate the fraction by cross-multiplying:

8n * 3 = (4n + 1) * f(x)

24n = 4nf(x) + f(x)

Now, let's bring all the terms involving n to one side and all the terms involving f(x) to the other side:

24n - 4nf(x) = f(x)

Factoring out n:

n(24 - 4f(x)) = f(x)

Finally, we can solve for n by dividing both sides by (24 - 4f(x)):

n = f(x) / (24 - 4f(x))

So, the solution to the equation is n = f(x) / (24 - 4f(x)).

To know more about Factoring visit-

brainly.com/question/31967538

#SPJ11

it says what is the area of the shaded region 0.96
Find each of the shaded areas under the standard normal curve using a TI-84 Plus calculator Round the answers to at mast Part: 0/4 Part 1 of 4 The area of the shaded region is

Answers

The area of the shaded region is 0.02 (rounded to 0.0001).

The shaded region for a standard normal distribution curve has an area of 0.96.

To find the area of this region, we use the TI-84 Plus calculator and follow this steps:1. Press the "2nd" button and then the "Vars" button to bring up the "DISTR" menu.

2. Scroll down and select "2:normalcdf(".

This opens the normal cumulative distribution function.

3. Type in -10 and 2.326 to get the area to the left of 2.326 (since the normal distribution is symmetric).

4. Subtract this area from 1 to get the area to the right of 2.326.5.

Multiply this area by 2 to get the total shaded area.6. Round the answer to at least 0.0001.

Part 1 of 4 The area of the shaded region is 0.02 (rounded to 0.0001).

Part 2 of 4 To find the area to the left of 2.326, we enter -10 as the lower limit and 2.326 as the upper limit, like this: normalcy (-10,2.326)Part 3 of 4

This gives us an answer of 0.9897628097 (rounded to 10 decimal places).

Part 4 of 4 To find the area to the right of 2.326, we subtract the area to the left of 2.326 from 1, like this:1 - 0.9897628097 = 0.0102371903 (rounded to 10 decimal places).

Now we multiply this area by 2 to get the total shaded area:

0.0102371903 x 2 = 0.020474381 (rounded to 9 decimal places).

The area of the shaded region is 0.02 (rounded to 0.0001).

Know more about standard normal distribution curve here:

https://brainly.com/question/4079902

#SPJ11

Homework: Section 5.2 Homework Question 4, 5.2.21-T HW Score: 14.20%, 1.14 of 8 points O Points: 0 of 1 Save Assume that when adults with smartphones are randomly selected, 37% use them in meetings or

Answers

The given statement is incomplete, however, based on the given information, the answer can be explained. Here are the possible answers to your question.Section 5.2 Homework Question 4, 5.2.21-T HW Score: 14.20%, 1.14 of 8

pointsO Points: 0 of 1SaveAssume that when adults with smartphones are randomly selected, 37% use them in meetings or other professional settings.What is the probability that among 10 randomly selected adults with smartphones, the number who use them in meetings or other professional settings is exactly 3?As per the given problem, it is required to calculate the probability that among 10 randomly selected adults with smartphones, the number who use them in meetings or other professional settings is exactly 3. To calculate the probability, we will use binomial probability distribution, as it is dealing with a fixed number of trials.Here, the random variable X represents the number of adults using their smartphones during meetings or other professional settings.So, the probability of X is: P(X=3) = nCx * p^x * q^(n-x)Where, n = 10, x = 3, p = 0.37 and q = 1 - p = 0.63Now, substituting the values, we get:P(X=3) = 10C3 * 0.37^3 * 0.63^7≈ 0.2572Therefore, the probability that among 10 randomly selected adults with smartphones, the number who use them in meetings or other professional settings is exactly 3 is approximately 0.2572.

To know more about  probability,visit

https://brainly.com/question/31828911

#SPJ11

Out of a sample of 75, we expect 28 adults to use their smartphones in meetings or classes.

Explanation: Given information is that, p is 37% = 0.37 (Proportion of people who use smartphones in meetings or classes).

q = 1 - p

= 1 - 0.37

= 0.63 (Proportion of people who do not use smartphones in meetings or classes), n is 75 (Sample size).

The expected value of the proportion of people who use smartphones in meetings or classes is given by:

μ = E(X)

= n × p

= 75 × 0.37

= 27.75

The expected number of adults who use smartphones in meetings or classes is the nearest whole number to 27.75, which is 28 adults.

Conclusion: Out of a sample of 75, we expect 28 adults to use their smartphones in meetings or classes.

To know more about sample visit

https://brainly.com/question/14814065

#SPJ11

given that tanx=6 and sinx is positive, determine sin(2x), cos(2x), and tan(2x). write the exact answer. do not round.

Answers

We found sin (2x) to be 12√(37) / 37, cos (2x) to be 0, and tan (2x) to be −12/35.

Given that tan x = 6 and sin x is positive, we need to find sin (2x), cos (2x), and tan (2x).

Since we are given that tan x = 6 and sin x is positive,

we can find cos x using the identity tan² x + 1 = sec² x,

which is derived by dividing both sides of the identity sin² x + cos² x = 1

by cos² x.cos² x/cos² x + sin² x/cos² x = 1/cos² x1 + tan² x = sec² x

Hence, sec x = cos x / sin x = √(1 + tan² x) / tan x = √(1 + 6²) / 6 = √(37) / 6

Now, we can find sin (2x), cos (2x), and tan (2x) using the identities below:

sin (2x) = 2 sin x cos x cos (2x)

= cos² x − sin² x tan (2x)

= 2 tan x / (1 − tan² x) = 2(6) / (1 − 6²) = −12/35

Therefore, sin (2x) = 2 sin x cos x = 2 (sin x) (cos x / sin x)

= 2 cos x / sec x = 2 (√(1 − (tan² x))) / (√(37) / 6)

= 12√(37) / 37cos (2x) = cos² x − sin² x

= (cos x / sin x)² − 1 = (cos x / sin x) (cos x / sin x) − 1

= (cos² x − sin² x) / (sin² x) = (1 − sin² x / sin² x) − 1 = 1 − 1

= 0tan (2x) = 2 tan x / (1 − tan² x)

= 2(6) / (1 − 6²) = −12/35

Given that tan x = 6 and sin x is positive,

we found cos x = √(37) / 6 using the identity tan² x + 1 = sec² x.

Then, we used the identities sin (2x) = 2 sin x cos x, cos (2x)

= cos² x − sin² x, and tan (2x)

= 2 tan x / (1 − tan² x) to find sin (2x), cos (2x), and tan (2x).

To know more about cos visit:

https://brainly.com/question/28165016

#SPJ11

.How long is the minor axis for the ellipse shown below?
(x+4)^2 / 25 + (y-1)^2 / 16 = 1
A: 8
B: 9
C: 12
D: 18

Answers

The length of the minor axis for the given ellipse is 8 units. Therefore, the correct option is A: 8.

The equation of the ellipse is in the form [tex]((x - h)^2) / a^2 + ((y - k)^2) / b^2 = 1[/tex] where (h, k) represents the center of the ellipse, a is the length of the semi-major axis, and b is the length of the semi-minor axis.

Comparing the given equation to the standard form, we can determine that the center of the ellipse is (-4, 1), the length of the semi-major axis is 5, and the length of the semi-minor axis is 4.

The length of the minor axis is twice the length of the semi-minor axis, so the length of the minor axis is 2 * 4 = 8.

To know more about ellipse,

https://brainly.com/question/29020218

#SPJ11

the marginal cost of producing the xth box of cds is given by 8 − x/(x2 1)2. the total cost to produce two boxes is $1,100. find the total cost function c(x).

Answers

The marginal cost of producing the xth box of CDs is given by 8 − x/(x2 1)2. The total distribution cost to produce two boxes is $1,100.

To find the total cost function c(x), we can integrate the marginal cost function to obtain the total cost function. Thus, we have: ∫(8 − x/(x² + 1)²) dx = C(x) + kwhere C(x) is the total cost function and k is the constant of integration. To evaluate the integral, we use the substitution u = x² + 1. Then, du/dx = 2x and dx = du/2x. Substituting, we have:∫(8 − x/(x² + 1)²) dx = ∫[8 − 1/(u²)](du/2x)= (1/2) ∫(8u² − 1)/(u²)² duUsing partial fractions, we can write: (8u² − 1)/(u²)² = A/u² + B/(u²)² where A and B are constants. Multiplying both sides by (u²)², we have:8u² − 1 = A(u²) + BThen, letting u = 1, we have:8(1)² − 1 = A(1) + B7 = A + BAlso, letting u = 0, we have:8(0)² − 1 = A(0) + B-1 = BThus, A = 7 + 1 = 8. Therefore, we have:(8u² − 1)/(u²)² = 8/u² − 1/(u²)².

Substituting, we get:C(x) = (1/2) ∫(8/u² − 1/(u²)²) du= (1/2) [-8/u + (1/2)(1/u²)] + k= -4/u + (1/2u²) + k= -4/(x² + 1) + (1/2)(x² + 1) + k= 1/2 x² - 4/(x² + 1) + kTo find k, we use the fact that the total cost to produce two boxes is $1,100. That is, when x = 2, we have:C(2) = (1/2)(2)² - 4/(2² + 1) + k= 2 - 4/5 + k= 6/5 + kThus, when x = 2, C(x) = $1,100. Therefore, we have:6/5 + k = 1,100Solving for k, we get:k = 1,100 - 6/5= 1,099.2Thus, the total cost function c(x) is given by:C(x) = 1/2 x² - 4/(x² + 1) + 1,099.2

To know more about frequency distribution visit:

https://brainly.com/question/14926605

#SPJ11

When one event happening changes the likelihood of another event happening, we say that the two events are dependent.

When one event happening has no effect on the likelihood of another event happening, then we say that the two events are independent.

For example, if you wake up late, then the likelihood that you will be late to school increases. The events "wake up late" and "late for school" are therefore dependent. However, eating cereal in the morning has no effect on the likelihood that you will be late to school, so the events "eat cereal for breakfast" and "late for school" are independent.

Directions for your post

Come up with an example of dependent events from your daily life.
Come up with an example of independent events from your daily life.

Answers

Example of dependent events from daily life:

In daily life, we can find examples of both dependent and independent events. An example of dependent events can be seen when a person goes outside during a rain.

In this situation, the probability of the person getting wet increases significantly. The occurrence of the first event, "going outside during the rain," is directly linked to the likelihood of the second event, "getting wet."

If the person chooses not to go outside, the probability of getting wet decreases. Therefore, the two events, going outside during the rain and getting wet, are dependent on each other.

If a person goes outside during a rain, the probability that the person will get wet increases.

In this case, the two events - "going outside during the rain" and "getting wet" are dependent.

Example of independent events from daily life:If a person tosses a coin and then rolls a dice, the two events are independent as the outcome of the coin toss does not affect the outcome of rolling a dice.

To learn more about events, refer below:

https://brainly.com/question/30169088

#SPJ11

Discrimination case The police force consists of 1200 officers, 960 men and 240 women. Over the past two years 288 male police officers and 36 female police officers received promotions. After reviewing the promotion record, a committee of female officers raised a discrimination case on the basis that fewer female officers had received promotions. Required: a) Use the information above to construct a joint probability table b) Calculate the following probabilities to analyze the discrimination charge: Probability that an officer is promoted given that the officer is a man. Probability that an officer is promoted given that the officer is a woman. What conclusion can be made about the discrimination charge?

Answers

a. Probability that an officer is promoted given that the officer is a man is 0.3. b. Probability that an officer is promoted given that the officer is a man is 0.15.

Joint Probability Table:

Promoted Not Promoted Total

Men 288 672 960

Women 36 204 240

Total 324 876 1200

Calculating Probabilities:

a) Probability that an officer is promoted given that the officer is a man:

P(Promoted | Man) = (Number of promoted men) / (Total number of men)

P(Promoted | Man) = 288 / 960 = 0.3

b) Probability that an officer is promoted given that the officer is a woman:

P(Promoted | Woman) = (Number of promoted women) / (Total number of women)

P(Promoted | Woman) = 36 / 240 = 0.15

Analysis of the Discrimination Charge:

From the joint probability table and the calculated probabilities, we can make the following conclusions:

The probability of promotion for male officers (P(Promoted | Man) = 0.3) is higher than the probability of promotion for female officers (P(Promoted | Woman) = 0.15).

The committee of female officers raised a discrimination case based on the fact that fewer female officers received promotions. The data supports their claim, as the number of promoted women (36) is significantly lower than the number of promoted men (288).

The disparity in promotion rates between male and female officers suggests the possibility of gender discrimination within the police force. The data indicates a potential bias in the promotion process that favors male officers.

Based on the available information, the discrimination charge raised by the committee of female officers is substantiated by the disparity in promotion rates between male and female officers. Further investigation and analysis may be necessary to determine the underlying causes and address the issue of gender discrimination within the police force.

Learn more about Probability here

https://brainly.com/question/25839839

#SPJ11

Two cookies cost 3$ how much is 1 cookie

Answers

The cost of one cookie is $1.50.

To determine the cost of one cookie, we can set up a proportion based on the given information that two cookies cost $3. Let's assume the cost of one cookie is represented by the variable "x."

The proportion can be set up as follows:

2 cookies / $3 = 1 cookie / x

To solve this proportion, we can cross-multiply and then solve for x:

2 * x = 1 * $3

2x = $3

x = $3 / 2

x = $1.50

In this proportion, we establish the relationship between the number of cookies and their cost. Since two cookies cost $3, it implies that the cost per cookie is half of the total cost. By setting up the proportion and solving for x, we find that one cookie costs $1.50.

It's important to note that this calculation assumes a linear relationship between the number of cookies and their cost, and it may not account for potential discounts or other factors that could affect the actual pricing.

For more such questions on cost

https://brainly.com/question/1153322

#SPJ8

Find the t critical values using the information in the
table.
set
hypothesis

df
a)
− 0 > 0
0.250
4
b)
− 0 < 0
0.025
21
c)
− 0 > 0
0.010
22
d)

Answers

To find the t critical values using the information provided in the table, we need to use the degrees of freedom (df) and the significance level (α).

a) For the hypothesis: -0 > 0

Significance level: α = 0.250

Degrees of freedom: df = 4

To find the t critical value for a one-tailed test with a 0.250 significance level and 4 degrees of freedom, we can consult a t-distribution table or use statistical software. Assuming a one-tailed test, the critical value can be found by looking up the value in the table corresponding to a 0.250 significance level and 4 degrees of freedom. The critical value is the value that separates the rejection region from the non-rejection region.

b) For the hypothesis: -0 < 0

Significance level: α = 0.025

Degrees of freedom: df = 21

c) For the hypothesis: -0 > 0

Significance level: α = 0.010

Degrees of freedom: df = 22

d) The information for hypothesis d is missing. Please provide the necessary information for hypothesis d, including the significance level and degrees of freedom, so I can assist you in finding the t critical value.

Learn more about values here:

https://brainly.com/question/31477244

#SPJ11

Find X Y and X as it was done in the table below.


X
Y
X*Y
X*X
4
19
76
16
5
27
135
25
12
17
204
144
17
34
578
289
22
29
638
484
Find the sum of every column:

sum X = 60

Answers

The given table is: X Y X*Y X*X 4 19 76 16 5 27 135 25 12 17 204 144 17 34 578 289 22 29 638 484

To find the sum of each column:sum X = 4 + 5 + 12 + 17 + 22 = 60   sum Y = 19 + 27 + 17 + 34 + 29 = 126   sum X*Y = 76 + 135 + 204 + 578 + 638 = 1631     sum X*X = 16 + 25 + 144 + 289 + 484 = 958

To find the p-value, we first have to find the value of t using the formula given sample mean = 2,279, $\mu$ = population mean = 1,700, s = sample standard deviation = 560

Hence, the answer to this question is sum X = 60.

To know more about sum visit:

https://brainly.com/question/31538098

#SPJ11

7. Ifa = 3an * db = - 2 . find the values of: (a + b)ab​

Answers

The Values of (a+b)ab are undefined.

Given that, a = 3an and db = -2We need to find the values of (a+b)

Now, we have a = 3an... equation (1)Also, we have db = -2... equation (2)From equation (1), we get: n = 1/3... equation (3)Putting equation (3) in equation (1), we get: a = a/3a = 3... equation (4)Now, putting equation (4) in equation (1), we get: a = 3an... 3 = 3(1/3)n = 1

From equation (2), we have: db = -2=> d = -2/b... equation (5)Multiplying equation (1) and equation (2), we get: a*db = 3an * -2=> ab = -6n... equation (6)Putting values of n and a in equation (6), we get: ab = -6*1=> ab = -6... equation (7)Now, we need to find the value of (a+b).For this, we add equations (1) and (5),

we get a + d = 3an - 2/b=> a + (-2/b) = 3a(1) - 2/b=> a - 3a + 2/b = -2/b=> -2a + 2/b = -2/b=> -2a = 0=> a = 0From equation (1), we have a = 3an=> 0 = 3(1/3)n=> n = 0

Therefore, from equation (5), we have:d = -2/b=> 0 = -2/b=> b = ∞Now, we know that (a+b)ab = (0+∞)(0*∞) = undefined

Therefore, the values of (a+b)ab are undefined.

For more questions on Values .

https://brainly.com/question/843074

#SPJ8

Random forests are usually computationally efficient than
regular bagging because of the following reason:
a.
They build less trees
b.
They build more trees
c.
They create more features

Answers

a. They build less trees. So it is clear, that random forests are usually computationally efficient than regular bagging because they build less trees.

The correct answer is a. Random forests are usually more computationally efficient than regular bagging because they build fewer trees. In regular bagging, each tree is built independently using bootstrap samples of the training data. This can lead to a large number of trees being built, which can be computationally expensive. In contrast, random forests use a subset of features at each split and perform feature randomization. This feature randomization reduces the correlation between trees and allows for fewer trees to be built while maintaining comparable or even better performance. Therefore, random forests are more efficient in terms of computational resources compared to regular bagging.

learn more about bagging here:
https://brainly.com/question/15358252

#SPJ11

uppose you are conducting a multiple regression analysis to examine variables that might predict the extent to which you felt a first date was successful (on a scale of 1 to 10). Identify three predictor variables that you would select. Then describe how you would weigh each of these variables (e.g., x1, x2, x3, x4, etc.).

Answers

In conducting a multiple regression analysis to predict the extent to which a first date was successful, three predictor variables that could be selected are: Communication Skills (x1), Compatibility (x2) and Physical Attractiveness (x3)

Communication Skills (x1): This variable measures the individual's ability to effectively communicate and engage in conversation during the date. It can be weighed based on ratings or self-reported scores related to communication abilities.

Compatibility (x2): This variable assesses the level of compatibility between the individuals involved in the date. It can be weighed using a compatibility index or a scale that measures shared interests, values, and goals.

Physical Attractiveness (x3): This variable captures the perceived physical attractiveness of the individuals. It can be weighed based on ratings or subjective assessments of physical appearance, such as attractiveness ratings on a scale.

Each of these variables can be assigned a weight (β1, β2, β3) during the regression analysis to determine their relative contribution in predicting the success of a first date. The weights represent the regression coefficients and indicate the strength and direction of the relationship between each predictor variable and the outcome variable (extent of success). The regression analysis will provide estimates of these weights based on the data, allowing for an evaluation of the significance and impact of each predictor variable on the success of a first date.

To know more about multiple regression analysis refer here:

https://brainly.com/question/32289301

#SPJ11

Let h be the function defined by h (a) = L.si sin’t dt. Which of the following is an equation for the line tangent to the graph of h at the point where ? A y = 1/2 B y=v2.c С y= y= } (x - 1) E y= ( ) (- 3)

Answers

In order to determine the equation of the line tangent to the graph of h at a certain point, let us differentiate h. For this problem, we will need to use the chain rule. We have to substitute the function of the variable `t`, which is `a`, into the integral. Option (С) is the correct answer.

The function h is given as follows: `h(a) = L.si sin’t dt`.

In order to determine the equation of the line tangent to the graph of h at a certain point, let us differentiate h. For this problem, we will need to use the chain rule. We have to substitute the function of the variable `t`, which is `a`, into the integral. Thus, the differentiation is as follows:

h’(a) = d/dx[L.si sin’t dt] = L.si d/dx[sin’t] dt = L.si cos(t) dt.

Therefore, the equation for the tangent line at the point where `a` is equal to `a` is `y - h(a) = h’(a)(x - a)`. Substituting the given value of `h’(a)` yields: `y - h(a) = L.si cos(t) dt (x - a)`.

Since we are looking for the equation of the tangent line, we must choose an `a` value. For example, let `a = 0`. Thus, `h(0) = L.si sin’t dt` which is `0`. Therefore, the equation of the tangent line at the point `(0,0)` is `y = 0`, so the answer is `y = 0`. Thus, option (С) is the correct answer.

To know more integral visit: https://brainly.com/question/31059545

#SPJ11

significant figures rules for combined addition/subtraction and multiplication/division problems

Answers

Significant figures rules for combined addition/subtraction and multiplication/division problemsWhen we're dealing with significant figures, we must take into account whether we're performing addition/subtraction or multiplication/division.

Following are the significant figures rules for combined addition/subtraction and multiplication/division problems:Rules for combined addition/subtraction problems:For addition or subtraction problems, round your final answer to the decimal place with the least number of significant figures.

Rules for combined multiplication/division problems:For multiplication or division problems, round your final answer to the number of significant figures in the term with the fewest number of significant figures.

To know more about  figures  visit:

https://brainly.com/question/30740690

#SPJ11

Other Questions
how many moles of nitrogen, n , are in 63.0 g of nitrous oxide, n2o ? The incidence of tuberculosis in the year 2000 in the United States was 12.43/100,000 cases. This means that: ______________. Choose the correct option: A) 12.43 in every 100,000 people in the United States had tuberculosis in the year 2000. B) 12.43/100,000 cases of tuberculosis were treated in the United States in the year 2000. C) 12.43/100,000 died of tuberculosis in the United States in the year 2000. D) there were 12.43 tubercle bacilli per 100,000 microbes in the United States in the year 2000. In an investment center, if controllable margin is $300,000, sales are $1,000,000, fixed costs are $250,000, and the average operating assets are $2,000,000, the return on investment is ______.a. 50% b.6.67%c.12.5%d. 15% the area where groundwater is best stored or pumped by a well is the recent research on gender differences in response to distress revealed __________. consider the transformation below which reagent, between nabh4 and lialh4, would you use for the transformation and why? Consider a lottery with three possible outcomes: a payoff of -20, a payoff of 0, and a payoff of 20. The probability of each outcome is 0.2, 0.5, and 0.3, respectively. Compute the expected value of the lottery, variance and the standard deviation of the lottery. (10 marks) b) Given the start-up job offer lottery, one payoff (I1) is RM110,000, the other payoff (I2) is RM5,000. The probability of each payoff is 0.50, and the expected value is RM55,000. Utility function is given by U(I) = I Equation: pU(I1) + (1-p)U(I2) = U(EV RP) Compute the risk premium by solving for RP. what is the volume of a right circular cylinder with a base diameter of 18 yd and a height of 3 yd? enter your answer in the box. express your answer using . yd $\text{basic}$ Explain the difference between absolute and comparative systems.Provide an example of each. What are the advantages anddisadvantages to each type of system? what is the total profit (objective function value) at the current optimal solution Is social media a good source for new hires andrecruitment? Draw the schema mapping (logical database design) for the following part of ER diagram for train station database. When appropriate use the foreign key option. briefly explain using your own words the benefit and weakness of choosing a single frame format in atm networks. How does calculating the cost of beverages sold dif- fer from calculating the cost of food sold?Answer-List the three methods used for comparing actual versus standard costs and/or sales of bar products.Answer -List three devices that can be used to help control portions when mixing and serving alcoholic drinks. SUPPOSE U(x,y) = min (2x+y, x+2y) If neithER theoptimum x and y must be equal ZERO, and is unique, what must be thevalue of x in optimum if Px=2 Py=1 M=12? If a bag contains 8 red pens, 5 blue pens, and 10 black pens, what is the probability of drawing two pens of the same color blue, one at a time, as followed: (10 points) a. With replacement. b. Withou 1. Select a leader from the twentieth or twenty-first century (1901-today). 2. Using reliable sources, research this individual's life, accomplishments, work, and/or contributions to society. 3. You'll need to find and cite a minimum of two different sources for your paper. 4. Your written assignment should contain three sections, organized as follows: a. (75-150 words): Introduce your chosen leader. Provide background biographical information, and explain why you chose this person. b. (300-500 words): State whether you believe this person was born to be a leader or something or someone made them a leader. Then, support your positions with facts from his/her life, work, and achievements. You can include what other authorities have said or written about this person. Remember, your goal is to give evidence to support your claim that this leader was either "made" or "born." c. (50-75 words): For your conclusion, explain what can be learned from this leader. A real estate agent wants to use a multiple regression model to predict the selling price of a home (in thousands of dollars) using the following four x variables.Age: age of the home in yearsBath: total number of bathroomsLotArea: total square footage of the lot on which the house is builtTotRms_AbvGrd: total number of rooms (not counting bathrooms) in the houseThe agent runs the regression using Excel and gets the following output. Some of the numbers have been replaced by "?" You might not need to use these numbers, depending on the question. who makes the final decision on how to respond to food-handler illness? annexation and extraterritorial jurisdiction allow cities to do what?