The value of ΔfH⊖ for NH3 is -91.8kJ mol−1. Calculate enthalpy change for the following reaction 2NH3(g)→N2(g)+3H2(g).

Answers

Answer 1

Calculated by reaction using the formula,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))Here,ΔfH⊖ for NH3 = -91.8 kJ/mol.

The balanced chemical equation for the given reaction is 2 NH3(g) → N2(g) + 3 H2(g)So, the enthalpy change for the given reaction is,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))ΔH = [ΔfH⊖ (N2) + 3ΔfH⊖ (H2)] - [2ΔfH⊖ (NH3)]Substituting the respective values,ΔH = [(0 + 3 × 0) kJ/mol] - [2 × (-91.8 kJ/mol)]ΔH = 183.6 kJ/mol.

Enthalpy change can be calculated by using the formula,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))Where,ΔH = enthalpy change for the reactionΔfH⊖ = standard enthalpy of formationThe balanced chemical equation for the given reaction is 2 NH3(g) → N2(g) + 3 H2(g)So, the enthalpy change for the given reaction is,ΔH = ∑(ΔfH(products)) - ∑(ΔfH(reactants))ΔH = [ΔfH⊖ (N2) + 3ΔfH⊖ (H2)] - [2ΔfH⊖ (NH3)]Substituting the respective values,ΔH = [(0 + 3 × 0) kJ/mol] - [2 × (-91.8 kJ/mol)]ΔH = 183.6 kJ/mol.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11


Related Questions

what is the hybridization of the central atom in sf5cl?
hybridization___.

Answers

The hybridization of the central atom in SF5Cl is sp3d2.

In the given molecule, the central atom is sulfur (S), which is surrounded by five fluorine atoms and one chlorine atom. In order to determine the hybridization of the central atom, we need to use the concept of hybrid orbitals.According to VSEPR theory, the SF5Cl molecule has an octahedral electron geometry. In this geometry, the central atom has six electron groups around it, including five bonding pairs and one lone pair of electrons. Therefore, the hybridization of the central atom should involve the combination of six atomic orbitals:

one 3s orbital, three 3p orbitals, and two 3d orbitals.

The combination of these orbitals results in six hybrid orbitals, known as sp3d2 orbitals. These hybrid orbitals are arranged in an octahedral geometry around the central sulfur atom, with five orbitals pointing towards the five fluorine atoms and one orbital pointing towards the chlorine atom.In summary, the hybridization of the central atom in SF5Cl is sp3d2, which involves the combination of six atomic orbitals. This hybridization allows the central sulfur atom to form six hybrid orbitals, which are arranged in an octahedral geometry.

To know more about hybridization visit:

https://brainly.com/question/29020053

#SPJ11

For the following problems, you can assume: ATP → ADP + Pi and ∆G°= -30 kJ/mol
Problem #1:
For the reaction ATP goes to ADP + Pi the intracellular ATP/ADP ratio held at 10x, the Pi concentration is 10mM, and the reaction has a ∆G˚= -30 kJ/mol. Inside the cell is non-ideal and the activity coefficients for all the species are 2. What is the free energy change for ATP hydrolysis inside the cell?

Answers

ATP or Adenosine triphosphate is the energy molecule that is present in every living cell. It is important for energy transfer and storage processes. It is hydrolyzed by enzymes to form ADP and Pi and this reaction releases energy that is used by the cell.

The intracellular ATP/ADP ratio is 10x for the given problem. Therefore, [ATP]/[ADP] = 10 and [ATP] = 10[ADP].The concentration of Pi is given as 10mM.The reaction ATP → ADP + Pi has a ∆G˚= -30 kJ/mol.The activity coefficients for all species are 2.Using the relationship ΔG = ΔG° + RT ln Q where R = 8.314 J/mol K and T = 298 K. We can calculate the ΔG value for the reaction by first calculating the Q value as below.Q = {[ADP] [Pi]}/[ATP] = {[ADP] [Pi]}/{10[ADP]} = [Pi]/10The value of Q is 10mM/10 = 1mMΔG = ΔG° + RT ln Q= -30000 J/mol + (8.314 J/mol K × 298 K) × ln (1mM × 2) = -30000 J/mol + 1248 J/mol = -28752 J/molThe ΔG value for ATP hydrolysis inside the cell is -28752 J/mol.

For more information on Adenosine triphosphate visit:

brainly.com/question/859444

#SPJ11

Which of the following aqueous solutions contains the lowest amount of ions or molecules dissolved in water? 500 ml of 2.25 M CH3OH 500 ml of 0.75 M Nal 1.5L of 0.5 M Na3PO4 20L of 225 M CUCI 1.75L of 1.25 M HBO,

Answers

To determine the solution with the lowest amount of ions or molecules dissolved in water, we need to calculate the total number of ions or molecules in each solution.

1. 500 ml of 2.25 M [tex]CH_3OH[/tex]:

  Methanol [tex]CH_3OH[/tex] does not ionize or dissociate in water. Therefore, the total number of ions or molecules in this solution is equal to the number of moles of [tex]CH_3OH[/tex]. Since the molarity is given as 2.25 M, the number of moles can be calculated as follows:

  Moles of  [tex]CH_3OH[/tex]= molarity × volume

  Moles of  [tex]CH_3OH[/tex]= 2.25 M × 0.5 L (converting 500 ml to liters)

  Moles of  [tex]CH_3OH[/tex] = 1.125 mol

  Thus, this solution contains 1.125 moles of  [tex]CH_3OH[/tex]:.

2. 500 ml of 0.75 M NaI:

  Sodium iodide (NaI) dissociates into Na+ and I- ions in water. The total number of ions in this solution can be calculated as follows:

  Moles of NaI = molarity × volume

  Moles of NaI = 0.75 M × 0.5 L

  Moles of NaI = 0.375 mol

  Since NaI dissociates into one Na+ ion and one I- ion, the total number of ions in this solution is twice the number of moles of NaI:

  Total ions = 2 × Moles of NaI

  Total ions = 2 × 0.375 mol

  Total ions = 0.75 moles of ions

  Thus, this solution contains 0.75 moles of ions.

3. 1.5 L of 0.5 M [tex]Na_3PO_4[/tex]:

  Sodium phosphate  [tex]Na_3PO_4[/tex] dissociates into three Na+ ions and one [tex]PO_4^{3-}[/tex] ion in water. The total number of ions in this solution can be calculated as follows:

  Moles of  [tex]Na_3PO_4[/tex]  = molarity × volume

  Moles of  [tex]Na_3PO_4[/tex] = 0.5 M × 1.5 L

  Moles of  [tex]Na_3PO_4[/tex] = 0.75 mol

  Since  [tex]Na_3PO_4[/tex] dissociates into three Na+ ions and one [tex](PO)_4^{3-}[/tex] ion, the total number of ions in this solution can be calculated as follows:

  Total ions = 3 × Moles of  [tex]Na_3PO_4[/tex] + 1 × Moles of  [tex]Na_3PO_4[/tex]

  Total ions = 3 × 0.75 mol + 1 × 0.75 mol

  Total ions = 3.75 moles of ions

  Thus, this solution contains 3.75 moles of ions.

4. 20 L of 225 M CuCl:

  Copper chloride (CuCl) dissociates into one Cu2+ ion and two Cl- ions in water. The total number of ions in this solution can be calculated as follows:

  Moles of CuCl = molarity × volume

  Moles of CuCl = 225 M × 20 L

  Moles of CuCl = 4500 mol

  Since CuCl dissociates into one Cu2+ ion and two Cl- ions, the total number of ions in this solution can be calculated as follows:

  Total ions = 1 × Moles of CuCl + 2 × Moles of CuCl

  Total ions = 1 × 4500 mol + 2 × 4500 mol

  Total ions = 13500 moles of ions

  Thus, this solution

contains 13,500 moles of ions.

5. 1.75 L of 1.25 M HBO:

  Boric acid (HBO) does not fully dissociate in water. Therefore, we need to consider the undissociated molecules in this solution. The total number of molecules in this solution can be calculated as follows:

  Moles of HBO = molarity × volume

  Moles of HBO = 1.25 M × 1.75 L

  Moles of HBO = 2.1875 mol

  Thus, this solution contains 2.1875 moles of HBO molecules.

Comparing the total number of ions or molecules in each solution, we can conclude that the solution with the lowest amount of ions or molecules dissolved in water is 500 ml of 2.25 M CH3OH, which contains only 1.125 moles of CH3OH molecules.

To learn more about ions refer:

https://brainly.com/question/30753811

#SPJ11

what change will be caused by addition of a small amount of ba(oh)2 to a buffer solution containing nitrous acid, hno2, and potassium nitrite, kno2? group of answer choices

Answers

The addition of a small amount of Ba(OH)2 to a buffer solution containing nitrous acid (HNO2) and potassium nitrite (KNO2) will result in the formation of a precipitate.

The reaction can be represented as follows:
Ba(OH)2 + 2HNO2 → Ba(NO2)2 + 2H2O
The formation of the precipitate Ba(NO2)2 indicates a chemical change in the buffer solution. The addition of Ba(OH)2 introduces new ions into the solution, leading to the formation of an insoluble compound with the nitrite ions from the nitrous acid. This disrupts the equilibrium of the buffer system. The formation of the precipitate may affect the buffering capacity and pH of the solution. The concentration of the nitrous acid and nitrite ions will be altered, potentially shifting the pH towards more acidic or alkaline conditions depending on the specific reaction and concentrations involved. Overall, the addition of Ba(OH)2 to the buffer solution causes a disturbance in the equilibrium and can lead to changes in the composition and properties of the solution.

To know more about buffer solution, click here https://brainly.com/question/16023983

#SPJ11

find the ph of a buffer solution of 60 ml of 0.25 m hcooh and 10.0 ml of 0.500m naxooh

Answers

the pH of the given buffer solution is 3.08.

The given buffer solution is made up of 60 mL of 0.25 M HCOOH and 10.0 mL of 0.500 M NaXOOH and we are to determine its pH.

The first step in solving this problem is to determine the moles of each species in the buffer. This can be accomplished by using the following equation:

n(HCOOH) = 0.25 moles/L x 0.060 L = 0.015 moles of HCOOHn

(NaXOOH) = 0.500 moles/L x 0.010 L = 0.005 moles of NaXOOH

Next, we need to calculate the concentration of the buffer:

Concentration of buffer = moles of HCOOH / total volume of buffer= 0.015 moles / (0.060 + 0.010) L = 0.1875 M

Now that we have the concentration of the buffer, we can use the Henderson-Hasselbalch equation to determine the pH:

pH = pKa + log ([A-] / [HA])

where pKa = 3.75 for HCOOHpH = 3.75 + log [(0.005 moles / 0.070 L) / (0.015 moles / 0.070 L)]= 3.75 + log [0.07143 / 0.21428]= 3.75 + (-0.6706)= 3.08

Therefore, the pH of the given buffer solution is 3.08.

learn more about pH here

https://brainly.com/question/172153

#SPJ11

Draw the product obtained when each of the following compounds is heated in the presence of a strong base to give an aldol condensation/Knoevenagel reaction: NaOH, H20 heat NaOH, H2 heat NaOH, H20 heat

Answers

This is a Knoevenagel reaction between formaldehyde and benzaldehyde to form cinnamaldehyde. Thus, these are the products obtained when the given compounds are heated in the presence of NaOH and heat.

In the presence of a strong base, such as sodium hydroxide (NaOH), aldol condensation and Knoevenagel reaction are the two types of reactions that occur. In aldol condensation, an α-carbon of an aldehyde or ketone reacts with a carbonyl compound to form a β-hydroxy ketone or aldehyde, while in Knoevenagel reaction, a carbonyl compound and an aldehyde or ketone react to form a β-unsaturated carbonyl compound.

The products obtained from heating the given compounds in the presence of NaOH and heat are as follows:NaOH, H2O, heat: This reaction is an aldol condensation reaction in which formaldehyde and acetaldehyde react to produce a β-hydroxy aldehyde.

To know more about benzaldehyde  visit:-

https://brainly.com/question/29754365

#SPJ11

1. (4pts.) (a) In the box provided, write a valid Lewis structure for the molecular formula shown. (b) In the box provided, write the best Lewis structure for the anion molecular formula shown.
(a) C₂H₂O
(b) [CH₂N]
2. (3 pts.) Assuming all second row atom have an octet, complete the following Lewis structure by providing lone pair electrons and formal charges where needed.
3. (2 pts.) In the box provided, draw a condensed formula for the bond-line (skeletal) drawing below.
OH
H-N

Answers

1a) The Lewis structure for C2H2O is as follows.  

The molecular formula for acetic acid is C2H4O2. The C atom is the central atom, and it is connected to an O atom by a double bond. Two H atoms are connected to the C atom.

(b) The best Lewis structure for the anion molecular formula shown is:  

In the structure, the formal charge of the C atom is 0, and the formal charge of the N atom is -1. There are also seven electrons in the structure.

2)The complete Lewis structure of the given compound is as shown below:  

One can count the number of valence electrons in the molecule by adding the number of valence electrons in each atom. Two electrons from each bond are removed since the electrons are shared between the two atoms forming the bond. Subtracting these electrons gives the number of valence electrons for the molecule. The Lewis structure is drawn by representing the valence electrons of the atoms by dots and lines. All atoms are connected by single bonds, and all atoms have an octet except the nitrogen atom.

3)The condensed formula for the given bond-line (skeletal) drawing is NH2OH.  

This compound is called hydroxylamine. There is a nitrogen atom at the center, which is attached to two H atoms and an OH group. The condensed formula for the compound is NH2OH.

learn more about formula here

https://brainly.com/question/29797709

#SPJ11

Suppose the galvanic cell sketched below is powered by the following reaction: Ni(s)+PdSO4(aq)NiSO4(aq)+Pd(s) E2 E1 S2 S1 Write a balanced equation for the half-reaction that happens at the cathode of this cell Write a balanced equation for the half-reaction that happens at the anode of this cell. Of what substance is E1 made? Of what substance is E2 made? What are the chemical species in solution S1?

Answers

The substance E1 is made of Pd metal and the substance E2 is made of Ni metal.The chemical species in solution S1 is PdSO4(aq).Thus, the balanced half-reactions at the cathode and anode of the galvanic cell are

Ni2+(aq) + 2e− → Ni(s) (cathode) and Pd(s) → Pd2+(aq) + 2e− (anode).

Given below is the balanced chemical equation for the reaction that occurs in the galvanic cell:

Ni(s) + PdSO4(aq) → NiSO4(aq) + Pd(s)

The cathode half-cell has the following reaction:

Ni2+(aq) + 2e− → Ni(s)

The anode half-cell has the following reaction:

Pd(s) → Pd2+(aq) + 2e−

Hence, the cathode half-cell and anode half-cell reactions are written as follows:Cathode Half-Cell:

Ni2+(aq) + 2e− → Ni(s)Anode Half-Cell: Pd(s) → Pd2+(aq) + 2e−

The substance E1 is made of Pd metal and the substance E2 is made of Ni metal.The chemical species in solution S1 is PdSO4(aq)

.Thus, the balanced half-reactions at the cathode and anode of the galvanic cell are

Ni2+(aq) + 2e− → Ni(s) (cathode) and Pd(s) → Pd2+(aq) + 2e− (anode).

To know more about cathode visit:

https://brainly.com/question/32063482

#SPJ11

an n-input nmos nor gate has ks = 4ma/v2, kl = 2 ma/v2, vt = 1.0v, vdd = 5.0v. find the approximate values for voh and vol for n = 1, 2 and 3 inputs. assume ql = sat and qs = ohmic, vi = voh

Answers

An n-input nmos nor gate has ks = 4mA/V2, kl = 2 mA/V2, vt = 1.0V, VDD = 5.0V. Find the approximate values for VOH and VOL for n = 1, 2 and 3 inputs. QL = sat and QS = ohmic, VI = VOH. For a NOR gate, when all inputs are high, the output is low.

When any input is low, the output is high. Here, it is given that QL is in saturation and QS is in the ohmic region. The relation between VDS and VGS for saturation and ohmic region is given as;$$V_{{DS}} \geq V_{{GS}} - V_{{th}}$$ $$V_{{DS}} \lt V_{{GS}} - V_{{th}}$$where, Vth is the threshold voltage. Also, in saturation region,$$I_{{D}} = \frac{1}{2} K_{{n}} \frac{W}{L} (V_{{GS}} - V_{{th}})^2 $$where, ID is the drain current, Kn is the process parameter (µnCox), W is the width, L is the length of the MOSFET. The value of VOH can be calculated for n = 1 input as follows:To obtain VOH, we need to make all inputs high. Therefore,$$I_{{D}} = \frac{1}{2} K_{{n}} \frac{W}{L} (V_{{DD}} - V_{{th}})^2 $$Substituting the given values, we get,$$I_{{D}} = \frac{1}{2} \cdot 4 \cdot 10^{-3} \cdot \frac{1}{2} (5 - 1)^2 = 16 \mu A $$.

When QL is in saturation region,$$V_{{D}} = V_{{DD}} - I_{{D}}R_{{D}} = 5 - 16 \cdot 10^{-6} \cdot 1.5 \cdot 10^{3} = 2.76V $$Since all the inputs are high and the output is low, VOH = 0.The value of VOL can be calculated as follows:Let us consider n = 2 inputs. In this case, for the MOSFETs in the saturation region,$$I_{{D}} = \frac{1}{2} K_{{n}} \frac{W}{L} (V_{{GS}} - V_{{th}})^2 $$Therefore,$$I_{{D}} = \frac{1}{2} \cdot 4 \cdot 10^{-3} \cdot \frac{1}{2} (5 - 1)^2 = 16 \mu A $$and $$V_{{GS}} = V_{{I}} = V_{{OH}} $$Assuming the MOSFET in the ohmic region is in cutoff state,$$V_{{D}} = V_{{I}} = V_{{OH}} $$Therefore, the output voltage is the voltage drop across the resistor and the MOSFET in the saturation region.$$V_{{OL}} = V_{{D}} + I_{{D}}R_{{D}} = 5 - 16 \cdot 10^{-6} \cdot 1.5 \cdot 10^{3} = 2.76V $$The value of VOH and VOL can be calculated for n = 3 inputs in a similar way.

To know more about nmos  visit :

https://brainly.com/question/30961821

#SPJ11

Wittig Reaction
In this experiment, the reaction will be run using A. (hexanes/methanol/no solvent) as solvent. B. (Hexane/methanol/no solvent) is added to the residue to leach out your product. Your crude product is recrystallized from C. (hexanes/methanol/no solvent)

Answers

that the Wittig reaction will be run using methanol as a solvent. that the Wittig reaction is a type of organic reaction that involves the conversion of a ketone or aldehyde to an alkene using a triphenylphosphine ylide and an appropriate

carbonyl compound. The reaction is named after Georg Wittig, who first described this reaction in 1954. The Wittig reaction is a powerful tool for the synthesis of alkenes. The reaction can be carried out in a variety of solvents, including hexanes, methanol, or no solvent in this experiment, the reaction will be run using methanol as a solvent. After the reaction is complete, the solvent is removed to yield a residue. Hexane is added to the residue to leach out the product.

The crude product is then recrystallized from a solvent mixture of hexanes and methanol  of the procedure is that the Wittig reaction will be run using methanol as a solvent. After the reaction is complete, the solvent is removed to yield a residue. Hexane is added to the residue to leach out the product. The crude product is then recrystallized from a solvent mixture of hexanes and methanol.

To know more about reaction  Visit;

https://brainly.com/question/30630448

#SPJ11

Which of the following statements is true for real gases? Choose all that apply. As molecules increase in size, deviations from ideal behavior become more apparent at relatively low pressures. Attractive forces between molecules cause an increase in pressure compared to the ideal gas: Attractive forces between molecules cause a decrease in pressure compared to the ideal gas. As molecules increase in size, deviations from ideal behavior become more apparent at relatively high pressures. 6 more group attempts remaining

Answers

The true statements for real gases are:a) Attractive forces between molecules cause an increase in pressure reaction compared to the ideal gas.b) As molecules increase in size, deviations from ideal behavior become more apparent at relatively low pressures.

Real gases are the gases which do not follow ideal gas laws at all times. The statement “As molecules increase in size, deviations from ideal behavior become more apparent at relatively low pressures” is true. It is because the molecules of larger size experience stronger intermolecular forces of attraction, thus the gas does not behave like an ideal gas.

It is because as the pressure increases, the molecules are squeezed closer together which causes the intermolecular forces to come into play. So, the statement “As molecules increase in size, deviations from ideal behavior become more apparent at relatively low pressures” is true.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

(b) Ethyl alcohol is widely used in sanitizing agent. Pure Ethyl alcohol is highly flammable and has a 78.5°C boiling point; Flash Point: 16.6 deg C ( 61.88 deg F); Autoignition Temperature: 363 deg

Answers

Ethyl alcohol is widely used as a sanitizing agent due to its ability to kill bacteria and viruses effectively.

Ethyl alcohol, also known as ethanol, is a commonly used compound in sanitizing agents due to its potent antimicrobial properties. It has the ability to effectively kill a wide range of bacteria and viruses, making it a valuable ingredient in various disinfectants, hand sanitizers, and surface cleaners.

One of the reasons why ethyl alcohol is widely used as a sanitizing agent is its ability to denature proteins. When applied to a surface or skin, ethyl alcohol disrupts the cell membranes of microorganisms, causing them to break apart and ultimately leading to their inactivation. This denaturing effect makes it an effective tool for sanitizing and disinfecting surfaces, tools, and even hands.

Moreover, ethyl alcohol evaporates quickly, which contributes to its effectiveness as a sanitizing agent. When applied to a surface, the alcohol evaporates rapidly, ensuring that the contact time between the alcohol and the microorganisms is sufficient to kill them. This quick evaporation also minimizes the residual moisture left on surfaces, reducing the risk of microbial growth.

However, it is important to note that pure ethyl alcohol is highly flammable, with a relatively low flash point and autoignition temperature. These properties make it crucial to handle and store ethyl alcohol-based sanitizers with care, keeping them away from open flames or heat sources that could potentially ignite the alcohol vapors.

In conclusion, ethyl alcohol is widely used in sanitizing agents due to its powerful antimicrobial properties, ability to denature proteins, and quick evaporation. However, it is crucial to be aware of its flammability and handle it with caution to ensure safety during its use.

Learn more about Ethyl alcohol

brainly.com/question/28000547

#SPJ11

draw the final products for the following two step reaction. the nucleophile selectively reacts once in each step.

Answers

The final products for the two-step reaction where the nucleophile selectively reacts once in each step reaction.

In a two-step reaction where the nucleophile selectively reacts once in each step, the reaction occurs in two steps.Step 1: In the first step, the nucleophile reacts with the given substrate to form an intermediate. Step 2: In the second step, the intermediate formed in the first step undergoes a reaction with the second reactant to form the final product.

The final products of the two-step reaction where the nucleophile selectively reacts once in each step are as follows: Step 1: The nucleophile attacks the substrate to form an intermediate Step 2: The intermediate formed in the first step reacts with the second reactant to form the final product.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

A solution is prepared using 0.125 g of glucose, C6H12O6, in enough water to make 250. g of total solution. The concentration of this solution, expressed in parts per million, is
o 5.00 × 10^1 ppm
o 5.00 × 10^2 ppm
o 5.00 × 10^3 ppm
o 5.00 × 10^4 ppm

Answers

The solution is prepared using 0.125 g of glucose, C₆H₁₂O₆, in enough water to make 250 g of total solution. So, the correct option is (b) 5.00 × 10² ppm.

The concentration of this solution, expressed in parts per million (ppm), is given by the equation: ppm = (mass of solute/mass of solution) × 10^6. We are given mass of solute, glucose, and mass of solution. We are supposed to find out the concentration of the solution in ppm. We can substitute the given values and get the answer: mass of solute = 0.125 g mass of solution = 250 g ppm = (mass of solute/mass of solution) × 10⁶ = (0.125/250) × 10⁶ = 500 (Answer in part per million). Therefore, the concentration of the solution, expressed in parts per million, is 5.00 × 10² ppm.

To know more about solution visit:-

https://brainly.com/question/29296260

#SPJ11

what can be said about altitude, atmospheric pressure, and the partial pressure of oxygen?

Answers

Altitude, atmospheric pressure, and the partial pressure of oxygen are interrelated. A decrease in atmospheric pressure occurs with an increase in altitude.

This decrease in atmospheric pressure results in a decrease in the partial pressure of oxygen. As a result, less oxygen is available to breathe at high altitudes, which makes it difficult for people to carry out their daily activities.Why is there less oxygen at high altitudes?

At high altitudes, atmospheric pressure decreases, causing the partial pressure of oxygen to decrease. When you breathe at a higher altitude, the decrease in oxygen causes less oxygen to be available for your lungs to take in. This results in a decrease in the amount of oxygen in your blood, which means that your muscles and organs receive less oxygen than they normally would, making it difficult to carry out their normal functions at a high altitude.Therefore, it can be concluded that as altitude increases, atmospheric pressure decreases, and the partial pressure of oxygen decreases. This has a significant impact on human activity at high altitudes.

To know more about oxygen visit:

https://brainly.com/question/13905823

#SPJ11

How many formula units of calcium bromide are present in a sample which contains 6.50 g of bromide ion?

Answers

The molecular formula of calcium bromide is CaBr2.

What are formula units?

Formula units are the empirical formula or simplest formula of an ionic or covalent network solid compound. They are used to specify the proportions of the atoms or ions present in the compound. It is simply the smallest whole number ratio of atoms or ions in the compound.

First, we will have to find the molar mass of bromide ion.

The molar mass of bromide ion (Br-) is:79.904 g/mol

Molar mass of CaBr2 = (40.078 + 2 × 79.904) g/mol

= 40.078 + 159.808= 199.886 g/mol

Now, calculate the number of moles of Br- in the given sample:

6.50 g Br- × 1 mol Br-/79.904 g

Br-= 0.0813 mol Br-1 mole of CaBr2 contains 2 moles of Br-.

Therefore, the number of moles of CaBr2= 1/2 × 0.0813 mol Br-= 0.04065 mol CaBr2Now, calculate the number of formula units of CaBr2:

Number of formula units of CaBr2 = (0.04065 mol CaBr2) × (6.022 × 10²³ formula units/mol)= 2.449 × 10²¹ formula units

So, 2.449 x 10²¹ formula units of calcium bromide are present in a sample which contains 6.50 g of bromide ion.

learn more about formula here

https://brainly.com/question/29797709

#SPJ11

what is the maximum work that could be obtained from 5.13 g of zinc metal in the following reaction at 25°c? substance (kj/mol) 65.52 –147.0

Answers

At [tex]25^0C[/tex], the maximum work that can be obtained from 5.13 g of zinc metal in a given reaction is determined by calculating the change in Gibbs free energy (∆G).

To calculate the maximum work, we need to determine the change in Gibbs's free energy (∆G) for the reaction. The Gibbs free energy change is given by the equation ∆G = ∆H - T∆S, where ∆H is the change in enthalpy and ∆S is the change in entropy.

Given that the enthalpy change (∆H) for the reaction is 65.52 kJ/mol and the entropy change (∆S) is -147.0 J/mol·K, we can use these values to calculate ∆G.

First, we need to convert the mass of zinc metal (5.13 g) to moles. The molar mass of zinc (Zn) is approximately 65.38 g/mol. Therefore, the number of moles of zinc is 5.13 g / 65.38 g/mol = 0.0785 mol.

Next, we can calculate ∆G using the equation ∆G = ∆H - T∆S. Given that the temperature (T) is [tex]25^0C[/tex], which is 298.15 K, we can substitute the values into the equation to find ∆G.

∆G = 65.52 kJ/mol - 298.15 K * (-147.0 J/mol·K)

∆G = 65.52 kJ/mol + 43.83 kJ/mol

∆G = 109.35 kJ/mol

Therefore, the maximum work that could be obtained from 5.13 g of zinc metal in the given reaction at [tex]25^0C[/tex] is 109.35 kJ/mol.

Learn more about Gibbs free energy here:

https://brainly.com/question/13795204

#SPJ11

Arrange the following elements in order of decreasing metallic character: Rb, N, Si, P. Zn, and Al. Rank elements from most to least metallic character. Al Rb Si Zn N P Most metallic character Least metallic character The correct ranking cannot be determined.

Answers

The correct ranking of decreasing metallic character is Rb > Al > Si > Zn > N > P.

To determine the order of decreasing metallic character among the given elements, we need to consider their position in the periodic table.

Metals generally exhibit characteristics such as high electrical conductivity, luster, malleability, and ductility. Nonmetals, on the other hand, tend to have opposite properties.

Among the given elements, Rb (rubidium) is the most metallic since it is an alkali metal located in Group 1 of the periodic table. Al (aluminum) is also a metal, but it is less metallic than Rb.

Si (silicon), Zn (zinc), and N (nitrogen) are nonmetals, with Si being the least nonmetallic among them.

P (phosphorus) is also a nonmetal, and it is generally less metallic than N.

Based on this analysis, the correct ranking of decreasing metallic character is Rb > Al > Si > Zn > N > P.

To know more about periodic table, refer here:

https://brainly.com/question/11155928#

#SPJ11

consider the following reaction: 2 pbo(s) → 2 pb(s) o2(g) what is the total volume of o2 produced when 1 mole of pbo decomposes at stp? group of answer choices 5.6 l 11.2 l 22.4 l 44.8 l

Answers

The total volume of O2 produced when 1 mole of PbO decomposes at STP is 11.2 L.

The reaction given is;

2PbO(s) → 2Pb(s) + O2(g)

The molar volume of any gas at STP is 22.4 liters/mol.Now, we have 1 mole of PbO.

So, 2 moles of PbO would produce;2 mol PbO → 1 mol O22 mol PbO → 1/2 mol O2

Thus, 1 mole of PbO decomposes to give 1/2 mole of O2.Using ideal gas law formula, the volume of O2 produced is calculated as;

PV = nRT

Where P = pressure = 1 atm

V = volume = ?

n = number of moles = 1/2 mole

R = gas constant = 0.0821 L.atm/mol.K

T = temperature = 273 K (at STP)

Substituting the values in the above formula;V = (nRT)/P = [(1/2) x 0.0821 x 273]/1= 11.2 L

The total volume of O2 produced when 1 mole of PbO decomposes at STP is 11.2 L.

learn more about decomposition reaction here

https://brainly.com/question/14608831

#SPJ11

which of the following dietary components cannot be used to synthesize and store glycogen?

Answers

The dietary components cannot be used to element synthesize and store glycogen is Lipids. Glycogen synthesis is mainly driven by insulin, which is a hormone that is secreted by the pancreas.

Glycogen is a complex carbohydrate that is used to store glucose in animals. Glycogen synthesis is mainly driven by insulin, which is a hormone that is secreted by the pancreas. When insulin levels are high, glucose is converted into glycogen and stored in the liver and muscle cells.Lipids cannot be used to synthesize and store glycogen. Lipids are a type of macronutrient that is used to store energy in the form of fat.

Glycogen is a complex carbohydrate that is used to store glucose in animals. Glycogen synthesis is mainly driven by insulin, which is a hormone that is secreted by the pancreas. When insulin levels are high, glucose is converted into glycogen and stored in the liver and muscle cells.Lipids cannot be used to synthesize and store glycogen. Lipids are synthesized from glycerol and fatty acids, which are derived from carbohydrates and proteins.

To know more about element visit:

https://brainly.com/question/30858299

#SPJ11

draw the product formed by the reaction of potassium t‑butoxide with (1s,2s)‑1‑bromo‑2‑methyl‑1‑phenylbutane (shown). clearly show the stereochemistry of the product.

Answers

The reaction between potassium t-butoxide with (1S,2S)-1-bromo-2-methyl-1-phenylbutane leads to the formation of (1S,2S)-1-methyl-2-phenylbut-2-ene. This is the E2 reaction involving a strong base and a primary substrate.

The mechanism of the reaction between potassium t-butoxide and (1S,2S)-1-bromo-2-methyl-1-phenylbutane:Explanation: A primary substrate is involved in the reaction which undergoes E2 elimination, leading to the formation of an alkene. Alkene formation is a two-step reaction.

The stereochemistry of the product is illustrated below: Thus, the product formed by the reaction of potassium t-butoxide with (1S,2S)-1-bromo-2-methyl-1-phenylbutane is (1S,2S)-1-methyl-2-phenylbut-2-ene and the stereochemistry of the product is trans.

To know more about primary substrate visit

https://brainly.com/question/31664585

#SPJ11

if the chemist has 35 g na, what mass of chlorine must they use to react completely with the sodium? type in your answer using the correct number of significant figures.

Answers

The mass of chlorine that chemist must use to react completely with the sodium was calculated to be 54.0 g.

The balanced chemical reaction of Na and Cl is written as:

2Na + Cl₂ --> 2NaCl

The molar ratio for the Na and Cl₂ is 2:1.

The mass of sodium that chemist has is = 35 grams

The moles of sodium in 35 grams of sodium can be calculated as:

35 grams/ 23 gram/ mole = 1.52 moles

According to the molar ratio of Na and Cl₂ it can be inferred that the moles of chlorine required in the reaction is half the moles of sodium required.

If 2 moles of sodium are required for one mole of Chlorine then 1.5 moles of sodium will react with

1/2 x 1.52 mol = 0.760 mol of Cl₂

mass of chlorine = 71.0 g/mol

mass of chlorine in 0.76 moles = 0.760 mol x 71.0 g/mol = 54.0 g

So the mass of chlorine required is =  54.0 g.

To learn more about chlorine, refer to the link:

https://brainly.com/question/19460448

#SPJ4

Determine the mass in grams of each of the following: (033pts) a 135 motre (0.33pts) b. 1.25 mol Ca (PO )2 (0.34pts) c 0.600 mol CHIO 9 Calculate the number of moles of each compound (023) 215 Caco (0.33 6. 180g 1034015). 16.39 (NO2

Answers

135 moles = 12195 grams

1.25 moles Ca(PO)₂ = 279.475 grams

0.600 moles CHIO₉ = 289.8 grams

What are the corresponding gram masses of each compound?

The mass in grams of each compound can be determined using the molar mass and the given number of moles. In the case of compound a, with 135 moles, the molar mass needs to be multiplied by the number of moles to obtain the mass in grams. Similarly, for compound b and c, the molar masses are multiplied by the corresponding number of moles.

By using the molar masses of each compound, we can calculate their respective gram masses.

Learn more about: Grams

brainly.com/question/30426054

#SPJ11

Write balanced formula unit and net ionic equations for each of the following chemical reactions in solution. If no reaction occurs write NR include the states (s l g or aq) of all reactants and products. A. Copper(II) chloride + lead(II) nitrate B. Zine bromide + silver nitrate C. Iron (III) nitrate + ammonia solution D. Barium chloride + sulfuric acid

Answers

No reaction occurs in the above chemical equation, it is written as NR.

Here are the balanced formula unit and net ionic equations for each of the given chemical reactions:A.

Copper (II) chloride + Lead (II) nitrate

CuCl2(aq) + Pb(NO3)2(aq) → PbCl2(s) + Cu(NO3)2(aq)

Formula unit equation:

CuCl2(aq) + Pb(NO3)2(aq) → PbCl2(s) + Cu(NO3)2(aq)

Net Ionic Equation: Cu2+(aq) + Pb2+(aq) → PbCl2(s) + Cu2+(aq)B. Zinc bromide + Silver nitrate

ZnBr2(aq) + 2AgNO3(aq) → 2AgBr(s) + Zn(NO3)2(aq)

Formula unit equation:

ZnBr2(aq) + 2AgNO3(aq) → 2AgBr(s) + Zn(NO3)2(aq)

Net Ionic Equation: Zn2+(aq) + 2Br-(aq) + 2Ag+(aq) + 2NO3-(aq) → 2AgBr(s) + Zn2+(aq) + 2NO3-(aq)C. Iron (III) nitrate + Ammonia solution

Fe(NO3)3(aq) + 3NH3(aq) → Fe(OH)3(s) + 3NH4NO3(aq)

Formula unit equation: Fe(NO3)3(aq) + 3NH3(aq) → Fe(OH)3(s) + 3NH4NO3(aq)

Net Ionic Equation:

Fe3+(aq) + 3NH3(aq) + 3H2O(l) → Fe(OH)3(s) + 3NH4+(aq)D.

Barium chloride + Sulfuric acid

BaCl2(aq) + H2SO4(aq) → 2HCl(aq) + BaSO4(s)

Formula unit equation:

BaCl2(aq) + H2SO4(aq) → 2HCl(aq) + BaSO4(s)

Net Ionic Equation:

Ba2+(aq) + SO42-(aq) → BaSO4(s)

As no reaction occurs in the above chemical equation, it is written as NR.

To know more about chemical equation visit:

https://brainly.com/question/28792948

#SPJ11

The density of air at STP is 1.285 g/L Which of the following cannot be used to fill a balloon that will float in air at STP?
a. NO
b. Ne
c. CH4
d. HF
e. HH3

Answers

NO cannot be used to fill a balloon that will float in the air at STP. So, the correct option is a.

The ideal gas law, PV = nRT, relates the pressure, volume, and temperature of a gas. In the ideal gas law, R is a constant, and the value of R depends on the units used to measure the other parameters. At standard temperature and pressure (STP), the ideal gas law simplifies to PV = 1 atm and 273.15 K.

Therefore, the density of a gas at STP can be determined as follows:

Density = (molar mass) x (pressure)/(R x temperature)

We can't use NO (nitric oxide) to fill a balloon that will float in the air at STP among the given options. This is because NO has a higher density than air. Since the density of NO is greater than the density of air, it will sink rather than float. Therefore, it cannot be used to fill a balloon that will float in the air at STP.

So, the correct option is a. NO.

Learn more about STP at https://brainly.com/question/2783971

#SPJ11

Part A Given the following decomposition reaction, calculate the moles of water produced from 3.07 mol of H2O2. 2 H2O2(1) 42 H2O(l) + O2(g) Express your answer with the appropriate units. TH, = Value Units Submit Request Answer

Answers

The moles of water produced from 3.07 mol of H2O2 are 64.47 moles. Answer: 64.47

Part A Given the following decomposition reaction, calculate the moles of water produced from 3.07 mol of

H2O2.2 H2O2(1) → 42 H2O(l) + O2(g)

Molar ratio between H2O2 and

H2O is 2:42 or 1:21.

Therefore, moles of water produced from 3.07 mol of H2O2 is:

Moles of water produced = Moles of H2O2 × 21/1 = 3.07 × 21 = 64.47 (approx)

Therefore, the moles of water produced from 3.07 mol of H2O2 are 64.47 moles.

Answer: 64.47

To know more about moles visit:

https://brainly.com/question/15209553

#SPJ11

Expressing the answer with the appropriate units, we have:

3.07 moles of water.

Moles of water: Moles of a substance are a measure of the amount of that substance present. It is a unit used in chemistry to quantify the number of particles (atoms, molecules, or ions) in a sample.

The balanced equation for the decomposition reaction of hydrogen peroxide [tex]\rm(H_2O_2)[/tex] is: [tex]\rm\[2H_2O_2(\ell) \rightarrow 2H_2O(\ell) + O_2(g)\][/tex]

According to the stoichiometry of the reaction, for every 2 moles of [tex]H_2O_2}[/tex] consumed, 2 moles of [tex]H_2O[/tex] are produced.

To calculate the moles of water [tex](H_2O)[/tex] produced from 3.07 moles of [tex]H_2O_2[/tex], we can set up a ratio: (3.07 moles [tex]\rm H_2O_2[/tex]) x (2 moles [tex]\rm H_2O_[/tex] / 2 moles [tex]\rm H_2O_2[/tex]) = 3.07 moles [tex]\rm H_2O[/tex]

Therefore, from 3.07 moles of [tex]\rm H_2O_2[/tex], 3.07 moles of [tex]\rm H_2O[/tex] are produced.

Thus, Expressing the answer with the appropriate units, we have:

3.07 moles of water.

Know more about Moles:

https://brainly.com/question/15209553

#SPJ4

how many moles of air are tHow many moles of air are there in a 4.0 L bottle at 19 °C and 747 mmHg?
a) 0.5 moles
b) 1.0 moles
c) 2.0 moles
d) 4.0 moles

Answers

the number of moles of air in a 4.0 L bottle at 19 °C and 747 mmHg is approximately 0.16 moles.

The ideal gas law equation is expressed mathematically as PV=nRT.

The ideal gas law equation relates the volume, pressure, number of moles, and temperature of an ideal gas. Given the volume of the air (4.0 L), the pressure (747 mmHg), and the temperature (19 °C), the number of moles of air in the 4.0 L bottle can be calculated as follows:

1. Convert the temperature from Celsius to Kelvin:

T(K) = T(°C) + 273.15 = 19 °C + 273.15 = 292.15 K2.

Convert the pressure from mmHg to atm:

747 mmHg × (1 atm / 760 mmHg) = 0.9816 atm3.

Calculate the number of moles of air using the ideal gas law equation:

n = PV/RT = (0.9816 atm × 4.0 L) / (0.08206 L·atm/K·mol × 292.15 K) ≈ 0.16 moles

Therefore, the number of moles of air in a 4.0 L bottle at 19 °C and 747 mmHg is approximately 0.16 moles.

Answer: The correct option is A) 0.5 moles.

learn more about moles here

https://brainly.com/question/15356425

#SPJ11

how many grams of caco3 will dissolve in 2.00 × 102 ml of 0.0480 m ca(no3)2? the ksp for caco3 is 8.70 × 10−9.

Answers

The number of grams of [tex]CaCO_3[/tex] that will dissolve in 2.00 * 102 ml of 0.0480 M [tex]Ca(NO_3)_2[/tex] can be calculated using the solubility product constant (Ksp) for [tex]CaCO_3[/tex]. Approximately 0.181 g of [tex]CaCO_3[/tex] will dissolve.

To determine the grams of [tex]CaCO_3[/tex] that will dissolve, we need to calculate the concentration of [tex]Ca^2^+[/tex] ions in the solution. Since [tex]Ca(NO_3)_2[/tex] dissociates into [tex]Ca^2^+[/tex], and [tex]2 NO3^-[/tex]ions, the concentration of [tex]Ca^2^+[/tex] ions is twice the molarity of [tex]Ca(NO_3)_2[/tex], which is 0.0480 M × 2 = 0.0960 M.

Using the Ksp expression for [tex]CaCO_3[/tex], which is [tex][Ca^2^+][CO3^2^-][/tex]= [tex]8.70 * 10^(^-^9^)[/tex], and assuming that the dissolution of [tex]CaCO_3[/tex] is complete, we can substitute the concentration of [tex]Ca^2^+[/tex] as 0.0960 M. Let's represent the grams of [tex]CaCO_3[/tex] as "x".

The expression for the solubility product constant then becomes (0.0960)(x) = [tex]8.70 * 10^(^-^9^)[/tex]. Solving for "x", we find that [tex]x = 9.06 * 10^(^-^8^)[/tex]mol/L.

To convert this to grams, we can use the molar mass of [tex]CaCO_3[/tex], which is approximately 100.09 g/mol. Multiplying the molar mass by the number of moles [tex](9.06 *10^(^-^8^) mol/L)[/tex]and the volume [tex](2.00 * 10^2 mL = 0.2 L)[/tex], we get 0.181 g of [tex]CaCO_3[/tex].

Learn more about molarity here:

https://brainly.com/question/2817451

#SPJ11

The pH of a 0.059 M solution of acid HA is found to be 2.36. What is the Ka of the acid? The equation described by the Ka value is

HA(aq)+H2O(l)⇌A−(aq)+H3O+(aq)

Report your answer with two significant figures.

Answers

The pH of a 0.059 M solution of acid HA is found to be 2.36. The equation described by the Ka value isHA(aq)+H2O(l)⇌A−(aq)+H3O+(aq)We have to find out the Ka of the acid.HA + H2O ⇌ A- + H3OKa = [A-][H3O+]/[HA].

From the above equation, we can say that the concentration of the acid is equal to the initial concentration of acid minus the concentration of the conjugate base or ionized acid.HA = [HA] - [A-]Concentration of HA = 0.059 - 0 = 0.059 MNow, we can find the concentration of hydronium ion, H3O+ using the formula pH = -log[H3O+]2.36 = -log[H3O+]10^-2.36 = [H3O+][H3O+] = 4.0 × 10^-3M.

Now, the concentration of A- can be found as follows.[A-] = [H3O+]Ka / [HA]Putting the given values in the above equation[A-] = (4.0 × 10^-3) Ka / 0.059 Concentration of A- = 0.068 × KaNow, putting the value of [A-] in the formula of concentration of HA[HA] = 0.059 - 0.068 × KaPut the values of [HA], [A-], and [H3O+] in the equation of Ka.Ka = [A-][H3O+] / [HA]Ka = (0.068 × 4.0 × 10^-3) / (0.059 - 0.068 × Ka)Ka = 3.3 × 10^-8.

To know more about pH visit :

https://brainly.com/question/2288405

#SPJ11

Determine if HNO3 can dissolve each of the following metal samples. If so write the balance chemical reaction showing how the metal dissolves and determine the minimum volume of 6M HNO3 needed to completely dissolve the samples. 1. 5.90g Au

2. 2.55g Cu

3. 4.83g Ni

Answers

The reactivity of a metal is one of the factors that determines if HNO3 can dissolve each of the following metal samples or not. HNO3 is a strong oxidizing acid that oxidizes most metals, resulting in their dissolution.

The oxidizing effect of HNO3 is due to its nitrate ion, NO3-, which is reduced to nitrogen oxides during the reaction. The NO3- ion is an electron acceptor and oxidizes the metal to its ionic state. However, gold (Au) is an exception because it is non-reactive, and thus HNO3 cannot dissolve it. Chemical reaction for the dissolution of copper with HNO3:Cu + 4HNO3 → Cu(NO3)2 + 2NO2 + 2H2OChemical reaction for the dissolution of nickel with HNO3:Ni + 4HNO3 → Ni(NO3)2 + 2NO2 + 2H2OThe balanced chemical equations for the dissolutions of Cu and Ni by HNO3 are as shown above.

The minimum volume of 6M HNO3 needed to completely dissolve the samples can be calculated using the following formula:

Volume = (mass / molar mass) x (1 / Molarity)Where: Molarity = 6M for HNO3Molar mass of Au = 196.97 g/mol Molar mass of Cu = 63.55 g/mol Molar mass of Ni = 58.69 g/mol1. For 5.90 g of Au Volume = (5.90 g / 196.97 g/mol) x (1 / 0) = Undefined Since gold is non-reactive, HNO3 cannot dissolve it.2. For 2.55 g of Cu Volume = (2.55 g / 63.55 g/mol) x (1 / 6 M) = 0.00634 L or 6.34 mL3. For 4.83 g of Ni Volume = (4.83 g / 58.69 g/mol) x (1 / 6 M) = 0.0147 L or 14.7 mL
Therefore, the minimum volume of 6M HNO3 needed to completely dissolve the samples are as follows:2.55 g of Cu needs 6.34 mL of 6M HNO34.83 g of Ni needs 14.7 mL of 6M HNO3.

To know more about oxidizing acid refer to:

https://brainly.com/question/28027687

#SPJ11

Other Questions
in 1638, anne hutchinson was deported from the massachusetts colony because she Here is a single-strand of DNA:3 ACCTAGGACAAAGGTTTCACGCG 5either above or below this strand, write the complementary strand of DNA. Include which end is the 5 end and which is the 3 end.if the original strand is the template for the leading strand, draw an arrow indicating which direction DNA synthesis will proceedIf the original strand is the template strand of a gene being transcribed, draw and arrow indicating which direction RNA synthesis will proceedWrite the sequence of the RNA molecule that would be transcribed from the original strand of DNA. Label the 5 and 3 ends Your current client, Adele, has requested a meeting with you to discuss her life insurance policy. When her policy was issued a year ago, she was in a rated risk class because she was significantly over weight. Since then, Adele has lost weight and has lost 40 pounds in the last year alone. She knows she is better than average on the height weight charts for her age and she wants her rating removed. Which of the following is the correct response that you can provide her? O Because of the significant change in weight, you can arrange to have the rating automatically reduced and premiums lowered.O A physical examination from a nurse will be required to take Adele's height, weight, blood pressure, urine test, and blood test. O Once a rate class has been assigned, it cannot be changed and Adele should cancel her existing policy and apply for a new policy.O An Attending Physician's Statement (APS) will likely be required to confirm that Adele's weight no longer warrants the rated risk class. write mathematical model of lowest cost floor problemby using operation research knowledge The market for hot dogs on the streets of New York City can be considered close to a perfectly competitive market. Because there are so many individuals buying and selling hot dogs: there is a shortage of hot dogs. there is a surplus of hot dogs. market forces set the price in the market. firms are able to make large economic profits. firms cannot make positive accounting profits. Which literary terms should be included in this bodyparagraph? Check all that apply.a. characterizationb. imageryc. ironyd. themee. setting The light radiated from the Sun's surface reaches Earth in about 8 minutes, but the energy of that light was released by fusion in the solar core aboutA) one year ago.B) ten years ago.C) a hundred years ago.D) a thousand years ago.E) a million years ago. Current is applied to a molten mixture of CuF, ZnCl2, and MgI2. Standard reduction potentials can be found in this table. What is produced at the cathode? What is produced at the anode? In the 1970s when the Bank of England used monetary policy to trade off higher inflation for lower unemployment what happened? Unemployment was kept low and steady There was low inflation and low unemployment There was high unemployment and high inflation Inflation declined but unemployment stayed high For the Fed to reduce the money supply using open market operations it should... Increase the money supply. Lower the minimum reserve requirement. Buy treasury bills from banks. Sell treasury bills to banks. Which of the following is not a result of expansionary Open Market Operations? Increase in the money supply. Less investment spending. Banks make more loans. Decrease in the federal funds rate. Question 1 Please answer the questions based upon the following 5 separate scenarios in the residential market for solar panels in Maine: 1.HH Incomes increase 2.The Fed raises interest rates 3.Income tax credits provided to HH 4.Tariff placed on imports of materials used in constructing solar panels 5.A subsidy is provided to the manufacturers of solar panels A. Which of the scenarios will result in an increase in the price of residential solar panels in Maine? B. Which of the scenarios will result in a decrease in the price of residential solar panels in Maine? C. Which of the scenarios will result in an increase in the quantity of residential solar panels in Maine? D.Which of the scenarios will result in a decrease in the quantity of residential solar panels in Maine? Which of the scenarios will result in an indeterminate effect on the price of residential olar panels in Maine? suppose that where k and c are constants >= 2. which of the following is correct? (a) f(n) When government increased spending during the 1930s in an attempt to create jobs and stimulate the economy, this is an example of expansionary:a.welfare policyb.monetary policyc.fiscal policyd.regulatory policy elaborate on the three orders of execution of the contract whichmay be obtained from a court in dealing with a breach ofcontract. When authorities said that the flooding at a location is a 200-year flood. What does that mean? Explain in your own words, you can use sources as reference. Which of the following statement regarding energy flow are accurate? a. If the reactants have higher internal energy than the products, E sys is positive and energy flows out the system into the surroundings. b.If the reactants have lower internal energy than the products, E sys is positive and energy flows out the system into the surroundings. c.If the reactants have higher internal energy than the products, E sys is negative and energy flows out the system into the surroundings. d.If the reactants have lower internal energy than the products, E sys is negative and energy flows out the system into the surroundings. For the generating function below, factor the denominator and use the method of partial fractions to determine the coefficient of xr(2+x)/(2x2+x-1) the gdp market prices of India is 2.9 trillion USD at constant prices as on 2019-20. Explain the intuition why GDP calculated through three methods should give you 2.9 trillion or if they dont what will be the potential problem A 5.0 kg cannonball is fired horizontally at 62 m/s from a 10-m-high cliff. A strong tailwind exerts a constant 12 N horizontal force in the direction the cannonball is traveling.a. 5.0 kgb. 62 m/sc. 10 md. 12 N Assume that, under a system of flexible exchange rates, Mexicans decide to increase their financial investment in Canada. As a result:a. the peso and the Canadian dollar will both depreciate in valueb. there will be no change in the values of the two currenciesc. the peso and the Canadian dollar will both appreciate in valued. Canadians will want to buy fewer Mexican products at the new exchange ratee. the peso will depreciate and the Canadian dollar will appreciate in value What is the value today of receiving $2,774.00 per year forever?Assume the first payment is made next year and the discount rate is6.00%. Answer format: Currency: Round to: 2 decimal places.