Answer:
Pvalue = 0.1505
y = 0.550x1 + 3.600x2 + 7.300
Step-by-step explanation:
Given the data :
Study Hours GPA ACT Score
5 4 27
5 2 18
5 3 18
1 3 20
2 4 21
Using technology, the Pvalue obtained using the Fratio :
F = MSregression / MSresidual = 30.228571/ 8.190476 = 3.69
The Pvalue for the regression equation is:
Using the Pvalue from Fratio calculator :
F(1, 3), 3.69 = 0.1505
Using the Pvalue approach :
At α = 0.01
Pvalue > α ; Hence, we fail to reject H0 and conclude that ; There is not enough evidence to show that the relationship is statistically significant.
The regression equation :
y = A1x1 + A2x2 +... AnXn
y = 0.550x1 + 3.600x2 + 7.300
x1 and x2 are the predictor variables ;
y = predicted variable
Ms. Weaver plans to decorate the bulletin board in her classroom. She purchased 30 sheets of construction paper for $0.30 per sheet, 5 boxes of thumbtacks for $0.70 per box, and 4 framed pictures for $6.00 per picture. How much money did Ms. Weaver spend for the items?
Answer:
$36.5 money ms.weaver spent for the items
Please help, I’m running out of time. Please.
Answer:
which standard questions is it
change the following basis to Base 10 134 in base seven
Answer:
74 base 10.
Step-by-step explanation:
134 base 7 = 7^2 + 3*7 + 4
= 49 + 21 + 4
= 74 base 10
f(x) =x-4/x+5
and g(x) = 2x-1
Find the composition f•g
Step-by-step explanation:
2x-1 - (4/(2x-1)) + 5
2x^2 -4x -2 -4 + 10x - 5
2x^2 +6x -11
A town has a current population of 4,000. The population increased 4 percent per year for the past four years, Emergency response professionals
make up 3 percent of the town's population.
Part A
Write a function that represents the population (p) of the town in terms of the number of years (1) for the last four years.
Answer:
p=c(1+r)^t so the population will be 4679.43424 or rounded to 4679
Step-by-step explanation:
p=c(1+r)^t
p=4,000(1+.04)^t
p=4,000(1.04)^t
p=4,000(1.04)^4
p=4679.43424
p= the population you are solving for
c= the initial amount of the population
(1+r)= the rate of change
t= the period of time
The exponential equation that represents the population of the town in terms of the number of years : [tex]p=4000 (1+0.4)^{t}[/tex]
What is an exponential equation?An exponential equation is an equation with exponents where the exponent (or) a part of the exponent is a variable.
It is similar to the amount received after investing a certain amount compounded annually.
Given,
Initial population = 4000
Rate of increase = 4%
Let current population be p.
Let number of years passed be t.
The exponential equation will be: [tex]p=4000 (1+0.4)^{t}[/tex]
(The population of the town has grown exponentially. This means that:
Initial population = 4000
Population in year I = 4000 + 4% of 4000 = 4000(1 + 0.4)
Population in year II = 4000 + 4% of 4000(1 + 0.4) = 4000(1 + 0.4)(1+0.4)
and this goes on.)
Learn more about exponential equation here
https://brainly.com/question/23729449
#SPJ2
Kobe is a basketball player. He is able to make a free throw 70% of the time. What is the probability that Kobe makes his 10th free throw on his 14th shot
Answer:
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
Step-by-step explanation:
For each free throw, there are only two possible outcomes. Either he makes it, or he misses. The probability of making a free throw is independent of any other free throw, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He is able to make a free throw 70% of the time.
This means that [tex]p = 0.7[/tex]
What is the probability that Kobe makes his 10th free throw on his 14th shot?
9 of his first 13(P(X = 9) when n = 13), and then the 10th with 0.7 probability.
Thus
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 9) = C_{13,9}.(0.7)^{9}.(0.3)^{3} = 0.2337[/tex]
0.7*0.2337 = 0.1636
0.1636 = 16.36% probability that Kobe makes his 10th free throw on his 14th shot
Suppose your dean of admissions is considering surveying high school seniors about their perceptions of your school to design better informational brochures for them. What are the advantages and disadvantages of doing (a) telephone interviews and (b) an Internet survey of seniors who have requested information about the school
Answer and explanation:
Advantages of telephone interviews:
They are more convenient than face to face interviews
They are alot more cost-effective
There is a wider geographical access as you can reach people in other countries too
Disadvantages of telephone interviews:
Questions become has limited complexity as opposed to face to face interviews
It may be somewhat intrusive for customers and there could also be interference from noise in the background. Also bad connection issues.
Advantages of internet survey:
Increased geographical access leading to high response rate.
Alot more convenient and flexible than face to face interviews
Low cost advantages
Disadvantages of internet survey:
Inability for individuals who are not online to participate
Non response bias
Limited complexity of questions, usually close ended questions
A plumber charges $50 for the first visit plus $8 per hour of work. If the total bill is $290, how many hours did the plumber work?
30 hours
40 hours
80 hours
None of these choices are correct.
Answer:
Step-by-step explanation:
50 + 8x = 290
8x = 240
x = 30 hours
If the range of the coordinate transformation (, ) = (−2,−3 +1) is (4, −2), (2, −5), (−6, 4), what is the domain?
A. (-2, 1), (-1, 2), (3, -1)
B. (-8, 7), (-4, 16), (19, -11)
C. (-8, 1), (-4, 2), (19, -1)
D. (-2, 7), (-1, 16), (3, -11)
Consider the below figure attached with this question.
Given:
The transformation is:
[tex]f(x,y)=(-2x,-3y+1)[/tex]
The range is (4,-2), (2, −5), (−6, 4).
To find:
The domain of the transformation.
Solution:
We have,
[tex]f(x,y)=(-2x,-3y+1)[/tex]
For the point (4,-2),
[tex](-2x,-3y+1)=(4,-2)[/tex]
On comparing both sides, we get
[tex]-2x=4[/tex]
[tex]x=\dfrac{4}{-2}[/tex]
[tex]x=-2[/tex]
And,
[tex]-3y+1=-2[/tex]
[tex]-3y=-2-1[/tex]
[tex]-3y=-3[/tex]
[tex]y=\dfrac{-3}{-3}[/tex]
[tex]y=1[/tex]
So, the domain of (4,-2) is (-2,1).
Similarly,
For the point (2,-5),
[tex](-2x,-3y+1)=(2,-5)[/tex]
On comparing both sides, we get [tex]x=-1,y=2[/tex]. So, the domain of (2,-5) is (-1,2).
For the point (-6,4),
[tex](-2x,-3y+1)=(-6,4)[/tex]
On comparing both sides, we get [tex]x=3,y=-1[/tex]. So, the domain of (-6,4) is (3,-1).
So, the domain of the given transformation is (-2, 1), (-1, 2), (3, -1).
Therefore, the correct option is A.
find (f o g)(x)
f(x) = 5x+1, g(x)= *square root of x*
Step-by-step explanation:
Hey there!
Here;
f(x) = 5x + 1
g(x) = (√x)
Now;
fog(X) = f(g(x))
= f(√x)
= 5√x + 1
Therefore, fog(X) = 5√x + 1.
Hope it helps!
Mathematics I need help
Answer:
B
Step-by-step explanation:
Exclude C:
[tex] |x| [/tex]
is not curved
To shift right, minus inside the
[tex] |?| [/tex]
Thus
[tex] |x - 4| [/tex]
To shift up, add outside the
[tex] |?| [/tex]
Thus:
[tex] |x +4| + 2[/tex]
B
Brainliest please~
Chloe is working two summer jobs, landscaping and clearing tables. She must work no less than 12 hours altogether between both jobs in a given week. Write an inequality that would represent the possible values for the number of hours landscaping, ll, and the number of hours clearing tables, cc, that Chloe can work in a given week.
Answer:
[tex] L + C \ge 12 [/tex]
Step-by-step explanation:
L = hours landscaping
C = hours clearing tables
The sum of the hours must be no less than 12, so it must be 12 or more.
[tex] L + C \ge 12 [/tex]
tor given terms. Find how much the account needs to hold to make this possible. Round your answer to the nearest dollar. Regular withdrawal:2
3200 Interest rate:4.5 Frequency Time: daily for 16 years Account balance: $
Answer:
https://www.omnicalculator.com/finance/compound-interest
Step-by-step explanation:
this is a link to a compound interest calculator and it helped me with similar problems hope it helps you
Can anyone help please?
Answer:
h(t) = -16t(t-6)
h(2) = 128
Step-by-step explanation:
h(t) = -16t² + 96t
h(t) = -16t(t-6)
t = 3
h(2) = -16(2)(2 - 6)
h(2) = 128
The Happy Widget Company has a fixed cost of $1,163 each day to run their factory and a variable cost of $1.69 for each widget they produce.
Create a linear model for their daily cost.
How much does it cost them to produce 288 widgets?
Round your answer to the nearest cent.
This graph shows the solution to which inequality?
(32)
(-3.-6);
A ys 1/x - 2
B. y> fx-2
C. yzfx-2
***-2
In 2005, there were 14,100 students at college A, with a projected enrollment increase of 1000 students per year. In the same year, there were 34,350 students at college B, with a projected enrollment decline of 1250 students per year. According to these projections, when will the colleges have the same enrollment? What will be the enrollment in each college at that time?
Let A be college A and let B be College B
A= 14,100
Rule: 1 Year = +1,000 students
B= 34,350
Rule: -1250 per year
1st Answer: 2017
Notice: I didn't show the formula because I'm not %100 sure I'm kind of off so if this is incorrect I'm deeply sorry. I truly am. On the bright side, I think its correct.
(c) Construct a 99% confidence interval for u if the sample
size, n, is 35.
Answer:
The confidence interval is [tex](\overline{x} - 1.99\frac{\sigma}{\sqrt{35}}, \overline{x} + 1.99\frac{\sigma}{\sqrt{35}})[/tex], in which [tex]\overline{x}[/tex] is the sample mean and [tex]\sigma[/tex] is the standard deviation for the population.
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1 - 0.99}{2} = 0.005[/tex]
Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].
That is z with a pvalue of [tex]1 - 0.005 = 0.995[/tex], so Z = 2.575.
Now, find the margin of error M as such
[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]
In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.
In this question:
[tex]M = 1.99\frac{\sigma}{\sqrt{35}}[/tex]
The lower end of the interval is the sample mean subtracted by M, while upper end of the interval is the sample mean added to M. Thus, the confidence interval is [tex](\overline{x} - 1.99\frac{\sigma}{\sqrt{35}}, \overline{x} + 1.99\frac{\sigma}{\sqrt{35}})[/tex], in which [tex]\overline{x}[/tex] is the sample mean and [tex]\sigma[/tex] is the standard deviation for the population.
If f(x) = 3 - 4x, find f(1+a)
I am in the need of assistance thank you !
Step-by-step explanation:
f(x) = 3 - 4x
f(1+a)= 3-4(1+a)
=3-4+4a
=4a-1
how many numbers divisible by 5 are possible, show your calculation. (Its a other language so dont look at the text)
If 2(x + 3) - 27 = 3[7 - 2(x + 19)], what is 2x - 5?
Answer:
D = -23
Step-by-step explanation:
Answer:
D) -23
Step-by-step explanation:
Definitely
I need help finding this solution.
9514 1404 393
Answer:
-16∛2
Step-by-step explanation:
It can be helpful to have some familiarity with the cubes of small integers. For example, ...
2³ = 8
6³ = 216
With this in mind you recognize the expression as ...
3∛((-6)³(2)) +∛((2³)(2))
= 3(-6)∛2 +2∛2
= (-18 +2)∛2
= -16∛2
A sports company has the following production function for a certain product, where p is the number of units produced with x units of labor and y units of capital.
p(x,y)=2500x1/5y1/5
Find:
1. Number of units produced with 26 units of labor and 1333 units of capital.
2. Marginal productivities.
3. Evaluate the marginal productivities at x=25, and y=1333
Answer:
(a) 20226 units
(b) Marginal productivities
[tex]P_x =2500x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex]
[tex]P_y =2500 x^\frac{1}{5} y^{-\frac{4}{5}}[/tex]
(c) Evaluation of the marginal productivities
[tex]P_x =803[/tex]
[tex]P_y = 15[/tex]
Step-by-step explanation:
Given
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex]
Solving (a): P(x,y) when x = 26 and y = 1333
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex] becomes
[tex]P(26,1333) = 2500*26^\frac{1}{5}*1333^\frac{1}{5}[/tex]
[tex]P(26,1333) = 20226[/tex] --- approximated
Solving (b): The marginal productivities
To do this, we simply calculate Px and Py
Differentiate x to give Px, so we have:
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex] becomes
[tex]P_x =2500 * x^{\frac{1}{5}-1} & y^\frac{1}{5}[/tex]
[tex]P_x =2500 * x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex]
[tex]P_x =2500x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex]
Differentiate y to give Py, so we have:
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex] becomes
[tex]P_y =2500 * x^\frac{1}{5} & y^{\frac{1}{5}-1}[/tex]
[tex]P_y =2500 x^\frac{1}{5} y^{-\frac{4}{5}}[/tex]
Solving (c): Px and Py when x = 25 and y = 1333
[tex]P_x =2500x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex] becomes
[tex]P_x =2500 * 25^{-\frac{4}{5}} * 1333^\frac{1}{5}[/tex]
[tex]P_x =803[/tex] --- approximated
[tex]P_y =2500 x^\frac{1}{5} y^{-\frac{4}{5}}[/tex] becomes
[tex]P_y =2500 * 25^\frac{1}{5} * 1333^\frac{-4}{5}[/tex]
[tex]P_y = 15[/tex]
X is less than or equal to 2 Write in interval notation.
Amy needs to mail a gift card to a friend. She uses 47-cent stamps and 6-cent stamps to pay $2.42 in postage. How many of each stamp did Amy use?
Answer:
Answer:Amy used 4 41-cent stamps and 8 6-cent stamps.
Step-by-step explanation:
Let x represent the number of 41-cent stamps that Amy used. Let y represent the number of 6-cent stamps that Amy used.
41 cents = 41/100 = $0.41
6 cents = 6/100 = $0.06
She uses 41-cent stamps and 6-cent stamps to pay $2.12 in postage. It means that
0.41x + 0.06y = 2.12
Multiplying through by 100, it becomes
41x + 6y = 212
6y = 212 -41x
We would test for corresponding values of x and y that satisfies the equation and they must be whole numbers.
If x = 3,
6y = 212 - 41 × 3 = 89
y = 89/6 = 14.8333
If x = 4,
6y = 212 - 41 × 4 = 48
y = 48/6 = 8
Answer:Amy used 4 41-cent stamps and 8 6-cent stamps.
Step-by-step explanation:
Let x represent the number of 41-cent stamps that Amy used. Let y represent the number of 6-cent stamps that Amy used.
41 cents = 41/100 = $0.41
6 cents = 6/100 = $0.06
She uses 41-cent stamps and 6-cent stamps to pay $2.12 in postage. It means that
0.41x + 0.06y = 2.12
Multiplying through by 100, it becomes
41x + 6y = 212
6y = 212 -41x
We would test for corresponding values of x and y that satisfies the equation and they must be whole numbers.
If x = 3,
6y = 212 - 41 × 3 = 89
y = 89/6 = 14.8333
If x = 4,
6y = 212 - 41 × 4 = 48
y = 48/6 = 8
I want my answer please help
Answer:
This is pretty simple
Step-by-step explanation:
So the only thing you need to know about negatives and positives is that if your multiplying or dividing a number with 1 negative in the expreession/equation The answer will always result in a negative. If its 2 negatives its always positive. Thats all you need to know and then just solve it from there.
Answer:
See explanation and picture below.
Step-by-step explanation:
In both multiplication and division of 2 numbers, different signs give you negative and equal signs give you positive.
In other words, positive & positive or negative and negative give you a positive answer.
Negative and positive or positive and negative give you negative answer.
Im asking a question because yes
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
ANSWER WITH A, B, C, OR D.
A fruit stand has to decide what to charge for their produce. They need $10 for 4 apples and 4 oranges. They also need $12 for 6 apples and 6 oranges. We put this information into a system of linear equations.
Can we find a unique price for an apple and an orange?
Choose 1 answer:
A
Yes; they should charge $1.00 for an apple and $1.50 for an orange.
B
Yes; they should charge $1.00 for an apple and $1.00 for an orange.
C
No; the system has many solutions.
D
No; the system has no solution.
Answer:
I believe the answer would be A!
Step-by-step explanation:
If you need $10 total, then charging $1 for 4 apples would get you $4, and charging $1.50 for 4 oranges would get you $6, totaling $10!
Find the perimeter of a rectangular tile with length 1/5ft and width 3/14ft
Answer:
[tex]\frac{29}{35}[/tex] ft (29/35 ft)
Step-by-step explanation:
1. LCDPerimeter: [tex]2w+2l[/tex]
[tex]2(\frac{1}{5})+2(\frac{3}{14})=\frac{2}{5} +\frac{6}{14}[/tex]
Since [tex]\frac{6}{14} = \frac{3}{7}[/tex], the LCD would be 35
2. SolvingNew equation: [tex]\frac{14}{35} +\frac{15}{35} =\frac{29}{35}[/tex]
[tex]\frac{29}{35}[/tex]
Hope this helped! Please mark brainliest :)
One number is 1/4 of another number. The sum of the two numbers is 5. Find the two numbers. Use a comma to separate your answer
Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t > 0.
ty'' + (2t - 1)y' - 2y = 7t2 e-2t y1 = 2t - 1, y2 = e-2t
Recall that variation of parameters is used to solve second-order ODEs of the form
y''(t) + p(t) y'(t) + q(t) y(t) = f(t)
so the first thing you need to do is divide both sides of your equation by t :
y'' + (2t - 1)/t y' - 2/t y = 7t
You're looking for a solution of the form
[tex]y=y_1u_1+y_2u_2[/tex]
where
[tex]u_1(t)=\displaystyle-\int\frac{y_2(t)f(t)}{W(y_1,y_2)}\,\mathrm dt[/tex]
[tex]u_2(t)=\displaystyle\int\frac{y_1(t)f(t)}{W(y_1,y_2)}\,\mathrm dt[/tex]
and W denotes the Wronskian determinant.
Compute the Wronskian:
[tex]W(y_1,y_2) = W\left(2t-1,e^{-2t}\right) = \begin{vmatrix}2t-1&e^{-2t}\\2&-2e^{-2t}\end{vmatrix} = -4te^{-2t}[/tex]
Then
[tex]u_1=\displaystyle-\int\frac{7te^{-2t}}{-4te^{-2t}}\,\mathrm dt=\frac74\int\mathrm dt = \frac74t[/tex]
[tex]u_2=\displaystyle\int\frac{7t(2t-1)}{-4te^{-2t}}\,\mathrm dt=-\frac74\int(2t-1)e^{2t}\,\mathrm dt=-\frac74(t-1)e^{2t}[/tex]
The general solution to the ODE is
[tex]y = C_1(2t-1) + C_2e^{-2t} + \dfrac74t(2t-1) - \dfrac74(t-1)e^{2t}e^{-2t}[/tex]
which simplifies somewhat to
[tex]\boxed{y = C_1(2t-1) + C_2e^{-2t} + \dfrac74(2t^2-2t+1)}[/tex]