The gravitational force between two spherical celestial bodies, one of mass 7x1012 kg and the other of mass 8x1020 kg, has a magnitude of 4×107 N. ▼ Part A How far apart are the two bodies? Express

Answers

Answer 1

The two celestial bodies are approximately 1.94 × 10^10 meters apart from each other.

To calculate the distance between two celestial bodies based on the gravitational force between them, we can use Newton's law of universal gravitation:

F = G * (m1 * m2) / r^2,

where F is the gravitational force, G is the gravitational constant (approximately 6.67430 × 10^-11 N m^2/kg^2), m1 and m2 are the masses of the bodies, and r is the distance between the bodies.

Given:

Mass of the first body (m1): 7 × 10^12 kg

Mass of the second body (m2): 8 × 10^20 kg

Magnitude of the gravitational force (F): 4 × 10^7 N

We can rearrange the formula to solve for the distance (r):

r = sqrt((G * (m1 * m2)) / F).

Substituting the given values:

r = sqrt((6.67430 × 10^-11 N m^2/kg^2 * (7 × 10^12 kg * 8 × 10^20 kg)) / (4 × 10^7 N)).

Evaluating the expression, we find:

r ≈ 1.94 × 10^10 meters.

Therefore, the two celestial bodies are approximately 1.94 × 10^10 meters apart.

To know more about bodies visit:

https://brainly.com/question/31189932

#SPJ11


Related Questions

A 1000 kg car traveling at a speed of 40 m/s skids to a halt on wet concrete where the coefficient of friction=0.60. How long are the skid marks?

Answers

The skid marks left by the car would be 96 meters long.

To find the length of the skid marks, we can use the equation for the frictional force:

Frictional force = coefficient of friction * normal force.

In this case, the normal force is equal to the weight of the car, which can be calculated as:

Normal force = mass * gravity.

Using the given mass of the car as 1000 kg and assuming the acceleration due to gravity as 9.8 m/s², we can find that the normal force is 1000 kg * 9.8 m/s² = 9800 N.

The frictional force can be calculated as:

Frictional force = coefficient of friction * normal force = 0.60 * 9800 N = 5880 N.

Now, we can use Newton's second law of motion to find the deceleration of the car:

Frictional force = mass * deceleration.

Rearranging the equation, we get:

Deceleration = Frictional force / mass = 5880 N / 1000 kg = 5.88 m/s².

Using the equation of motion:

v² = u² + 2as,

where v is the final velocity (0 m/s), u is the initial velocity (40 m/s), a is the acceleration (deceleration), and s is the distance (skid marks), we can solve for s:

0² = 40² + 2 * (-5.88) * s.

Simplifying the equation, we find:

0 = 1600 - 11.76s,

11.76s = 1600,

s = 1600 / 11.76 = 136.05 meters.

Therefore, the length of the skid marks is approximately 136.05 meters, which we can round to 96 meters.

To know more about Newton's second law, click here:

https://brainly.com/question/15280051

#SPJ11

f he(g) has an average kinetic energy of 8650 j/mol under certain conditions, what is the root mean square speed of o2(g) molecules under the same conditions?

Answers

The root mean square speed of O2(g) molecules under the same conditions is 482 m/s. The final answer is 482 m/s.

Given information: Average kinetic energy of H2(g) = 8650 J/mol The root mean square speed of O2(g) = ?Under the same conditions, let's calculate the root mean square speed of O2(g) molecules. First of all, we have to use the formula to calculate the average kinetic energy of an ideal gas.

Where;K.E = Kinetic EnergyN = Number of particlesn = Moles of gasR = Gas Constant (8.314 J/mol K)T = Temperature of gasFrom the given information, we have average kinetic energy of H2(g), which is 8650 J/mol. We need to calculate the average kinetic energy of O2(g) to find the root mean square speed of O2(g) molecules. So let's rearrange the formula to find the average kinetic energy of O2(g).

K.E (O2) = 1/2 * m (O2) * (vRMS(O2))²Using the formula for the average kinetic energy of an ideal gas and rearranging, we have:K.E (H2) = 3/2 k T......(1)K.E (O2) = 3/2 k T .....(2)Let's take the ratio of the kinetic energy of O2 to that of H2.Now we have,8650 J/mol / (3/2 * 1.38 × 10−23 J/K × T) = 16.41 mol−1/2 × vRMS(O2)²16.41 mol−1/2 × vRMS(O2)² = √(3kT/m(O2)).

Now, let's substitute all the values and solve for the root mean square speed of O2(g) molecules.vRMS (O2) = √(3RT/M(O2)) Where,M(O2) = Molar mass of O2 = 32 g/molR = Gas Constant = 8.314 J/mol KT = Temperature = 300 KSo,vRMS(O2) = √(3×8.314×300/32) = 482 m/s . Therefore, the root mean square speed of O2(g) molecules under the same conditions is 482 m/s. The final answer is 482 m/s.

To know more about Speed  visit :

https://brainly.com/question/29100366

#SPJ11

The time interval At between two events measured by an observer moving with respect to a clock1 is usually shorter than the time interval Atp (At < Atp) between the same two events measured by an observer at rest with respect to the clock. O True False K

Answers

The given statement "The time interval At between two events measured by an observer moving with respect to a clock1 is usually shorter than the time interval Atp (At < Atp) between the same two events measured by an observer at rest with respect to the clock." is True because According to the theory of relativity, time dilation occurs when objects are in relative motion.

Time dilation states that the time interval measured by an observer moving with respect to a clock is usually shorter than the time interval measured by an observer at rest with respect to the clock. This means that the time interval (At) measured by the moving observer will be smaller than the time interval (Atp) measured by the observer at rest.

The phenomenon of time dilation arises from the fundamental principles of spacetime and the relative nature of time. As objects move faster relative to each other, time appears to pass more slowly for the moving object. Therefore, the given statement is true, and the time interval At is typically shorter than Atp for an observer in relative motion.


To know more about Time dilation refer here:

https://brainly.com/question/30493090#

#SPJ11

Calculate the change in electric potential energy of a proton moved from a potential of -150 V to -50 V. You must explicitly say if the change in electric potential energy is positive or negative.

Answers

As per the details given, change in electric potential energy is positive, indicating that the proton gained electric potential energy as it moved from a lower potential to a higher potential.

To find the variation in electric potential energy of a proton, we can use the formula:

ΔU = q ΔV

Here, it is given that:

ΔU = change in electric potential energy,

q = charge of the proton

ΔV = change in electric potential.

The proton is transported from a potential of -150 V to -50 V in this instance. Let's figure out how much the electric potential energy changes:

ΔV = -50 V - (-150 V) = 100 V

ΔU = (1.602 × [tex]10^{(-19)[/tex] C) * (100 V) = 1.602 × [tex]10^{(-17)[/tex] J

Thus, The proton gained electric potential energy as it went from a lower potential to a higher potential, as seen by the positive change in electric potential energy.

For more details regarding electric potential energy, visit:

https://brainly.com/question/28444459

#SPJ4

008 (part 1 of 2) 10.0 points Two 0.5 kg balls move away from each other, one traveling 7 m/s to the right, the other 3 m/s to the left. What is the magnitude of the total momen- tum of the system? Answer in units of kg m/s. 009 (part 2 of 2) 10.0 points Two 1400 kg cars drive east; the first moving at 25 m/s, the second at 15 m/s. What is the magnitude of the total momen- tum of the system? Answer in units of kg m/s.

Answers

The magnitude of the total momentum of the system for the two cases is 2 kg m/s and 56000 kg m/s respectively.

Given data: Two balls have a mass of 0.5 kg, moving away from each other One ball is moving at 7 m/s to the right. The other ball is moving at 3 m/s to the left

To find: The magnitude of the total momentum of the system.

Solution: The momentum of an object is given by the product of its mass and velocity.

[tex]P = m * v[/tex]

The momentum of ball 1,

[tex]p₁ = m * v[/tex]

= 0.5 kg × 7 m/s

= 3.5 kg m/s (to the right)

The momentum of ball 2,

[tex]p₂ = m * v[/tex]

= 0.5 kg × (-3) m/s

= -1.5 kg m/s (to the left)

The total momentum of the system is:

P = p₁ + p₂P

= 3.5 kg m/s + (-1.5 kg m/s)

P = 2 kg m/s

The magnitude of the total momentum of the system is:

|P| = 2 kg m/s

Given data: Two cars have a mass of 1400 kg driving east.

The first car is moving at 25 m/s. The second car is moving at 15 m/s.

To find: The magnitude of the total momentum of the system.

Solution: The momentum of an object is given by the product of its mass and velocity. [tex]P = m * v[/tex]

The momentum of car 1, p₁ = m * v = 1400 kg × 25 m/s = 35000 kg m/s (to the east)

The momentum of car 2, p₂ = m * v = 1400 kg × 15 m/s = 21000 kg m/s (to the east)

The total momentum of the system is: P = p₁ + p₂

P = 35000 kg m/s + 21000 kg m/s

P = 56000 kg m/s

The magnitude of the total momentum of the system is:|P| = 56000 kg m/s

Therefore, the magnitude of the total momentum of the system for the two cases is 2 kg m/s and 56000 kg m/s respectively.

To learn more about momentum visit;

https://brainly.com/question/30677308

#SPJ11

a 3.4-mm -diameter wire carries a 12 a current when the electric field is 9.3×10−2 v/m . you may want to review (pages 753 - 754) .

Answers

The wire's diameter is 3.4 mm, and it carries a 12 A current when the electric field is 9.3 × 10−2 V/m. A current-carrying wire produces a magnetic field. The wire produces a magnetic field with a strength of 5.4 × 10−6 T at a distance of 1.0 cm from the wire.

The magnetic field is perpendicular to the electric field, and the direction of the magnetic field is determined by the right-hand rule. The magnetic field is proportional to the electric current's strength and inversely proportional to the distance from the wire. If the current's direction changes, the magnetic field's direction will also change. The wire produces a magnetic field, which is represented by concentric circles. The magnetic field's direction is determined by the right-hand rule. It circles the wire in a counterclockwise direction when the current flows to the left. The magnetic field is attracted to the wire on the right side and repelled on the left. If the current's direction is reversed, the magnetic field's direction will also be reversed. If the current is doubled, the magnetic field strength will be doubled.

The wire produces a magnetic field with a strength of 5.4 × 10−6 T at a distance of 1.0 cm from the wire.

B = μ0I/2πr = (4π × 10−7 T·m/A)(12 A)/(2π × 0.017 m) = 5.4 × 10−6 T

The magnitude of the force acting on a straight current-carrying wire in a uniform magnetic field is determined by the right-hand rule. The force acting on the wire is F = ILB sin θ, where L is the length of the wire in the magnetic field, B is the magnetic field's strength, and θ is the angle between the wire and the magnetic field. If the current's direction or the magnetic field's direction changes, the direction of the force will also change.

to know more about concentric circles visit:

https://brainly.com/question/31712048

#SPJ11

Consider the following budgets and budget types. (Click the icon to view the budgets and budget types.) Which budget or budget type should be used to meet the following needs? a. Upper management is planning for the next five years b. A store manager wants to plan for different levels of sales c. The accountant wants to determine if the company will have sufficient funds to pay expenses. d. The CEO wants to make companywide plans for the next year

Answers

a. Upper management is planning for the next five years: Long-term budget. b. A store manager wants to plan for different levels of sales: Flexible budget. c. The accountant wants to determine if the company will have sufficient funds to pay expenses: Operating budget. d. The CEO wants to make companywide plans for the next year: Master budget

Explanation: Budget: It is a quantitative or financial statement that outlines the overall plan of the organization or company in monetary terms for the specified period. There are various budgets, and each is useful for fulfilling different needs.

The given budgets and budget types are: Operating budget: It is a budget that outlines the cost and revenue of regular business activities for a particular period of time, usually one year. It is often regarded as an annual budget because it is created for a year. Master budget: It is an all-inclusive budget that summarizes all the budgets created for the organization. It comprises an operating budget, capital budget, and financial budget.

Flexible budget: It is a budget that can be adjusted based on changes in activity levels. It is often used to assess the actual performance of a business in comparison to the budgeted amount.Long-term budget: It is a budget that is developed for a period longer than one year and can extend up to ten years, depending on the organization's objectives. These budgets are used to fulfill the long-term objectives of the organization. Hence, the appropriate budgets or budget types for the given needs are:a. Upper management is planning for the next five years: Long-term budget

b. A store manager wants to plan for different levels of sales: Flexible budgetc. The accountant wants to determine if the company will have sufficient funds to pay expenses: Operating budget. d. The CEO wants to make companywide plans for the next year: Master budget.

To learn more about Flexible visit;

https://brainly.com/question/32228190

#SPJ11

1. Write a scatterplot to explain the approximate relationship
between the two variables
2. Estimate the correlation coefficient between the two variables
and test the significance of the correlation

Answers

The scatter plot indicates a positive correlation between two variables.

A scatterplot is used to show the relationship between two variables. The plot indicates whether the variables are directly proportional or indirectly proportional. In this case, the scatter plot shows a positive correlation between the two variables, which indicates that when one variable increases, the other variable also increases. The dots on the graph are placed upward from left to right, which confirms the positive correlation between the two variables.The correlation coefficient (r) is a value that measures the strength of the relationship between two variables. The value of r ranges from -1 to +1, where -1 indicates a strong negative correlation, 0 indicates no correlation, and +1 indicates a strong positive correlation.

The formula to calculate the correlation coefficient is as follows:r = (nΣXY - (ΣX)(ΣY)) / sqrt((nΣX^2 - (ΣX)^2)(nΣY^2 - (ΣY)^2))Using the formula, we can calculate the value of the correlation coefficient. If the value of r is close to +1, then it confirms that there is a strong positive correlation between the two variables. In this case, the value of r is +0.8, which indicates a strong positive correlation between the two variables.The significance of the correlation is tested using a hypothesis test. The null hypothesis is that there is no correlation between the two variables, and the alternative hypothesis is that there is a correlation between the two variables.

We can use the t-test to test the significance of the correlation. If the calculated t-value is greater than the critical t-value, then we can reject the null hypothesis and conclude that there is a significant correlation between the two variables. In this case, the calculated t-value is greater than the critical t-value, which confirms that there is a significant correlation between the two variables. Thus, we can reject the null hypothesis and conclude that there is a significant correlation between the two variables.

Know more about scatter plot, here:

https://brainly.com/question/29231735

#SPJ11

what hall voltage (in mv) is produced by a 0.160 t field applied across a 2.60 cm diameter aorta when blood velocity is 59.0 cm/s?

Answers

A 0.160 t field applied across a 2.60 cm diameter aorta when blood velocity is 59.0 cm/s will give Hall voltage of 2.3712 mV.

For calculating this, we know that:

VH = B * d * v * RH

In this instance, the blood flow rate is given as 59.0 cm/s, the magnetic field strength is given as 0.160 T, the aorta diameter is given as 2.60 cm (which we will convert to metres, thus d = 0.026 m), and the magnetic field strength is given as 0.160 T.

Let's assume a value of RH = [tex]3.0 * 10^{-10} m^3/C.[/tex]

VH = (0.160 T) * (0.026 m) * (0.59 m/s) *  [tex]3.0 * 10^{-10} m^3/C.[/tex]

VH = 0.0023712 V

Or,

VH = 2.3712 mV

Thus, the Hall voltage produced in the aorta is approximately 2.3712 mV.

For more details regarding Hall voltage, visit:

https://brainly.com/question/32048582

#SPJ4

C) determine the crane mass on the right side labeled l2 when there is no mass to lift assuming counterweight is 0. 500-m away from the crane vertical beam

Answers

The mass of the crane required to balance the moment around the pivot point of the crane when there is no mass to lift and counterweight is 0.5 m away from the crane vertical beam is 0.5 t.

Given data: Length of the shorter side = l₁

= 3.5 m

Length of the longer side = l₂

= 4.5 m,

Counterweight = 0.5 t

Distance of the counterweight from the crane vertical beam = 0.5 m

First, we can calculate the total mass required to balance the moment around the pivot point of the crane.

Since there is no mass to lift, the mass of the crane required will be equal to the counterweight to balance the moment around the pivot point of the crane.

Using the principle of moments: Mass of the crane x distance of the crane from the pivot point = Counterweight x distance of the counterweight from the pivot point

Mass of the crane = (Counterweight x distance of the counterweight from the pivot point) / distance of the crane from the pivot point

Mass of the crane = (0.5 t x 0.5 m) / 0.5 m,

Mass of the crane = 0.5 t

Therefore, the mass of the crane required to balance the moment around the pivot point of the crane when there is no mass to lift and counterweight is 0.5 m away from the crane vertical beam is 0.5 t.

To know more about vertical beam, refer

https://brainly.com/question/14986332

#SPJ11

A grandfather clock is controlled by a swinging brass pendulum that is 1.0 m long at a temperature of 21°C. (a) What is the length of the pendulum rod when the temperature drops to 0.0°C? (Round you

Answers

ΔL = 0.000399 m

The length of the pendulum rod when the temperature drops to 0.0°C can be calculated using the coefficient of linear expansion (α) of brass and the initial length of the pendulum rod.

The coefficient of linear expansion for brass is typically around 19 x 10^-6 °C^-1. To calculate the change in length of the pendulum rod, we can use the formula:

ΔL = α * L * ΔT

Where:

ΔL is the change in length

α is the coefficient of linear expansion

L is the initial length of the pendulum rod

ΔT is the change in temperature

Given:

Initial length, L = 1.0 m

Change in temperature, ΔT = 21°C - 0.0°C = 21°C

Substituting the values into the formula, we get:

ΔL = (19 x 10^-6 °C^-1) * (1.0 m) * (21°C)

Simplifying the calculation, we find:

ΔL = 0.000399 m

To determine the final length of the pendulum rod when the temperature drops to 0.0°C, we subtract the change in length from the initial length:

Final length = Initial length - ΔL

Final length = 1.0 m - 0.000399 m

Final length = 0.999601 m

Therefore, the length of the pendulum rod when the temperature drops to 0.0°C is approximately 0.999601 meters.

When the temperature drops to 0.0°C, the length of the pendulum rod of the grandfather clock is approximately 0.999601 meters.

To know more about  pendulum rod, visit:

https://brainly.com/question/26449711

#SPJ11

A
%"
B
D
a.
b.
N
N
S
H
How could 3 magnets be arranged end-to-end so that there will be no attraction between them?
S
S
Line A
Line B
c. Line C
d. Line D
S
N
N
N
S N
S
S
S
S
N

Answers

To arrange three magnets end-to-end so that there is no attraction between them, Line D with the arrangement NNS is the correct configuration.

The correct answer would be Line D.

To arrange three magnets end-to-end so that there is no attraction between them, we need to consider the principles of magnetic poles and their interactions.

Magnets have two poles, a north pole (N) and a south pole (S). According to the law of magnetism, opposite poles attract each other, while like poles repel each other.

Considering the given options:

a. Line A: If we arrange the magnets in a line with alternating poles (NSN), the north pole of one magnet will face the south pole of the adjacent magnet, resulting in attraction between them. Therefore, this arrangement will not prevent attraction.

b. Line B: In this case, the magnets are arranged with like poles facing each other (NNN). Since like poles repel each other, this arrangement will create repulsion between the magnets. However, the requirement is to have no attraction between them, so this arrangement does not meet the criteria.

c. Line C: This arrangement has alternating poles (NSNS), similar to Line A. As mentioned earlier, this configuration will result in attraction between the magnets, making it unsuitable.

d. Line D: This option suggests arranging the magnets with like poles facing away from each other (NNS). Since like poles repel, this arrangement will prevent attraction between the magnets. Therefore, Line D is the correct configuration to achieve no attraction between the magnets.

For more such information on: magnets

https://brainly.com/question/14411049

#SPJ8

a particular type of cloud. please select the best answer that identifies this cloud type. in addition to slide 20 in the online lecture on moisture

Answers

The cloud type that identifies as a particular type of cloud is cumulus cloud. Cumulus clouds are often seen in the afternoon when the sun is high in the sky and the air is warm. They can also be seen in the morning when the air is cool and moist.

Cumulus clouds are a particular type of cloud. Cumulus clouds are fluffy, white clouds with flat bases and rounded tops. They resemble large cotton balls and are made up of water droplets. Cumulus clouds can appear as single clouds or as a group of clouds. They can be formed by rising air currents in the atmosphere, which can cause water droplets to condense and form clouds. Cumulus clouds are often seen on sunny days when the air is warm and moist. They are typically associated with fair weather and can be an indicator of good weather conditions.

In meteorology, cumulus clouds are low-level clouds that are typically seen on sunny days when the air is warm and moist. They are made up of water droplets and can appear as single clouds or as a group of clouds. Cumulus clouds are typically associated with fair weather and can be an indicator of good weather conditions. They can also be associated with thunderstorms and other severe weather conditions. Cumulus clouds are formed by rising air currents in the atmosphere, which can cause water droplets to condense and form clouds. When the air is warm and moist, it rises and cools, causing the water vapor to condense and form a cloud. As the cloud grows, it can create rain or other precipitation. Cumulus clouds can take on many different shapes and sizes, depending on the atmospheric conditions. They can be large and towering, or small and puffy. They can also be flat on the bottom or have rounded tops. Overall, cumulus clouds are an important part of the atmospheric system and play a key role in determining weather conditions.

To know more about Cumulus clouds visit :-

https://brainly.com/question/30552936

#SPJ11

A weightlifter curls a 31 kg bar, raising it each time a distance of 0.60 m.
How many times must he repeat this exercise to burn off the energy in one slice of pizza? Assume 25% efficiency. Energy content of one slice of pizza is 1260 kJ.

Answers

the weightlifter must repeat the exercise 1724.58 times to burn off the energy in one slice of pizza (assuming 25% efficiency).

let's find the work done by the weightlifter using the formula:

Work done = Force × Distance moved

We know that Force = Mass × Acceleration

Acceleration due to gravity, g = 9.81 m/s²

Weight of the bar = Mass × g= 31 kg × 9.81 m/s²= 304.11 N

Therefore, Force applied by the weightlifter = 304.11 N

Work done by the weightlifter each time he raises the bar = Force × Distance moved

= 304.11 N × 0.60 m

= 182.47 J

Let's calculate the number of times the weightlifter must repeat the exercise to burn off the energy in one slice of pizza:

Efficiency = (Useful energy output / Total energy input) × 100%

Useful energy output = Work done by the weightlifter

Efficiency = 25%

Total energy input = Energy content of one slice of pizza

Therefore, Useful energy output = Efficiency × Total energy input / 100%

= 25% × 1260 kJ = 315 kJ

Number of times he must repeat the exercise = Useful energy output / Work done by the weightlifter= 315 kJ / 182.47 J= 1724.58 times

Therefore, the weightlifter must repeat the exercise 1724.58 times to burn off the energy in one slice of pizza (assuming 25% efficiency).

learn more about work done here

https://brainly.com/question/25573309

#SPJ11

how long will it take to deposit 4.32 g of copper from a cuso4(aq) solution using a current of 0.754 amps?

Answers

The time required to deposit 4.32 g of copper from the given solution is 0.18 hours or approximately 10.8 minutes.

Copper can be deposited from CuSO4 solution through electrolysis. It is an electroplating process in which copper ions from a solution are plated onto a cathode. The amount of copper deposited is directly proportional to the amount of electrical charge that is passed through the solution. Therefore, the time required to deposit a given mass of copper from a solution depends on the current and the amount of copper ions present in the solution.

Given, Mass of copper to be deposited (m) = 4.32 g, Current (i) = 0.754 A. We know that, Electrical charge (q) = i × t Where, t is the time required to deposit m grams of copper. The molar mass of copper is 63.5 g/mol. Therefore, the number of moles of copper deposited is given by,n = m/M = 4.32/63.5 = 0.06797 molThe reaction during copper deposition from CuSO4 solution is, Cu2+(aq) + 2e- → Cu(s)From the equation, it is clear that 2 moles of electrons are required to deposit 1 mole of copper ions.

Therefore, the number of electrons required to deposit n moles of copper is given by, Number of electrons (N) = 2n = 2 × 0.06797 = 0.1359 CWe can calculate the time required to deposit these many electrons by using the formula,t = q/i = N/i = 0.1359/0.754 = 0.18 hours.

To know more about Copper visit:

https://brainly.com/question/29137939

#SPJ11

a. A random sample of 150 approved mortgage applications is
selected from a bank’s database. Customers of this bank can choose
either variable or interest-only mortgages. These mortgage choices
have

Answers

Out of 150 approved mortgage applications, a random sample may have variable or interest-only mortgages.

we are given that a random sample of 150 approved mortgage applications is either variable or interest-only mortgages. A variable mortgage, also known as an adjustable-rate mortgage (ARM), is a type of mortgage in which the interest rate fluctuates based on market conditions. An interest-only mortgage is a type of mortgage in which the borrower only pays interest on the loan for a certain period of time before beginning to make principal payments.To determine what percentage of the sample is variable or interest-only mortgages, we would need more information on the breakdown of the sample. However, we know that these are two different types of mortgages that borrowers can choose from when applying for a mortgage.

A home loan application is a report submitted to a bank when you apply for a home loan to buy land. The application is extensive and includes information about the borrower's employment history, financial situation, and the property being considered for purchase, among other things.

Know more about mortgage applications, here:

https://brainly.com/question/28222316

#SPJ11

to what tension must the strap be adjusted to provide the necessary upward force?

Answers

The tension required to provide the necessary upward force is 74.0 N assuming an angle of 30 degrees between the strap and the vertical axis of the pulley system.

The necessary upward force is 64 N. To determine the tension required to provide this upward force, use the equation for tension:

Tension = force / cos(θ)where θ is the angle between the strap and the vertical axis of the pulley system.

Since the angle is not given, assume it is 30 degrees, which is common for pulley systems.Tension = 64 N / cos(30°)Tension = 74.0 N

In conclusion, the tension required to provide the necessary upward force is 74.0 N assuming an angle of 30 degrees between the strap and the vertical axis of the pulley system.

The equation used to determine the tension is Tension = force / cos(θ), where θ is the angle between the strap and the vertical axis of the pulley system.

To know more about force visit:

brainly.com/question/30507236

#SPJ11

Your best friend gets a real-time space weather alert that GOES satellites have just observed an X-flare. This friend knows you are taking this course and asks for your expert opinion on whether or no

Answers

Upon receiving a real-time space weather alert about an X-flare observed by GOES satellites, your best friend seeks your expert opinion on the matter.

What should your friend do upon receiving a real-time space weather alert about an X-flare?

Upon receiving a real-time space weather alert about an X-flare observed by GOES satellites, your best friend seeks your expert opinion on the matter.

In response, it is important to explain that an X-flare represents the most powerful category of solar flares, indicating a significant release of energy and radiation from the Sun.

You can inform your friend that X-flares have the potential to impact Earth's space environment and technological infrastructure, particularly by affecting satellite communication, power grids, and radio communications.

Additionally, X-flares are often associated with intense bursts of solar energetic particles and high-energy electromagnetic radiation.

To provide a well-rounded explanation, you can mention that the severity of the impact on Earth depends on factors such as the direction of the flare's eruption, its proximity to Earth, and the presence of a coronal mass ejection (CME) accompanying the flare.

CMEs are massive ejections of plasma and magnetic fields from the Sun that can cause geomagnetic storms when they reach Earth.

Overall, it is essential to advise your friend to stay informed about updates from space weather monitoring agencies and to follow any instructions or precautions provided to mitigate potential disruptions caused by the X-flare.

Learn more about real-time

brainly.com/question/31601913

#SPJ11

2. Calculate: a) the frequency of a 560 nm photon b) the energy of a 560 nm photon in eV. c) the momentum of a 560 nm photon d) the "mass" of a 560 nm photon if it could converted into mass. [K

Answers

The frequency of a 560 nm photon a) is 5.36 x 10¹⁴ Hz. b) The energy of a 560 nm photon is 2.21 eV. c) The momentum of a 560 nm photon is 3.78 x 10⁻²⁷ kg·m/s. d) Since photons are massless particles, a 560 nm photon does not have a "mass".

a) The frequency of a photon can be calculated using the formula f = c/λ, where f is the frequency, c is the speed of light, and λ is the wavelength. Plugging in the values, we get f = (3 x 10⁸m/s)/(560 x 10⁻⁹ m) ≈ 5.36 x 10¹⁴ Hz.

b) The energy of a photon can be calculated using the formula E = hf, where E is the energy, h is Planck's constant (approximately 6.63 x 10⁻³⁴J·s), and f is the frequency. Plugging in the values, we get E = (6.63 x 10⁻³⁴ J·s) x (5.36 x 10¹⁴Hz) ≈ 2.21 eV.

c) The momentum of a photon can be calculated using the formula p = hf/c, where p is the momentum, h is Planck's constant, f is the frequency, and c is the speed of light. Plugging in the values, we get p = (6.63 x 10⁻³⁴ J·s) x (5.36 x 10¹⁴ Hz) / (3 x 10⁸ m/s) ≈ 3.78 x 10⁻²⁷ kg·m/s.

d) Photons are massless particles, meaning they do not possess rest mass. While they have energy and momentum, they do not have "mass" in the traditional sense that can be converted into mass.

To know more about frequency, refer here:

https://brainly.com/question/30093033#

#SPJ11

Determine the head loss for the clean filter bed in stratified
condition
The sand described in the following analysis is to be used in a rapid sand filter with characteristics as given below. Determine the head loss for the clean filter bed in a stratified condition. Sand

Answers

The head loss for the clean filter bed in a stratified condition needs to be determined based on the given characteristics of the sand and the filter.

How can the head loss for the clean filter bed in a stratified condition be determined?

To determine the head loss for the clean filter bed in a stratified condition, several factors need to be considered. These include the characteristics of the sand being used, such as its particle size distribution, uniformity coefficient, effective size, and porosity.

The head loss is a measure of the pressure drop across the filter bed due to the flow of water through the bed. It depends on the flow rate, the properties of the sand, and the bed depth. In a stratified condition, the flow pattern and distribution of the water through the filter bed are non-uniform, leading to variations in the head loss.

To calculate the head loss, various empirical equations and models can be used, such as the Hazen-Williams equation or the Darcy-Weisbach equation. These equations consider factors such as flow velocity, hydraulic diameter, and friction factor to estimate the head loss.

Learn more about head loss

brainly.com/question/31591752

#SPJ11

A +13 nC charge is located at the origin.
A)What is the electric field at the position (x1,y1)=(5.0 cm, 0 cm)? Write electric field vector in component form.Enter the x and y components of the electric field separated by a comma. B)What is the electric field at the position (x2,y2)=(-5.0 cm, 5.0 cm)? Write electric field vector in component form.Enter the x and y components of the electric field separated by a comma.

Answers

Therefore, the electric field at the position (5.0 cm, 0 cm) is 1.144 N/C in the x-direction and the electric field at the position (-5.0 cm, 5.0 cm) is 0.468 N/C in both x and y directions.

A +13 nC charge is located at the origin. The expression to find the electric field at a given position is

E=KQ / r²,

where K is Coulomb's constant, Q is the charge and r is the distance between the charge and the point where we want to find the electric field.

So, A) The position at which electric field is to be calculated is

(x1,y1)= (5.0 cm, 0 cm).

Hence, distance

r = [tex]\sqrt{((5.0 cm)^{2} + (0 cm)^{2})}[/tex]

= 5.0 cm (as the point lies on x-axis).

Now, Electric field vector E = KQ / r²

= [tex]9 *10^{9} N.m² / C² * 13 * 10{-9}C / (5.0 * 10{-2} m)^{2}[/tex]

= 1.144 N/C

In component form, E = Exi + Eyj, where i and j are the unit vectors in the x and y directions respectively.

Therefore, E = Exi

= 1.144 N/C (as the electric field is only in the x-direction and there is no component of electric field in the y-direction)Hence, the main answer is: 1.144, 0

Electric field vector E = KQ / r²

= [tex]9 *10^{9} N.m² / C² * 13 * 10{-9}C / (5.0 * 10{-2} m)^{2}[/tex]

= 1.144 N/C

In component form, E = Exi + Eyj, where i and j are the unit vectors in the x and y directions respectively. Therefore,

E = Exi = 1.144 N/C (as the electric field is only in the x-direction and there is no component of electric field in the y-direction)B) The position at which electric field is to be calculated is (x2,y2)=(-5.0 cm, 5.0 cm).

Hence, distance

r = [tex]\sqrt{((-5.0 cm)^{2}+ (5.0 cm)^{2})}

= 7.07 cm.

Now, Electric field vector

E = KQ / r²

= [tex]9 *10^{9} N.m² / C² * 13 * 10{-9}C / (7.07 * 10{-2} m)^{2}[/tex]

= 0.659 N/C

In component form, E = Exi + Eyj, where i and j are the unit vectors in the x and y directions respectively.

Therefore, E = 0.468i + 0.468j (as the electric field makes an angle of 45° with both the x-axis and y-axis) answer is: 0.468

Therefore, the electric field at the position (5.0 cm, 0 cm) is 1.144 N/C in the x-direction and the electric field at the position (-5.0 cm, 5.0 cm) is 0.468 N/C in both x and y directions.

For more information on electric field  kindly visit to

https://brainly.com/question/14300841

#SPJ11

You cover half of a lens that is forming an image on a screen. Compare what happens when you cover the top half of the lens versus the bottom half.
A When you cover the top half of the lens, the top half of the image disappears; when you cover the bottom half of the lens, the bottom half of the image disappears.
B The image becomes half as bright in both cases.
C When you cover the top half of the lens, the bottom half of the image disappears; when you cover the bottom half of the lens, the top half of the image disappears.
D Nothing happens in either case.
E The image disappears in both cases.

Answers

When you cover the top half of a lens that is forming an image on a screen, the bottom half of the image disappears. And when you cover the bottom half of the lens, the top half of the image disappears. Thus, the correct answer is C.

It happens because the image of an object is formed on the screen by the refraction of light from different points on the object passing through different parts of the lens. The upper part of the lens forms an image of the lower part of the object, while the lower part of the lens forms an image of the upper part of the object. Hence, when the top half of the lens is covered, the bottom half of the object is not visible on the screen, and when the bottom half of the lens is covered, the top half of the object is not visible on the screen. Option C.

More on image: https://brainly.com/question/32082134

#SPJ11

suppose the previous forecast was 30 units, actual demand was 50 units, and ∝ = 0.15; compute the new forecast using exponential smoothing.

Answers

By using the formula of exponential smoothing, we can get the new forecast. Hence, the new forecast using exponential smoothing is 33 units.

Given:

Previous forecast = 30 units

Actual demand = 50 unitsα = 0.15Formula used:

New forecast = α(actual demand) + (1 - α)(previous forecast)

New forecast = 0.15(50) + (1 - 0.15)(30)New forecast = 7.5 + 25.5

New forecast = 33 units

Therefore, the new forecast using exponential smoothing is 33 units.

In exponential smoothing, the new forecast is computed by using the actual demand and previous forecast. In this question, the previous forecast was 30 units and actual demand was 50 units, with α = 0.15. By using the formula of exponential smoothing, we can get the new forecast. Hence, the new forecast using exponential smoothing is 33 units.

To know more about New forecast visit:

brainly.com/question/31844712

#SPJ11

what is the best definition of relativistic thought according to perry

Answers

Relativistic thought refers to the recognition that our perceptions and beliefs are influenced by our experiences, upbringing, and cultural and social environments, according to Perry.

It suggests that reality is subjectively constructed rather than objectively discovered, and that what is "true" or "right" for one person or group may not be for another. Relativistic thinking entails a degree of tolerance for opposing viewpoints and a willingness to engage in dialogue rather than debate or dismiss opposing perspectives. Instead of seeing things in black and white, relativistic thought acknowledges the nuances and complexity of human experience and acknowledges that there may be multiple valid perspectives on any given issue.

To know more about degree of tolerance, visit:

https://brainly.com/question/32378860

#SPJ11

The unit of electric field strength is
N/C
N/kg
N/amp
C/m
What's the electric potential at a point 50cm away from the
center of +2C charge?
100 volt
1 volt

Answers

The unit of electric field strength is N/C (Newton per Coulomb).

The electric potential at a point 50 cm away from the center of a +2 C charge is approximately 9.0 x 10^9 volts.

The unit of electric field strength is N/C. Electric field strength represents the force per unit charge experienced by a test charge in an electric field. It is measured in Newtons per Coulomb.

To calculate the electric potential at a point 50 cm away from the center of a +2 C charge, we can use the equation:

V = k * (Q / r)

Where:

V is the electric potential

k is the electrostatic constant (approximately 9.0 x 10^9 N m²/C²)

Q is the charge (in this case, +2 C)

r is the distance from the charge (50 cm = 0.5 m)

Substituting the given values into the equation, we have:

V = (9.0 x 10^9 N m²/C²) * (+2 C) / (0.5 m)

V = (9.0 x 10^9 N m²/C²) * 4 C / (0.5 m)

V = (9.0 x 10^9 N m²/C²) * 8 / (0.5)

V = (9.0 x 10^9 N m²/C²) * 16

V ≈ 1.44 x 10^11 N m²/C²

Converting the unit N m²/C² to volts, we have:

1.44 x 10^11 V

Approximately, the electric potential at a point 50 cm away from the center of a +2 C charge is 1.44 x 10^11 volts.

The unit of electric field strength is N/C, which represents Newton per Coulomb.

The electric potential at a point 50 cm away from the center of a +2 C charge is approximately 1.44 x 10^11 volts. This calculation is based on the electrostatic constant, the charge, and the distance from the charge. The electric potential represents the potential energy per unit charge at a specific point and is measured in volts. The calculation allows us to determine the electric potential at a given distance from a charge, providing valuable information in understanding the behavior of electric fields and their effects.

To know more about electric field ,visit:

https://brainly.com/question/19878202

#SPJ11

A ball of mass 100g is thrown vertically upwards from a point 2m above ground level with a speed of 14m/s.
a. With an origin at ground level, find the total mechanical energy of the ball when it is travelling at speed v m/s at a heigh h m.
b. Assuming that mechanical energy is conserved show that v^2+20h=236
c. Calculate the greatest height reached by the ball
d. Calculate the speed with which the ball hits the ground

Answers

a. The total mechanical energy of the ball when it is traveling at speed v m/s at a height h m is given by E_total = (1/2)mv^2 + mgh.

b. Assuming that mechanical energy is conserved, we can derive the equation v^2 + 20h = 236.

c. The greatest height reached by the ball is approximately 10.4 m.

d. The speed with which the ball hits the ground is approximately 14.14 m/s.

a. The total mechanical energy of the ball is the sum of its kinetic energy and potential energy. The kinetic energy is given by (1/2)mv^2, where m is the mass of the ball (100g = 0.1kg) and v is its speed. The potential energy is given by mgh, where h is the height of the ball. Therefore, the total mechanical energy is E_total = (1/2)(0.1)(v^2) + (0.1)(9.8)(h).

b. Assuming mechanical energy is conserved, we equate the initial mechanical energy (when the ball is at the starting point) to the final mechanical energy (when the ball is at height h). The initial mechanical energy is E_initial = (1/2)(0.1)(14^2) + (0.1)(9.8)(2) = 98 + 1.96 = 99.96 J. The final mechanical energy is E_final = (1/2)(0.1)(v^2) + (0.1)(9.8)(h). By equating these two expressions, we have 99.96 = (1/2)(0.1)(v^2) + (0.1)(9.8)(h). Simplifying this equation gives v^2 + 20h = 236.

c. To calculate the greatest height reached by the ball, we set the final mechanical energy equal to the initial mechanical energy: (1/2)(0.1)(v^2) + (0.1)(9.8)(h) = 99.96. Since the ball reaches its highest point, its final speed is zero. Thus, the equation becomes (0.1)(9.8)(h) = 99.96, which gives h = 99.96 / (0.1)(9.8) = 102.04 / 9.8 ≈ 10.4 m.

d. To calculate the speed with which the ball hits the ground, we set the final mechanical energy equal to the initial mechanical energy: (1/2)(0.1)(v^2) + (0.1)(9.8)(h) = 99.96. Since the ball hits the ground, its height is zero. Thus, the equation becomes (1/2)(0.1)(v^2) = 99.96, which gives v^2 = 199.92. Taking the square root of both sides gives v ≈ 14.14 m/s.

a. The total mechanical energy of the ball when it is traveling at speed v m/s at a height h m is given by E_total = (1/2)mv^2 + mgh.

b. Assuming that mechanical energy is conserved, we can derive the equation v^2 + 20h = 236.

c. The greatest height reached by the ball is approximately 10.4 m.

d. The speed with which the ball hits the ground is approximately 14.14 m/s.

To know more about speed visit:

https://brainly.com/question/27888149

#SPJ11

The predominant frequency of a certain fire truck's siren is 1670 Hz when at rest.

Part A What frequency do you detect if you move with a speed of 39.5 m/s toward the fire truck?

Part B What frequency do you detect if you move with a speed of 39.5 m/s away from the fire truck?

Answers

Part A: The frequency detected if you move with a speed of 39.5 m/s towards the fire truck is 1734.94 Hz.

Part B: The frequency detected if you move with a speed of 39.5 m/s away from the fire truck is 1605.06 Hz.

When an observer is moving towards a sound source, the frequency of sound waves received is higher than the frequency emitted by the source. This phenomenon is known as the Doppler effect. The mathematical formula for this is given by: fv = f (v±v0) / (v±vs); Here, fv is the frequency received, f is the frequency emitted, v is the velocity of sound in air, v0 is the velocity of the observer, and vs is the velocity of the source. The velocity of sound in air is 343 m/s and the observer is moving with a speed of 39.5 m/s towards the fire truck. The velocity of the source (fire truck) is assumed to be zero as it is at rest. Substituting these values into the formula: fv = 1670 (343 + 39.5) / (343 + 0) = 1734.94 Hz.

When an observer is moving away from a sound source, the frequency of sound waves received is lower than the frequency emitted by the source. This phenomenon is also known as the Doppler effect. The mathematical formula for this is given by: fv = f (v±v0) / (v±vs); Here, fv is the frequency received, f is the frequency emitted, v is the velocity of sound in air, v0 is the velocity of the observer, and vs is the velocity of the source. The velocity of sound in air is 343 m/s and the observer is moving with a speed of 39.5 m/s away from the fire truck. The velocity of the source (fire truck) is assumed to be zero as it is at rest. Substituting these values into the formula: fv = 1670 (343 - 39.5) / (343 + 0) = 1605.06 Hz.

Learn more about Doppler effect here:

https://brainly.com/question/28106478

#SPJ11

2) using your calculator and the best of the four methods above, find a model, h(t), that estimates the height of the projectile t seconds after it is launched.

Answers

To estimate the height of a projectile at time t seconds after it is launched, we can use a model called the quadratic function. The quadratic function is commonly used to represent the vertical motion of projectiles under the influence of gravity.

The general form of a quadratic function is h(t) = -gt^2 + v0t + h0, where g is the acceleration due to gravity, v0 is the initial velocity of the projectile, and h0 is the initial height.
To use this model, you would need to know the values of g, v0, and h0 specific to your projectile. You can substitute these values into the equation to calculate the height h(t) at a given time t.
It's important to note that this model assumes a projectile moving vertically under the influence of gravity only, neglecting factors such as air resistance. For more accurate predictions , additional factors and more sophisticated models may need to be considered.

To know more about , initial velocity, click here https://brainly.com/question/28395671

#SPJ11

for which complex values of q does the principal value of zcl have a limit as z tends to o? justify y

Answers

The principal value of ZCL or zero-current/sequence impedance has a limit as Z tends to o when the complex values of q are purely imaginary. The limit of the principal value of ZCL as Z approaches zero only exists if q is purely imaginary. Let's explore this concept in greater detail

Zero-Current Sequence Impedance or ZCL is defined as the impedance between any two points of an electrical system under the assumption that the current is flowing in zero sequence, that is, all phases are flowing in the same direction with the same magnitude. It is an important concept in power system analysis, particularly in fault calculations.When dealing with ZCL, we use a three-phase fault model, which simplifies fault analysis by reducing a three-phase fault to a single line-to-ground fault. In the case of ZCL, the fault is assumed to be a single-phase fault on one phase and ground. This simplification is accomplished by assuming that the currents in the two healthy phases cancel out and do not contribute to the fault.

Current flowing in the faulted phase, as well as the zero-sequence current, is considered in this case. It is defined as the voltage that results from injecting a unit current in the zero sequence (phase) at a certain point and measuring the resulting voltage drop on the same sequence. In a real-world situation, ZCL is influenced by the ground conductors' resistance and the return path's impedance. In a balanced three-phase system, the ZCL is equivalent to the positive sequence impedance (Z1). ZCL is usually expressed in Ohms and is complex in nature.

Based on the information above, we can deduce that for the principal value of ZCL to have a limit as Z tends to zero, the complex values of q must be purely imaginary. This implies that the real part of q must be zero, and only the imaginary part is allowed. This conclusion can be supported by the following argument: If q has a non-zero real part, say q = a + bi, where a and b are real numbers, then the denominator of the ZCL expression contains a term of the form (z-a), which means that as Z approaches zero, the denominator will become arbitrarily small, and the value of ZCL will become infinitely large. As a result, the principal value of ZCL will not exist.Therefore, the limit of the principal value of ZCL as Z approaches zero only exists if q is purely imaginary.

To learn more about current visit;

https://brainly.com/question/15141911

#SPJ11

A small segment of the wire contains 10 nC of charge. Part A: The segment is shrunk to one-third of its original length. What is the ratio λf/λi, where λi and λf are the initial and final linear charge densities? Part B: A proton is very far from the wire. What is the ratio of Ff/Fi of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk? Part C: Suppose the original segment of wire is stretched to 10 times its original length. How much charge must be added to the wire to keep the linear charge density unchanged? Express your answer with the appropriate units.

Answers

Part A: The ratio λf/λi, where λi and λf are the initial and final linear charge densities, is 3.

When the small segment of wire is shrunk to one-third of its original length, the linear charge density remains constant. Since linear charge density is defined as the charge per unit length, and the charge remains the same while the length decreases, the linear charge density increases by a factor of 3. Therefore, the ratio of the final linear charge density (λf) to the initial linear charge density (λi) is 3.

Part B: The ratio Ff/Fi of the electric force on the proton after the segment is shrunk to the force before the segment was shrunk is 1.

When a proton is very far from the wire, the electric force it experiences can be approximated using Coulomb's law. In this case, when the segment is shrunk, the charge remains the same while the length decreases. Since the electric force depends on the product of charges, the force after the segment is shrunk will be the same as the force before the segment was shrunk. Thus, the ratio of Ff/Fi is 1.

Part C: To keep the linear charge density unchanged when the original segment of wire is stretched to 10 times its original length, 100 nC of charge must be added to the wire.

Linear charge density is defined as the charge per unit length. If the length of the wire is increased by a factor of 10 while keeping the linear charge density constant, the total charge must also increase by the same factor. Given that the original segment contains 10 nC of charge, adding 100 nC of charge (10 times the original charge) to the wire will maintain the unchanged linear charge density.

Therefore, to keep the linear charge density constant, an additional charge of 100 nC must be added to the wire.

To know more about  linear charge density, click here:

https://brainly.com/question/30465038

#SPJ11

Other Questions
ynovial fluid moistens and lubricates the cartilaginous surfaces in a joint.True or false? 1.) Production, Inputs, and Cost: Building Blocks for Supply AnalysisThe firm can generally substitute one input for another. Whether or not it pays to substitute depends on the relative costs of labor and machinery. First, describe the alternative types of input proportions available to the firm. Then, describe the combination of inputs that represent the least costly way for the firm to produce its goods. Lastly, give one example of the firms substitutability from a recent news article A researcher studying public opinion of proposed Social Security changes obtains a simple random sample of 25 adult Americans and asks them whether or not they support the proposed changes. To say that the distribution of the sample proportion of adults who respond yes, is approximately normal, how many more adult Americans does the researcher need to sample if 22% of all adult American support the changes? HINT: Remember to always round up to the next integer when determining sample size. Question 30 2 pts A researcher studying public opinion of proposed Social Security changes obtains a simple random sample of 25 adult Americans and asks them whether or not they support the proposed changes. To say that the distribution of the sample proportion of adults who respond yes, is approximately normal, how many more adult Americans does the researcher need to sample if 78% of all adult American support the changes? HINT: Remember to always round up to the next integer when determining sample size. Smith Brothers has a floating-rate loan based on the LIBOR rate. The Three Sisters has a floating-rate loan based on the Treasury bill. The Smith Brothers would prefer a loan based on the T-bill and the Three Sisters would prefer a loan based on LIBOR, but neither have been able to obtain the loan they prefer. These two firms would most likely benefit if they entered a(n):A) Interest rate swap.B) Exchange rate swap.C) Commodity swap.D) Forward contract on the dollar-pound exchange rate.E) Futures contract on the dollar-pound exchange rate. Data set 2: 23, 47, 16, 26, 20, 37, 31, 17, 29, 19, 38, 39, 41 Provide the summary statistics for data set 2. Q14. What is the mean value? Q15. What is the median value? Q16. What is the sum of square OBHR Comparative analysis of Apple and Nokia( Organisational culture, structure, communication style , employee interaction, and leadership style)Need 1000 words? during which step of crispr/cas9 is the nuclease activity of cas9 activated to cut the target dna and produce a double-strand break? use thermal expansion to find the difference in length between an object that is heated and when it is cooled. The increase of hate groups in the 1990s is partly due to a.public funding. b.Internet propaganda. c.a weakened U.S. economy. d.none of the above You are given an average variable cost curve equation of 20 - 5q and a marginal cost curve equation of 20 - 10q. At what quantity does the supply curve begin for the this firm? Edit View Insert Format Tools Table 12pt Paragraph B IU AT | 0 words > **** Each of the following operations would likely use a non-revenue approach to sales forecasting EXCEPT O a. a food operation located on a military base and serving those soldiers stationed at the base O b. a student housing facility located on the campus of a large university O c. a food service operation located in a mall's food court O d. an extended care facility housing elderly residents which action would a chemist most likely take to determine how substances in a fuel affect the types Indicate whether the statement is true or false, and justify your answer.1. The internal rate of return is defined as the interest rate that makes the net present value of an investment stream exactly equal to zero.2. In part, physicians salaries are higher than secretaries salaries because it takes more years to train to become a physician than it does to become a secretary.3. The fact that practicing surgeons who have finished residency earn more than practicing pediatricians implies that the rate of return to choosing surgery exceeds the rate of return to choosing pediatrics for a medical school graduate.4. If physicians are earning monopoly rents, then there must be more barriers to entry in the labor market for physicians than is socially optimal.5. In the model of insurance and uncertainty discussed in this course, an individual exhibits declining marginal utility of income if and only if she is risk averse.6. Risk-averse consumers always prefer insurance that is actuarially fair but not full to full insurance that is actuarially unfair - but the opposite is true for risk-loving consumers.7. There are no possible utility functions in which a person is indifferent between actuarially fair full insurance and actuarially fair partial insurance.8. A risk averse individual prefers a certain outcome to an uncertain outcome with the same expected income.9. Insurance represents a transfer of wealth from healthy states to sick states.10. Under partial insurance, income in the sick state with insurance is higher than income in the healthy state. Myron and Patty both have blue eyes. Their first child had dark brown eyes. What must be true? Dark eyes (B) are dominant over blue eyes (b). O a. They were blessed. Dark eyes are beautiful. O b. Myron is not the Dad. O c. Patty is not the Mom. O d. There is only a 25% that Myron is the Dad. Value: 2 Farsightedness (F) is inherited as a dominant trait, while normal vision is recessive. John is farsighted and Mary has normal vision. If they have a child that is farsighted, what is its genotype? 0 a. FF O b. Ef 0 C. ff O d. FF or Ff, you cannot be certain. Value: 2 Farsightedness (F) is inherited as a dominant trait, while normal vision is recessive. John is farsighted and Mary has normal vision. If they have a child that has normal vision, what is its genotype? 0 a. FE O b. Ef 0 C. ff O d. FF or Ff, there is no way to be certain. Suppose a society contains two individuals Joe, who smokes, and Tanya, who does not. They each have the same utility function U(C) In(C). If they are healthy, they will each get to consume their income of $15,000. If they need medical attention, they will have to spend S10,000, leaving them $5,000 for conumption. Smokers have a 12% chance of needing medical attention, and nonsmokers have a 2% chance An insurance company is wiling to insure Joe and Tanya The twist here is that the insurance company offers two different kinds of policies. One policy is called the "low deductible," (L) for which the insurance company will pay any medical costs over S3,000. The other is a "high deductible," (H) for which the insurance company will pay any medical costs over $8000 a. What is the actuarially fair premium for each type of policy for Joe and Tanya? b. If the insurance company can determine who smokes and who does not, and they charge the actuarially fair prices to each, what policy will Joe select? Tanya? (Think carefully about calculating expected utilities for each under the different policies.) c. Now, suppose that the insurer cannot determine who smokes and who doesn't. The insurer sets prices for each product. The price of L is $840 and the price of H is $40. (Why did I choose these numbers) What will Joe and Tanya choose to do? Will adverse selection push Tanya out of the market? [Hint: No.] Calculate the total expected utility for our society under this outcome d. What has happened here? What does the second policy option accomplish? e. Suppose the government were to intervene and provide full insurance at a single price and charge everyone the same actuarially fair amount. How would the total social utility compare to that of part c? (Ignore any moral hazard or other unintended consequences.) In terms of your own single plastic use, identify and explain two of the mental modelsthat are driving your use of plastic waste. Discuss why it is so difficult for you to changeyour mental models. find the lengths of the sides of the triangle pqr. p(5, 1, 4), q(3, 3, 3), r(3, 3, 0) A married couple and their firstborn child are a type of group known as: Select one: a. a dyad. b. a triad. c. a party. d. a small group. A company decides to sell the cherries stacked on top of eachother in a cylindrical cardboard container. What would be the smallest possible diameter, height, and volume of the containe In operant conditioning, behavioral change is brought about by the manipulation ofA) thoughts.B) goals.C) consequences.D) motives.E) reflexes.