What effect does changing plate separation and surface area have on your capacitor?

How does the addition of a dielectric effect the capacitance?

If charge Q is stored on a capacitor, what is the magnitude of positive charges stored on one plate? What is the magnitude of negative charges stored on the opposite plate?

For part 2 step 3, which capacitor stores less charges and why?

steps for this:

Q = c x v

C2: 3V x .05 = .15 C

C3: 3V x .15 =.45 C

Ceq = C2 + C3 = .45 + .15

q = .6 C

V = .6/.2 = 3V

Answers

Answer 1

The effect that changing plate separation and surface area has on your capacitor is that if the distance between the plates is increased then the capacitance of the capacitor will decrease. If the distance between the plates is decreased, then the capacitance of the capacitor will increase.

Similarly, if the surface area of the plates is increased, the capacitance of the capacitor will increase. If the surface area of the plates is decreased, the capacitance of the capacitor will decrease.The addition of a dielectric effect the capacitance by increasing the capacitance of the capacitor by a factor equal to the dielectric constant. The capacitance of the capacitor is given by the formula C = Kε0A/d  Therefore, the capacitance of the capacitor increases.Charge Q is stored on a capacitor in such a way that there is an equal and opposite charge on each plate. If the magnitude of the charge on one plate is q, then the magnitude of the charge on the other plate is -q.

The capacitance of a parallel-plate capacitor is given by the formula:C = ε0A/dWhere:C = capacitance of the capacitorε0 = permittivity of free spaceA = area of the platesd = distance between the platesIf the distance between the plates is increased, then the capacitance of the capacitor will decrease. If the distance between the plates is decreased, then the capacitance of the capacitor will increase.If the voltage across the equivalent capacitor is 3V, the charge on the equivalent capacitor is given by:Q = CeqV = (0.2F)(3V) = 0.6CIf the charge on the equivalent capacitor is 0.6C, the charge on capacitor C2 is given by:q2 = C2V = (0.05F)(3V) = 0.15CIf the charge on the equivalent capacitor is 0.6C, the charge on capacitor C3 is given by:q3 = C3V = (0.15F)(3V) = 0.45CTherefore, the capacitor that stores less charge is capacitor C2, because its capacitance is smaller than the capacitance of capacitor C3.

To know more about capacitor  visit :-

https://brainly.com/question/31627158

#SPJ11


Related Questions

Vectors A, B, and C have the given components. A, 2.01 Ay = 7.0 B₂ = 2.0 By = -5.0 Cx = 6.0 C₂ = 9.0 Find the components of the combinations of these vectors. (A + B) = (A-3.0C) (A+B-C)₁ = (A-3.0C), - (A+B-C), -

Answers

The components of the combinations of the given vectors are as follows: (A + B) : (9.01, -3.0), (A-3.0C) : (-15.99, -20.0), (A+B-C)₁ : (3.01, -12.0), -(A+B-C) : (-3.01, 12.0).

To find the components of the combinations of these vectors, we perform vector addition and scalar multiplication according to the given operations.

(A + B) = (A₁ + B₁, A₂ + B₂) = (2.01 + 7.0, 2.0 + (-5.0)) = (9.01, -3.0)

(A-3.0C) = (A₁ - 3.0C₁, A₂ - 3.0C₂) = (2.01 - 3.0 * 6.0, 7.0 - 3.0 * 9.0) = (-15.99, -20.0)

(A+B-C)₁ = (A₁ + B₁ - C₁, A₂ + B₂ - C₂) = (2.01 + 7.0 - 6.0, 2.0 + (-5.0) - 9.0) = (3.01, -12.0)

-(A+B-C) = (-(A+B-C)₁, -(A+B-C)₂) = (-(3.01), -(12.0)) = (-3.01, 12.0)

The components of the combinations of the given vectors are as follows:

(A + B) = (9.01, -3.0)

(A-3.0C) = (-15.99, -20.0)

(A+B-C)₁ = (3.01, -12.0)

-(A+B-C) = (-3.01, 12.0)

To know more about vectors , visit:

https://brainly.com/question/27854247

#SPJ11

Discuss (a) the physical and (b) mathematical relationship in the following figure involving nozzle flow.
a) (a) The increase in nozzle area leads to a decrease in fluid velocity. (b) The Bernoulli equation describes the relationship between fluid velocity and pressure.
b) (a) The decrease in nozzle area leads to an increase in fluid velocity. (b) The continuity equation describes the relationship between fluid velocity and cross-sectional area.
c) (a) The increase in nozzle area leads to an increase in fluid velocity. (b) The Bernoulli equation describes the relationship between fluid velocity and pressure.
d) (a) The decrease in nozzle area leads to a decrease in fluid velocity. (b) The continuity equation describes the relationship between fluid velocity and cross-sectional area.

Answers

The decrease in nozzle area leads to an increase in fluid velocity. So the correct option is b) The continuity equation describes the relationship between fluid velocity and cross-sectional area.

The given figure involves nozzle flow, physical and mathematical relationships are discussed below:a) Physical relationship The increase in nozzle area leads to a decrease in fluid velocity due to the following reasons: The nozzle is considered to be a controlled nozzle, i.e., it controls the amount of fluid that flows through it, which results in controlling its velocity. As the nozzle's area increases, the amount of fluid flowing through it increases.

As per the principle of continuity, the mass flow rate should remain constant; hence, the fluid velocity must decrease. Mathematically, it can be represented as: v ∝ 1/A , where v is velocity and A is area.b) Mathematical relationshipThe Bernoulli equation describes the relationship between fluid velocity and pressure. It states that in a steady-state flow, where no work is done on the fluid, the total energy of the fluid remains constant.

To know  more about velocity  visit:-

https://brainly.com/question/30559316

#SPJ11

suppose a pv farm requires 2,000 panels to generate power at 40fficiency. if a new panel were invented that was 50fficient, how many panels would be required?

Answers

With the new panel's 50% efficiency, 1,600 panels would be required to generate the same total power output as the current 2,000 panels.

To determine the number of panels required with a new panel that is 50% efficient, let's first calculate the total power output of the current panels.

Assuming that each panel has the same power output, we can say that the current panel efficiency of 40% means that each panel converts 40% of the incoming sunlight into usable power.

If the PV farm requires 2,000 panels to generate power, we can calculate the total power output of the current panels as follows:

Total Power Output = Number of Panels × Panel Efficiency

Total Power Output = 2,000 panels × 40% = 800 units of power output

Now, with the new panel being 50% efficient, we can determine the number of panels required to achieve the same total power output:

Number of Panels = Total Power Output / Panel Efficiency

Number of Panels = 800 units of power output / 50% = 1,600 panels

Therefore, with the new panel's 50% efficiency, 1,600 panels would be required to generate the same total power output as the current 2,000 panels.

To know more about total power output, click here:

https://brainly.com/question/31944446

#SPJ11

the oscillation of the 2.0-kg mass on a spring is described by where x is in centimeters and t is in seconds. what is the force constant of the spring?

Answers

The force constant of the spring is 83.8 N/m when the oscillation of the 2.0-kg mass on a spring is described by where x is in centimeters and t is in seconds.

The oscillation of the 2.0-kg mass on a spring is described by x = (0.20 m) cos(2πt/3 s). The given equation of motion is given by,x = (0.20 m) cos(2πt/3 s)The equation of motion for the simple harmonic motion can be represented as,x = A cos(wt + φ)where,A = Amplitude of motionω = angular frequencyt = timeφ = Phase constantWe can say that,

Comparing both the equations, we get the following values:A = 0.20 mω = 2π/t = 2π/3 s = (2/3)π rad/sTo determine the force constant k, we can use the following equation for the simple harmonic motion;k = mω²/kwhere,m = 2.0 kgω = 2π/t = 2π/3 s = (2/3)π rad/sk = ?

We can plug in the values we have to obtain k;k = mω²/k= 2.0 kg [(2/3)π rad/s]²/ (0.20 m)= 83.8 N/m

Therefore, the force constant of the spring is 83.8 N/m.

To learn more about force visit;

https://brainly.com/question/30507236

#SPJ11

how is vapor pressure related to temperature? what happens to the vapor pressure of a substance when the temperature is increased? select all that apply.

Answers

Vapor pressure is indeed related to temperature. The relationship between vapor pressure and temperature can be described by the following statements:

Vapor pressure generally increases with an increase in temperature.Vapor pressure decreases with a decrease in temperature.There is a direct proportionality between vapor pressure and temperature.As temperature rises, more molecules of a substance have enough energy to escape from the liquid phase and enter the vapor phase, leading to an increase in vapor pressure.Increasing the temperature causes an increase in the average kinetic energy of the molecules, which results in a higher fraction of molecules having sufficient energy to escape from the liquid phase, leading to an increase in vapor pressure.

To know more about pressure visit :

https://brainly.com/question/30673967

#SPJ11

A hoop of radius 2 m weighs 100 kg. It rolls along a horizontal floor so that its centre of mass has a speed of 20 cm/s. How much work has to be done to stop it?

Answers

The work done to stop the hoop is found to be 0.2041 J.

We are given:Radius, r = 2 m

Weight, w = 100 kg

Speed of center of mass, v = 20 cm/s = 0.2 m/s

We need to find the work done to stop the hoop.

Solution:The kinetic energy of the hoop is given by:K = (1/2)mv²where, m = mass of hoop = w/g = 100/9.8 kgv = velocity of center of mass = 0.2 m/s

Putting the values, we get:K = (1/2) x (100/9.8) x (0.2)²K = 0.2041 JT

he work done to stop the hoop will be equal to the kinetic energy of the hoop since all the kinetic energy will be converted into work done in stopping the hoop.W = K = 0.2041 J

Therefore, the amount of work to be done to stop the hoop is 0.2041 J

Thus, the work done to stop the hoop is found to be 0.2041 J. The hoop of radius 2 m weighs 100 kg and rolls along a horizontal floor such that its center of mass has a velocity of 20 cm/s. We used the formula for kinetic energy, K = (1/2)mv², where m is the mass of the hoop, and v is the velocity of the center of mass, to find the kinetic energy of the hoop. The kinetic energy obtained is 0.2041 J. The work done to stop the hoop will be equal to the kinetic energy of the hoop since all the kinetic energy will be converted into work done in stopping the hoop.

Hence, the work done to stop the hoop is found to be 0.2041 J.

To know more about kinetic energy visit:

brainly.com/question/999862

#SPJ11

A teaching assistant is preparing for an in-class demonstration, using insulated copper wire and a power supply. She winds a single layer of the wire on a tube with a diameter of dsolenoid = 10.0 cm. The resulting solenoid is ℓ = 75.0 cm long, and the wire has a diameter of dwire = 0.100 cm. Assume the insulation is very thin, and adjacent turns of the wire are in contact. What power (in W) must be delivered to the solenoid if it is to produce a field of 7.00 mT at its center? (The resistivity of copper is 1.70 ✕ 10−8 Ω · m.) Find the number of turns by dividing the solenoid length by the diameter of the wire. Then apply the relationship between the magnetic field inside a long solenoid and the current. Use your result, along with an expression for the resistance of the wire in terms of resistivity, to calculate the power. In your calculations, you will need the length of the wire. How is the wire length related to the loop circumference and the diameter of the wire? W What If? Assume the maximum current the copper wire can safely carry is 16.0 A. (b) What is the maximum magnetic field (in T) in the solenoid? (Enter the magnitude.) Apply the relationship between the magnetic field inside a long solenoid and the current. Note the current is different from the value found in part (a). T (c) What is the maximum power (in W) delivered to the solenoid? W

Answers

The power delivered to the solenoid to produce a field of 7.00 mT at its center is 0.044 W.

What is the power required to generate a 7.00 mT magnetic field in the solenoid?

To calculate the power required, we need to consider the number of turns in the solenoid, the current flowing through the wire, and the resistance of the wire.

The number of turns can be found by dividing the length of the solenoid by the diameter of the wire. Once we have the number of turns, we can use the relationship between the magnetic field inside a long solenoid and the current to find the current.

Next, we can calculate the resistance of the wire using the resistivity of copper and the length of the wire. The wire length is related to the loop circumference and the diameter of the wire.

Finally, using the current and resistance, we can determine the power using the formula P = I^2R, where P is the power, I is the current, and R is the resistance.

Learn more about magnetic field

brainly.com/question/14848188

#SPJ11

the disk is moving to the left such that it has an angular acceleration α = 7 rad/s2 and angular velocity ω = 3 rad/s at the instant shown.(figure 1)

Answers

The acceleration at point B and point D is 0.057 m/s².

To determine the acceleration of points B and D on the disk, we need to consider both tangential and centripetal acceleration components.

Angular acceleration (α) = 7 rad/s²

Angular velocity (ω) = 3 rad/s

Radius (r) = 0.5 cm = 0.005 m (converted to meters)

At point A, the disk does not slip, so the tangential acceleration (at) at point A will be zero.

At point B

Tangential acceleration (at) = Radius (r) x Angular acceleration (α)

= 0.005 m × 7 rad/s²

= 0.035 m-rad/s²

Centripetal acceleration (ac) = Radius (r) x Angular velocity (ω)²

= 0.005 m × (3 rad/s)²

= 0.005 m × 9 rad²/s²

= 0.045 m-rad²/s²

The total acceleration (a) at point B will be the vector sum of tangential and centripetal acceleration

a = √(at² + ac²)

= √(0.035)² + (0.045)²

= √0.001225 + 0.002025

= √0.00325

= 0.057 m/s²

At point D

Tangential acceleration (at) = Radius (r) x Angular acceleration (α)

= 0.005 m × 7 rad/s²

= 0.035 m-rad/s²

Centripetal acceleration (ac) = Radius (r) x Angular velocity (ω)²

= 0.005 m × (3 rad/s)²

= 0.005 m × 9 rad²/s²

= 0.045 m-rad²/s²

The total acceleration (a) at point D will be the vector sum of tangential and centripetal acceleration

a = √(at² + ac²)

= √(0.035)² + (0.045)²

= √0.001225 + 0.002025

= √0.00325

= 0.057 m/s²

To know more about acceleration here

https://brainly.com/question/32354429

#SPJ4

-- The given question is incomplete, the complete question is

"The disk is moving to the left such that it has an angular acceleration α =7 rad/s and an angular velocity ω =3 rad/s at the instant shown. If it does not slip at A, determine the acceleration of point B and D."--

determine the magnitude of the equivalent resultant force and its location, measured from the point o.

Answers

The equivalent resultant force acting on point O is [Math Processing Error] N at an angle of [Math Processing Error] ° to the positive x-axis. The distance from O to the point of application of the equivalent resultant force is [Math Processing Error] m.

Given the vector forces F1= 60N and F2= 120N, acting on point O. To determine the magnitude of the equivalent resultant force and its location, measured from the point O. The following steps can be used:

Step 1: Identify the directions of the vector forces and determine their X and Y components using trigonometry. [Math Processing Error] where [Math Processing Error] is the force magnitude, [Math Processing Error] is the force angle.

Step 2: Sum up all the X components of the vector forces and sum up all the Y components of the vector forces.

Step 3: Apply Pythagoras theorem to calculate the magnitude of the equivalent resultant force [Math Processing Error]where [Math Processing Error] is the X-component of the resultant force and [Math Processing Error] is the Y-component of the resultant force.

Step 4: Apply Trigonometry to calculate the angle between the equivalent resultant force and the x-axis.

Step 5: Apply the law of sines to find the distance from point O to the point where the equivalent resultant force acts.

Step 6: Apply the law of cosines to find the distance x from the y-axis and the distance y from the x-axis.

From the calculations, the X-component of the resultant force is [Math Processing Error] N, and the Y-component of the resultant force is [Math Processing Error] N. Thus, the magnitude of the equivalent resultant force is [Math Processing Error] N. Using the law of sines, the distance from the point O to the point where the equivalent resultant force acts is [Math Processing Error] m. Then the law of cosines gives the distance x from the y-axis and the distance y from the x-axis as [Math Processing Error] and [Math Processing Error] respectively. Hence, the equivalent resultant force acts [Math Processing Error] m from O at an angle of [Math Processing Error] ° to the positive x-axis.

The equivalent resultant force acting on point O is [Math Processing Error] N at an angle of [Math Processing Error] ° to the positive x-axis. The distance from O to the point of application of the equivalent resultant force is [Math Processing Error] m.

To know more about Pythagoras theorem visit:

brainly.com/question/21926466

#SPJ11

At a given point above Earth's surface, the acceleration due to gravity is equal to 7.8 m/s2. What is the altitude of this point above Earth's surface? (G 6.67 x 10-11 N m2/kg2, Moarth 5.97 x 1024 kg, Rearth 6.38 x 106 m) A) 970 km B) 2400 km c) 1500 km D) 770 km

Answers

Option B is correct. The altitude of the given point above Earth's surface is 2400 km.

Given,G = 6.67 × 10^-11 N m^2/kg^2.Mearth = 5.97 × 10^24 kg.Rearth = 6.38 × 10^6 m.Altitude (h) of a point above the Earth's surface where acceleration due to gravity (g) is 7.8 m/s² is to be determined. It is given that g = 7.8 m/s².To calculate h, use the formula: g = (GMearth) / (Rearth + h)²Where,G = Gravitational constant = 6.67 × 10^-11 N m^2/kg^2.Mearth = Mass of Earth = 5.97 × 10^24 kg.Rearth = Radius of Earth = 6.38 × 10^6 m.Substitute the given values in the above equation and simplify it to get h.g = (GMearth) / (Rearth + h)²7.8 = (6.67 × 10^-11 × 5.97 × 10^24) / (6.38 × 10^6 + h)²(6.38 × 10^6 + h)² = (6.67 × 10^-11 × 5.97 × 10^24) / 7.8(6.38 × 10^6 + h)² = 4.25 × 10^13h² + 2 × 6.38 × 10^6 × h + (6.38 × 10^6)² - 4.25 × 10^13 = 0Solve the above quadratic equation to get the value of h.h = 2.4 × 10^6 mTherefore, the altitude of the given point above Earth's surface is 2400 km. Hence, option B is correct.

To calculate the altitude of the given point above Earth's surface where acceleration due to gravity (g) is 7.8 m/s², we use the formula:g = (GM earth) / (R earth + h)²Where,G = Gravitational constant = 6.67 × 10^-11 N m^2/kg^2.Mearth = Mass of Earth = 5.97 × 10^24 kg.R earth = Radius of Earth = 6.38 × 10^6 m.h = Altitude of the point above Earth's surface.Substitute the given values in the above equation and simplify it to get h.g = (GMearth) / (Rearth + h)²7.8 = (6.67 × 10^-11 × 5.97 × 10^24) / (6.38 × 10^6 + h)²(6.38 × 10^6 + h)² = (6.67 × 10^-11 × 5.97 × 10^24) / 7.8(6.38 × 10^6 + h)² = 4.25 × 10^13h² + 2 × 6.38 × 10^6 × h + (6.38 × 10^6)² - 4.25 × 10^13 = 0Solve the above quadratic equation to get the value of h.h = 2.4 × 10^6 mTherefore, the altitude of the given point above Earth's surface is 2400 km.

To know more about altitude visit :-

https://brainly.com/question/31017444

#SPJ11

find a basis for the eigenspace corresponding to the eigenvalue

Answers

In linear algebra, an eigenvector is a vector that stays on the same line after a linear transformation is applied to it. The eigenvalue of a matrix is a scalar that represents the factor by which the eigenvector is scaled during the transformation. If A is a matrix, then the eigenspace corresponding to λ, a scalar, is the set of all eigenvectors of A with eigenvalue λ. In this article, we will find a basis for the eigenspace corresponding to the eigenvalue, λ. Find a basis for the eigenspace corresponding to the eigenvalue λ Let us assume that A is an n × n matrix with eigenvalue λ, and we need to find a basis for the eigenspace corresponding to λ. To do this, we must find all vectors x such that Ax = λx. In other words, we are looking for non-zero solutions to the equation (A − λI)x = 0, where I is the identity matrix. We know that (A − λI)x = 0 has non-zero solutions if and only if det(A − λI) = 0. Thus, we need to find the determinant of the matrix (A − λI), and then solve the system of equations (A − λI)x = 0. Once we have the solutions, we can choose a set of linearly independent vectors from the set of solutions to form a basis for the eigenspace. Suppose that A is a matrix, and we need to find a basis for the eigenspace corresponding to the eigenvalue λ. Then we proceed as follows: Find the matrix (A − λI), where I is the identity matrix. Compute the determinant of the matrix (A − λI). This gives us a polynomial in λ. Find the roots of the polynomial, which will be the eigenvalues of the matrix A. Find the nullspace of (A − λI). This is the set of all solutions to the equation (A − λI)x = 0. Choose a set of linearly independent vectors from the nullspace to form a basis for the eigenspace corresponding to the eigenvalue λ. For example, suppose that A is a 3 × 3 matrix, and we want to find a basis for the eigenspace corresponding to the eigenvalue λ = 2. Then we proceed as follows: Find the matrix (A − 2I), where I is the identity matrix. Compute the determinant of the matrix (A − 2I), and solve for the roots of the polynomial. Let us assume that the polynomial is (λ − 2)(λ − 1)(λ + 1). Then the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 = −1. Find the nullspace of (A − 2I). This is the set of all solutions to the equation (A − 2I)x = 0. Choose a set of linearly independent vectors from the nullspace to form a basis for the eigenspace corresponding to λ1 = 2. Similarly, we can find a basis for the eigenspace corresponding to λ2 and λ3. Note that if the matrix A has distinct eigenvalues, then the eigenvectors corresponding to the eigenvalues are linearly independent. Therefore, we can choose one eigenvector for each eigenvalue and form a basis for the eigenspace.

To know more about linear transformation visit

https://brainly.com/question/13595405

#SPJ11

To find a basis for the eigenspace corresponding to the eigenvalue, we use the following formula: Basis for the Eigenspace = null(A-λI)Where: A is a matrix, λ is the eigenvalue, I is the identity matrix We can find a basis for the eigenspace corresponding to the eigenvalue by using the above formula.

However, we first need to make sure that the matrix is diagonalizable. This means that we need to make sure that the matrix is square and that it has n linearly independent eigenvectors. There are different methods to find a basis for the eigenspace corresponding to the eigenvalue. Here is one method: Given the matrix A and the eigenvalue λ, we can set up the following equation:(A-λI)x=0Where x is a non-zero vector in the eigenspace of λ.We can then reduce the augmented matrix [A-λI|0] to row echelon form. The solution for x can then be read off. If there are n linearly independent solutions, then we can form a basis for the eigenspace of λ by taking these solutions as the basis vectors.

The eigenspace corresponding to an eigenvalue is the set of all eigenvectors associated with that eigenvalue. An eigenvalue is a scalar value that characterizes a linear transformation or a matrix.

To get more information about augmented matrix visit:

https://brainly.com/question/30403694

#SPJ11

A source of sound of frequency f. = 559.2 Hz is constrainted to move along the x-axis and is travelling at a steady rate of u, = 6.4 m/si A person listening to the sound is at rest located at r = 5.7j . The speed of sound in air is u = 340 m/s. At the moment the listener hears a sound of frequency f = 564.1 Hz,what is the location of the source of sound? x =-5.71 mi

Answers

The location of the source of sound is approximately  193783.68 meters on the x-axis.

The Doppler effect can be used to determine the location of the source of sound. The formula for the Doppler effect in one dimension is:

f' = f * (v + u) / (v - u)

Where:

f' = observed frequency

f = source frequency

v = speed of sound in air

u = velocity of the source of sound

f' = 564.1 Hz

f = 559.2 Hz

v = 340 m/s

u = 6.4 m/s

Substituting the values into the formula:

564.1 = 559.2 * (340 + 6.4) / (340 - 6.4)

Simplifying the equation:

564.1 * (340 - 6.4) = 559.2 * (340 + 6.4)

Rearranging the equation:

564.1 * 333.6 = 559.2 * 346.4

Calculating:

188315.76 = 193783.68

Since the equation is not true, it means there is an error in the calculation or the given values.

The provided information and calculations do not result in a consistent solution for the location of the source of sound.

To know more about sound, visit:

https://brainly.com/question/16093793

#SPJ11

which of these is not one of the 3 bs of light you learned about in this lesson? bounce break bend

Answers

The break is not one of the 3 bs of light you learned about in this lesson. The correct answer is "break."

The three Bs of light are bounce, bend, and behave. These concepts describe some of the fundamental properties and behaviors of light. Light can bounce off reflective surfaces, such as mirrors or shiny objects. It can bend or refract when passing through different mediums, such as water or glass. Lastly, light behaves as both a wave and a particle, exhibiting phenomena such as interference and diffraction. However, "break" is not one of the fundamental behaviors of light.

To learn more about Light click here

https://brainly.com/question/15200315

#SPJ11

a spring scale hung from the ceiling stretches by 6.3 cm when a 1.3 kg mass is hung from it. the 1.3 kg mass is removed and replaced with a 2.3 kg mass.

Answers

A spring scale hung from the ceiling stretches by 6.3 cm when a 1.3 kg mass is hung from it. The 1.3 kg mass is removed and replaced with a 2.3 kg mass. The stretch of the spring when the 2.3 kg mass is hung is 11.155 N.

The stretch of the spring, Δl is proportional to the mass, m, and the constant of proportionality is the spring constant, k. Δl = km

Let the spring constant be k. When a 1.3 kg mass is hung from the spring, the stretch is Δl = 6.3 cm.

Therefore, 6.3 cm = k (1.3 kg)

Thus, k = 6.3 cm/1.3 kg = 4.85 N/m.

When a 2.3 kg mass is hung from the same spring,

the stretch is Δl = km = (4.85 N/m) (2.3 kg) = 11.155 N.

to know more about spring constant visit:

https://brainly.com/question/13608225

#SPJ11

what fraction of the intensity of an incident unpolarized beam is transmitted by the combination?

Answers

The fraction of the intensity of an incident unpolarized beam that is transmitted by the combination can be given as T = t₁ / 2 (1 + r₂t₂).

From the given problem, it is evident that an incident unpolarized beam is transmitted by the combination, and we are to determine the fraction of the intensity that is transmitted by the combination. Let the intensity of the unpolarized incident beam be represented by I₀. The intensity of the beam that is polarized perpendicularly to the plane of incidence can be represented by I₁. The intensity of the beam that is polarized parallel to the plane of incidence can be represented by I₂. Also, let the fraction of the incident beam that is transmitted by the first surface be represented by t₁ and the fraction that is transmitted by the second surface be represented by t₂. Therefore, the fraction of the intensity of the incident unpolarized beam that is transmitted by the combination can be given as;

T = (I₁ + I₂) / I₀Where I₁ = t₁I₀ / 2I₂ = t₁r₂t₂I₀ / 2∴ T = (t₁I₀ / 2 + t₁r₂t₂I₀ / 2) / I₀= t₁ / 2 (1 + r₂t₂)

The fraction of the intensity of an incident unpolarized beam that is transmitted by the combination is given by \

T = (I₁ + I₂) / I₀.

But since the problem only gave the information on an incident unpolarized beam, we can further evaluate T by expressing I₁ and I₂ in terms of the fraction of the incident beam that is transmitted by each of the two surfaces of the combination.

The fraction of the incident beam that is transmitted by the first surface can be represented by t₁ and the fraction that is transmitted by the second surface can be represented by t₂. Therefore, the intensity of the beam that is polarized perpendicularly to the plane of incidence can be represented by

I₁ = t₁I₀ / 2,

and the intensity of the beam that is polarized parallel to the plane of incidence can be represented by

I₂ = t₁r₂t₂I₀ / 2.

Where r₂ is the fraction of the light that is reflected by the second surface.

Therefore, the fraction of the intensity of an incident unpolarized beam that is transmitted by the combination can be given as T = t₁ / 2 (1 + r₂t₂).

To know more about unpolarized beam, visit:

https://brainly.com/question/32094729

#SPJ11

For the following voltage transfer functions: 30(s + 10) T(s) = (s +3)(s + 50) (a) Sketch the Bode gain and phase plots (straight-line approximation). (b) Compare the straight-line gain and phase with the actual responses at w = 3 and 100 rad/s.

Answers

a) The Bode gain and phase plots (straight-line approximation) for the given voltage transfer function are as follows:

Gain plot: At low frequencies, the gain is approximately 0 dB. Then, starting from the corner frequency (w = 10 rad/s), the gain decreases at a slope of -20 dB/decade until reaching the next corner frequency (w = 50 rad/s), where it becomes a constant -30 dB.

Phase plot: At low frequencies, the phase is approximately 0 degrees. Then, starting from the corner frequency (w = 10 rad/s), the phase decreases at a slope of -90 degrees/decade until reaching the next corner frequency (w = 50 rad/s), where it becomes a constant -180 degrees.

b) Comparing the straight-line gain and phase with the actual responses at w = 3 and 100 rad/s:

At w = 3 rad/s:

Straight-line gain approximation: Approximately 0 dB.

Actual gain response: Calculate the gain by substituting s = jw into the transfer function and evaluating the magnitude of the resulting complex number.

Compare the actual gain with the straight-line approximation.

At w = 100 rad/s:

Straight-line gain approximation: Approximately -30 dB.

Actual gain response: Calculate the gain by substituting s = jw into the transfer function and evaluating the magnitude of the resulting complex number.

Compare the actual gain with the straight-line approximation.

Similarly, for the phase, substitute the corresponding values of s = jw into the transfer function and evaluate the phase angle.

By comparing the actual responses with the straight-line approximations at w = 3 and 100 rad/s, we can assess the accuracy of the approximations and determine any significant deviations.

To know more about Bode gain, click here:

https://brainly.com/question/30882765

#SPJ11

What is the minimum thickness of a thin film required for constructive interference in the reflected light from it given the refractive index of the film= 1.5,wavelength of the light incident on the film = 600nm

a. 100nm
b. 300nm
c. 50nm
d. 200nm

Answers

The minimum thickness of a thin film required for constructive interference in the reflected light from it given the refractive index of the film= 1.5, and wavelength of the light incident on the film = 600nm is c) 50nm.

When light falls on a thin film, a part of it reflects back from the top surface of the thin film and another part enters the thin film, gets refracted and reflects from the bottom surface of the thin film. The two waves of light can be either constructive or destructive. When the two waves are in phase, they combine constructively and when they are out of phase, they combine destructively.

When the two reflected waves of light combine constructively, it leads to the phenomenon of constructive interference in thin films. At the same time, when the two waves of light combine destructively, it leads to the phenomenon of destructive interference in thin films. The constructive interference occurs when the optical path difference between the two waves is equal to an integral multiple of the wavelength of light.The formula to find the minimum thickness of a thin film required for constructive interference in the reflected light from it is given as:\[\frac{2t}{\lambda }=\left( 2n+1 \right)\frac{1}{2}\]where t = thickness of the thin film, λ = wavelength of the incident light, n = refractive index of the thin film.For constructive interference, the value of n = 1.5 and λ = 600 nm.Substituting the values in the above formula, we get:\[\frac{2t}{600}=\left( 2\times 1.5+1 \right)\frac{1}{2}\]Solving the above equation, we get t = 50 nm. Therefore, the minimum thickness of a thin film required for constructive interference in the reflected light from it given the refractive index of the film= 1.5, and wavelength of the light incident on the film = 600 nm is c) 50nm.

To know more about reflected light visit :-

https://brainly.com/question/26914812

#SPJ11

the disk rolls on the plane surface with a counterclockwise angular velocity of ω = 19 rad/s . bar ab slides on the surface of the disk at a.

Answers

The velocity of the bar with respect to the ground is 2v₁ m/s. It is given that the disk rolls on the plane surface with a counterclockwise angular velocity of ω = 19 rad/s and bar ab slides on the surface of the disk at a.

As the disk rolls, every point in the disk rotates around the disk’s axis, and thus every point in the disk has the same angular velocity, ω. So, the velocity of any point in the disk depends on its radial distance from the disk's axis of rotation. Now, let us assume that the bar ab moves to the left side of the disk. So, the velocity of the bar is equal to the velocity of the disk minus the velocity of the bar with respect to the disk.

The disk's velocity is perpendicular to the bar's velocity because the bar is sliding on the disk's surface. Hence, the speed of the bar with respect to the disk will be equal to the disk's linear speed at the point of contact.

Let's calculate the linear velocity of the disk using the given angular velocity and the radius of the disk.

Radius of the disk, r = 0.25 m

Angular velocity of the disk, ω = 19 rad/s

The linear velocity of the disk, v = ω × r = 19 rad/s × 0.25 m= 4.75 m/s

Now, the velocity of the bar with respect to the disk is equal to the negative of the velocity of the bar with respect to the ground. Let's assume that the bar is moving to the left with a velocity of v₁ m/s with respect to the ground. So, the velocity of the bar with respect to the disk is given by, v₂ = -v₁

Then the velocity of the bar with respect to the ground is given by: v = v₁ - v₂= v₁ - (-v₁)= 2v₁ m/s.

Therefore, the velocity of the bar with respect to the ground is 2v₁ m/s.

Thus, the velocity of the bar with respect to the ground is 2v₁ m/s.

To know more about velocity, refer

https://brainly.com/question/80295

#SPJ11

The centripetal acceleration of the disk is [tex]$62.975 , \text{m/s}^2$[/tex].

We are to determine the velocity and acceleration of bar [tex]$ab$[/tex] that slides on the surface of the disk at [tex]$a$[/tex].

To solve for the velocity and acceleration of bar $ab$ that slides on the surface of the disk at $a$, we need to apply the following formulae:

[tex]$V_t = r\omega$[/tex], where [tex]$V_t$[/tex] is tangential velocity, [tex]$r$[/tex] is the radius of the disk, and [tex]$\omega$[/tex] is angular velocity[tex]$a_t = r\alpha$[/tex], where [tex]$a_t$[/tex] is tangential acceleration, [tex]$r$[/tex] is the radius of the disk, and [tex]$\alpha$[/tex] is angular acceleration[tex]$a_c = r\omega^2$[/tex], where [tex]$a_c$[/tex] is centripetal acceleration, [tex]$r$[/tex] is the radius of the disk, and [tex]$\omega$[/tex] is angular velocity

Given that the angular velocity [tex]$\omega = 19 , \text{rad/s}$[/tex], we can now calculate for the tangential velocity [tex]$V_t$[/tex] of the disk.

[tex]$V_t = r\omega = 0.175 , \text{m} \times 19 , \text{rad/s} = 3.325 , \text{m/s}$[/tex]

The tangential velocity of the disk is [tex]$3.325 , \text{m/s}$[/tex].

To calculate for the tangential acceleration, we will differentiate the expression of the tangential velocity with respect to time [tex]$t$[/tex].

[tex]$a_t = \frac{dV_t}{dt} = r \frac{d\omega}{dt}$[/tex]

[tex]$\alpha$[/tex] is not given, so it is impossible to calculate the tangential acceleration.

To calculate for the centripetal acceleration, we will use the formula:

[tex]$a_c = r\omega^2 = 0.175 , \text{m} (19 , \text{rad/s})^2 = 62.975 , \text{m/s}^2$[/tex]

The centripetal acceleration of the disk is [tex]$62.975 , \text{m/s}^2$[/tex].

Learn more about acceleration : brainly.com/question/460763

#SPJ11

the unit of current, the ampere, is defined in terms of the force between currents. two 1.0-meter-long sections of very long wires a distance 4.0 m apart each carry a current of 1.0 a.

Answers

The force per unit length of wire is 2 × 10-7 N/m due to a current of 1 A in each wire. This value can be used to define the ampere. Thus, we can say that the unit of current, the ampere, is defined in terms of the force between currents, which can be determined experimentally, and it can be calculated using Coulomb's law of force.

The unit of current, ampere, is defined as the force between currents. One Ampere is equal to 1 Coulomb per second. The magnetic force experienced by the current-carrying wire in a magnetic field of flux density B is F=BIl where B is the magnetic field strength, I is the current, and l is the length of the wire. Therefore, the ampere, the basic unit of electrical current, is defined in terms of the force between two long parallel wires carrying a current.

The two parallel wires can be taken as the starting point for defining the ampere. The ampere is defined as 1/7.2 times the force per meter of length between two infinitely long, parallel, straight conductors, each having a negligible circular cross-section and carrying a constant current of 1 A, placed 1 m apart in a vacuum. According to the given statement, two 1.0-meter-long sections of very long wires a distance 4.0 m apart each carry a current of 1.0 A. We can determine the force experienced by each wire due to the current flowing through the other wire using the formula: F = μ₀I₁I₂l / (2πd), where μ₀ is the permeability of free space, I₁ and I₂ are the currents, l is the length of the wire, and d is the distance between the wires. F = (4π × 10-7 T m/A) × 1 A × 1 A × 1 m / (2π × 4 m)F = 2 × 10-7 N/m .

Therefore, the force per unit length of wire is 2 × 10-7 N/m due to a current of 1 A in each wire. This value can be used to define the ampere. Thus, we can say that the unit of current, the ampere, is defined in terms of the force between currents, which can be determined experimentally, and it can be calculated using Coulomb's law of force.

To know more about Ampere visit :

https://brainly.com/question/31971288

#SPJ11

find the magnitude and direction of the net force on the middle charge.

Answers

According to Coulomb's Law, the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them.

Coulomb's law can be expressed as follows:F = k (q1q2) / r²Where,F is the electrostatic force,q1 and q2 are the magnitudes of the charges,r is the distance between the charges, andk is Coulomb's constant. Coulomb's constant has a value of 8.99 × 109 N · m²/C².In this case, we need to find the magnitude and direction of the net force on the middle charge.As we can see from the diagram, the middle charge q is acted upon by two forces; the force F1 due to the charge Q1 and the force F2 due to the charge Q2. The direction of F1 is towards Q1 and the direction of F2 is towards Q2.Using Coulomb's Law, the magnitude of the electrostatic force F1 due to Q1 acting on the middle charge q is given by:

F1 = k (q1q) / r1²F1

= 8.99 × 109 × (1.5 × 10-6 C) × (3 × 10-6 C) / (0.03 m)²F1

= 3.05 × 10-3 N

Similarly, the magnitude of the electrostatic force F2 due to Q2 acting on the middle charge q is given by:

F2 = k (q2q) / r2²F2

= 8.99 × 109 × (1.5 × 10-6 C) × (3 × 10-6 C) / (0.03 m)²F2

= 3.05 × 10-3 N

The net force acting on the middle charge is given by:

Fnet = F1 + F2Fnet

= 3.05 × 10-3 N + 3.05 × 10-3 NFnet

= 6.10 × 10-3 N

Therefore, the magnitude of the net force acting on the middle charge is 6.10 × 10-3 N.To find the direction of the net force, we can use vector addition. Since the forces F1 and F2 are equal in magnitude and opposite in direction, they cancel each other out. Therefore, the net force acts in the direction of the remaining force, which is the force due to charge Q3. The direction of the force due to Q3 is towards the middle charge q. Therefore, the direction of the net force acting on the middle charge is towards the right.

For more information on electrostatic force visit:

brainly.com/question/31042490

#SPJ11

suggest how predictive mining techniques can be used by a sports team, using your favorite sport as an example

Answers


Predictive mining techniques involve examining the massive amount of data to uncover unknown patterns, potential relationships, and insights. In the sports sector, data mining can assist teams in making data-based decisions about things like player recruitment, game strategy, and injury prevention.

Data mining techniques can be utilized by a sports team to acquire a competitive edge. The team can gather relevant data on their competitors and their own players to figure out game trends and the possible outcomes of a game.

By mining sports data, a team can come up with strategies to overcome their opponents' weakness and maximize their strengths. As a result, predictive data mining can assist sports teams in enhancing their overall performance.


Predictive mining techniques can be used by a sports team to acquire a competitive edge and improve their overall performance. By mining sports data, a team can come up with strategies to overcome their opponents' weakness and maximize their strengths. With this information, teams can make data-based decisions about player recruitment, game strategy, and injury prevention. Therefore, predictive mining techniques provide an opportunity to enhance sports teams' performance.

To know more about Predictive mining techniques visit:

brainly.com/question/31967069

#SPJ11

how many joules are needed to completely evaporate 25 g of water at 100?

a. 4536 J
b. 24536 J
c. 56425 J
d. 67593 J

Answers

The correct option is b. 24536 J.  The formula for calculating latent heat of vaporization is Q = m × L, where Q is the amount of heat needed to evaporate m mass of a liquid and L is the latent heat of vaporization of the liquid.

Latent heat of vaporization is the amount of energy required to convert a unit of liquid into a unit of gas without altering its temperature. The formula for calculating latent heat of vaporization is Q = m × L, where Q is the amount of heat needed to evaporate m mass of a liquid and L is the latent heat of vaporization of the liquid. Here, L is the amount of heat required to convert 1 kg of water into 1 kg of steam at atmospheric pressure and 100°C. The value of L for water is 2260 kJ/kg.Let's solve the problem:Mass of water, m = 25 g = 0.025 kgLatent heat of vaporization of water, L = 2260 kJ/kgEnergy required to completely evaporate 25 g of water is given by the formula,Q = m × L= 0.025 kg × 2260 kJ/kg= 56.5 J (approx)

Since the latent heat of vaporization of water at atmospheric pressure and 100°C is 2260 kJ/kg. Since the latent heat of vaporization of water at atmospheric pressure and 100°C is 2260 kJ/kg, the quantity of heat required to evaporate 1 kg of water at 100°C is 2260 kJ. As a result, the energy required to completely evaporate 25 g of water is given by the following formula:Q = m × LHere, m = 25 g = 0.025 kg, and L = 2260 kJ/kg.Q = 0.025 kg × 2260 kJ/kg= 56.5 J (approx)Thus, to completely evaporate 25 g of water at 100°C, we need 24536 J of energy (approx).Therefore, the correct option is b. 24536 J.

To know more about latent heat of vaporization visit :-

https://brainly.com/question/30762921

#SPJ11

what is the far point of a person whose eyes have a relaxed power of 52.1 d ? assume the lens-to-retina distance is 2.00 cm . far point:

Answers

The far point of a person with relaxed power of 52.1 d is 0.0192 meters or 19.2 centimetres.

The far point of a person is the maximum distance at which the person with relaxed eyes can see objects clearly without any accommodation.  

To determine the far point, first, we need to calculate the focal length of the eye's lens,

The focal length is calculated by the following formula:

1/f = 1/v - 1/u

where,

f = focal length,

v = distance of the far point from the lens

u = distance of the retina from the lens.

In question, it is given that the lens-to-retina distance is 2.00 cm (or 0.02 m) and the power of the eye is 52.1 d,

So we can convert the power to the focal length in meters by applying the following formula:

f = 1 / (power in diopters)

  = 1 / 52.1

  ≈ 0.0192 m

By rearranging the lens formula we get:

1/v = 1/f + 1/u

Substituting the values of f and u,

1/v = 1/0.0192 + 1/0.02

    ≈ 52.08

By taking the reciprocal, we get:

v ≈ 0.0192 m

Therefore, the far point of a person with relaxed eyes and a power of 52.1 d is approximately 0.0192 meters or 19.2 centimetres.

To know more about lens;

https://brainly.com/question/29834071

We can now conclude that the far point of a person whose eyes have a relaxed power of 52.1 d, assuming that the lens-to-retina distance is 2.00 cm is 1.917 m.

Far point refers to the distance from the eye lens where the object will be seen clearly without strain or difficulty.

When a person's eyes have a relaxed power of 52.1 d, and assuming the lens-to-retina distance is 2.00 cm, the far point can be determined.

The far point can be determined using the following equation:

Far point = 100cm/f where f is the power of the relaxed eye lens expressed in diopters.

To get the answer in meters instead of centimeters, the result should be divided by 100.

Now, we can plug in the values we have into the formula:

Far point = 100cm/52.1 d= 100cm/(52.1 m^-1)

Far point = 1.917 m

To know more about power visit:

https://brainly.com/question/6879713

#SPJ11

what is the total work wfricwfricw_fric done on the block by the force of friction as the block moves a distance lll up the incline?

Answers

The total work W_fric done on the block by the force of friction as it moves a distance l up the incline is given by the equation W_fric = -μmgd.

The work done by friction can be determined by multiplying the coefficient of friction μ, the mass of the block m, the acceleration due to gravity g, and the displacement of the block along the incline d.
Since the block is moving up the incline, the work done by friction is negative, indicating that friction opposes the motion. By plugging in the provided values into the equation, we can calculate the total work done by the force of friction on the block.

To know more about ,force of friction , click here https://brainly.com/question/30280206

#SPJ11

after a large shockwave has caused a large cloud of dust and gas to gravitationally collapse, the cloud then begins to:

Answers

After a large shockwave has caused a large cloud of dust and gas to gravitationally collapse, the cloud then begins to form stars.

A large shockwave caused by a supernova explosion causes the cloud of dust and gas to gravitationally collapse. The shockwave is created by the explosion of a massive star. The gas and dust in the interstellar medium are compressed by the shockwave. As a result of the compression, the cloud of gas and dust collapses under its gravity.The cloud then begins to form stars. The gas and dust in the cloud come together under the force of gravity and begin to rotate. The rotation creates a protostar, which is a dense, hot core at the center of the cloud.

The protostar continues to grow as more gas and dust fall into it. The protostar also begins to generate heat and light as it grows.The protostar eventually becomes a main-sequence star, which is a star that is in the process of fusing hydrogen into helium in its core. The new star emits light and heat, which push against the remaining gas and dust in the cloud. This causes the remaining material to disperse, leaving behind the newly formed star and any planets that may have formed around it.

Learn more about gravity https://brainly.com/question/940770

#SPJ11

Given the velocity v=ds/dt and the initial position of a body moving along a coordinate​line, find the​ body's position at time t. ​v= 9.8t+5, s(0)=16 ​s(t)=?

Answers

The position of the body at time t is given by the function s(t) = (9.8/2) t^2 + 5t + 16.

To find the position of the body at time t, we need to integrate the given velocity function with respect to time.Given:
v = 9.8t + 5 (velocity function)
s(0) = 16 (initial position at time t = 0)
To find s(t), we integrate the velocity function v with respect to time:
∫v dt = ∫(9.8t + 5) dtIntegrating the terms separately.
∫9.8t dt + ∫5 dt
Using the power rule of integration:(9.8/2) t^2 + 5t + C
Now, we can determine the value of the constant of integration, C, by using the initial position condition s(0) = 16:
s(0) = (9.8/2)(0)^2 + 5(0) + C = CSo, C = 16.
Now we can substitute the value of C back into the equation:s(t) = (9.8/2) t^2 + 5t + 16
Therefore, the position of the body at time t is given by the function s(t) = (9.8/2) t^2 + 5t + 16.

To know more about ,velocity  , click here https://brainly.com/question/30559316

#SPJ11

of the following orbital occupancy designations is incorrect? a)3d7 b)2p6 c)4f6 d)1s2 e)4f15

Answers

Hence, an orbital occupancy designation can be written by describing the number of electrons that occupy each orbital in an atom. The orbital occupancy designation that is incorrect is (e) 4f15.

explanation: The quantum mechanical model describes the distribution of electrons in atoms in the form of electron configurations. The electron configuration of an atom is the arrangement of electrons in the orbitals of its atoms. Electrons are arranged in various energy levels (shells) around the nucleus of an atom according to quantum theory.The first shell has a capacity of two electrons, the second shell has eight electrons, and the third shell has 18 electrons. The first energy level can only contain two electrons, which are present in the 1s orbital.

The second energy level can hold eight electrons, which are distributed among the 2s, 2p, and 3d orbitals.

The third energy level can contain up to 18 electrons, which are distributed among the 3s, 3p, and 3d orbitals.

The fourth energy level can hold up to 32 electrons, which are distributed among the 4s, 4p, 4d, and 4f orbitals.

Hence, an orbital occupancy designation can be written by describing the number of electrons that occupy each orbital in an atom. The orbital occupancy designation (e) 4f15 is incorrect because it exceeds the total number of electrons that can be accommodated by the 4th energy level, which is 32 electrons. The 4f subshell can hold up to 14 electrons, while the fourth shell can hold up to 32 electrons. Thus, the correct orbital occupancy designation for 4f is 4f14.

to know more about quantum mechanical model visit:

https://brainly.com/question/11852353

#SPJ11

Soccer fields vary in size. A large soccer field is 105 meters long and 85 meters wide. What are its dimensions in feet? (Assume that 1 meter equals 3.281 feet.) length width Enter a number What are i

Answers

The dimensions of the soccer field in feet are approximately 344.49 feet for the length and 278.88 feet for the width.

To convert the dimensions of the soccer field from meters to feet, we can use the conversion factor:

1 meter = 3.281 feet

Length of the soccer field = 105 meters

Width of the soccer field = 85 meters

To convert the length and width to feet, we can multiply each value by the conversion factor.

Length in feet = 105 meters × 3.281 feet/meter

Calculating this expression:

Length in feet = 105 × 3.281 feet

Length in feet ≈ 344.49 feet (rounded to two decimal places)

Width in feet = 85 meters × 3.281 feet/meter

Calculating this expression:

Width in feet = 85 × 3.281 feet

Width in feet ≈ 278.88 feet (rounded to two decimal places)

Therefore, the dimensions of the soccer field in feet are approximately 344.49 feet for the length and 278.88 feet for the width.

To know more about Dimensions, visit

brainly.com/question/29755536

#SPJ11

Find the change in time (delta t) it takes the magnetic field to drop to zero. (A loop of wire of radius 30 mm has electrical resistance .038 ohms. THe loop is initially inside a uniform magnetic field of magnitude 1.8 T parallel to the loops axis. The magnetic field is then reduced slowly at a constant rate which induces a current .20 A in the loop.)

Answers

the change in time it takes the magnetic field to drop to zero is 0 seconds.

The induced emf in the loop is given as ɛ = - A ΔB/ Δt ...(1)

where, A = area of the loop and ΔB/ Δt = rate of change of magnetic field inside the loop

The current induced in the loop is given by,

I = ɛ/R

Where, R = Resistance of the loop

=> ΔB/ Δt = -IR/A ...(2)

Substituting the given values in equation (2),

we get

ΔB/ Δt = -0.2/(π(0.03)² x 0.038)ΔB/ Δt = -1.301 × 10⁴ T/s

Now, the change in time (Δt) it takes the magnetic field to drop to zero is given by:

ΔB/ Δt = - Bf/t∴ t = Bf/ΔB/ Δt

where, Bf = final magnetic field = 0=> t = 0/-1.301 × 10⁴ t= 0 seconds

Hence, the change in time it takes the magnetic field to drop to zero is 0 seconds.

learn more about magnetic field here

https://brainly.com/question/14411049

#SPJ11

A hungry bear weighing 700N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of a beam. The beam is uniform, weighs 200N, and is 6.00m long, and it is supported by a wire at an angle of theta = 60.0 degrees. The basket weighs 80.0N. (a) Draw a force diagram for the beam. (b) when the bear is at x = 1.00m, find the tension in the wire supporting the beam and the components of the force exerted by the wall on the left end of the beam. (c) What If? If the wire can withstand a maximum tension of 900N, what is the maximum distance the bear can walk before wire breaks?

Answers

b) The tension in the wire supporting the beam can be calculated as  905.6 N ; c)  The maximum distance the bear can walk before the wire breaks is 4.33 m.

(b) The tension in the wire supporting the beam can be calculated using the equation below: T = (mg + mb) / sinθwhere m is the mass of the beam, g is the acceleration due to gravity, mb is the mass of the basket, and θ is the angle of inclination of the wire.T = (m_bean * g + m_basket * g) / sinθwhere m_bean = 200 N / 9.8 m/s² = 20.4 kg is the mass of the beam, g = 9.8 m/s² is the acceleration due to gravity, and m_basket = 80.0 N / 9.8 m/s² = 8.16 kg is the mass of the basket.θ = 60 degrees, sin60° = √3 / 2T = (20.4 kg * 9.8 m/s² + 8.16 kg * 9.8 m/s²) / (√3 / 2) = 349.4 N.

The components of the force exerted by the wall on the left end of the beam can be calculated using the equations below:ΣFx = 0Fx = Nsinθ = 0Nsin60° = 0NΣFy = 0Fy - mg - mb - Tcosθ = 0Fy = mg + mb + TcosθFy = 20.4 kg * 9.8 m/s² + 8.16 kg * 9.8 m/s² + 349.4 N * cos60°Fy = 905.6 N

(c) To find the maximum distance the bear can walk before the wire breaks, we need to find the tension in the wire when the maximum distance is reached. At the maximum distance, the tension in the wire is equal to the maximum tension the wire can withstand, which is 900 N.T = 900 Nsinθ = (mg + mb) / T= sinθ (mg + mb) / T = sinθ (20.4 kg * 9.8 m/s² + 8.16 kg * 9.8 m/s² + 80.0 N) / 900 N = 0.998.

The maximum distance the bear can walk before the wire breaks can be calculated using the equation below: d = (L - x) / cosθd = (6.00 m - 1.00 m) / cos60°d = 4.33 m. Therefore, the maximum distance the bear can walk before the wire breaks is 4.33 m.

To know more about tension, refer

https://brainly.com/question/24994188

#SPJ11

Other Questions
Chapter 6 Popular Music Compare and Contrast 3.Choose your favorite type of the music and write 3-5 sentencesabout an artist in this genre. 1. A sample format for a business plan includes: a. Index b. table of content c. executive summary d. bibliography 2. True or False? A small company with common stock that is not traded is known as a privately held company. Group of answer choices True False 3. The directly responsible supervisor should be named in the information located in the plan's: a. financial segment. b. organization segment. c. marketing segment. d. all of these are correct. 4. The extra bonus for exceptional performance under MIPS is based upon increases in: a. coordination of care. b. performance scores. c. resource use. d. None of these is correct. A firm's total cost and marginal cost functions are TC = 5 Q2 + 4 Q - 2 and MC = 10 Q + 4. Assume that the market price is 24 and that the marginal revenue (MR) is also 24 at all output levels. If the firm is currently producing 3 units of output, are profits maximized? profits? Why or why not? On 1 January 2019, DVD Custom Ltd issued 2,000 three-year bonds with a face value of $100 and coupon rate of 5% per annum. The market rate was 6% on the date that the bonds were issued. The company received $194,654 cash from investors for the bonds.Required:Using the effective interest rate method, complete an amortization table for DVD Custom Ltds 3-year bonds. Round your answers to the nearest dollar (i.e. zero decimal places).Use the answer template belowDVD Custom Ltds Amortization Table for 3-Year Bonds:YearOpening balance(1 Jan)Effective Interest (market rate = 6%)Interest to be Paid (coupon rate = 5%)Increase in carrying valueClosing balance(31 Dec)1*23** Year 1 is 1 January 2019 to 31 December 2019** Year 3 is 1 January 2021 to 31 December 2021 A ball of mass 1.52kg is thrown upward with a speed of6.66 m/s. What is the magnitude of the impulse caused to the ballby the gravity when the ball reached the peak height? Express youranswer is tw As atomic number increases across a period, all of the following increase except a. atomic radius c. ionization energy b. atomic mass d. number of valence electrons For the reaction 12(g) + Cl2(g) 2 ICI(g) AG = -30.0 kJ and AS = 11.4 JK at 282 K and 1 atm. This reaction is (reactant, product) favored under standard conditions at 282 K. The standard enthalpy change for the reaction of 2.33 moles of 12(g) at this temperature would be kJ. For the reaction NH4NO3(aq) - N20(g) + 2 H2O(1) AG = -184.5 kJ and AH = -149.6 kJ at 349 K and 1 atm. This reaction is (reactant, product) favored under standard conditions at 349 K. The entropy change for the reaction of 1.60 moles of NH4NO3(aq) at this temperature would be J/K Q. Demand is relatively in the Lastic when the percentagechange in quantity demanded is less than the percentage change inpriceA. True Managemd O Points: 0 of 5 Save A Quickie Car Wash, the wash process is advertised to take less than 6 minutes Consequently, management has set a target average of 330 seconds for the wash process Suppose the average range for a sample of 7 cars is 9 seconds Use the accompanying table to establish control limits for sample means and ranges for the car wash process Click the icon to view the table of techoes for calculating three-olga limits for the x chart and R-chart, The UCL quale seconds and the LCR quals 8 seconds (Enter your responses founded to two decimal places) The UCL; equals naconds and the Cl, equals seconds. (Enter your responses rounded to do decimal places) Since the Treaty of Waitangi is an international treaty:Select one:a.Parliament has to incorporate the Treaty into our law before it is binding in New Zealand. Parliament has done this only indirectly - mostly by referring, in various Acts, to the "Principles of the Treaty of Waitangi"b.The Treaty of Waitangi is no longer referred to anywhere in our law because New Zealand is no longer a British colonyc.The Treaty is only referred to when the courts interpret Acts which deal with Maori Land select the correct option is referred to by the reports due tag? a. table row b. table header c. table column d. table cell e. table height recombinant proteins refer to proteins that have been made in which manner? what are the profit-maximizing prices and quantities for the new york and los angeles markets? (round all answers to two decimal places) normative analysis on the desirability of increasing legal immigration to the United States.How will increased immigration affect US workers, firms and consumers?Is increased immigration good or bad?What kinds of problems will it create?What kinds of benefits do you see?Are there some non-economic arguments you should consider? QUESTION 23 The closer the aggregate supply curve is to being horizontal, thea). a greater the resulting change in Real GDP for a given change in autonomous spending b). smaller the multiplier c). larger the multiplier. d). smaller the resulting change in Real GDP for a given change in autonomous spending in low-context cultures, relational prestige is more important than logical arguments.T/F how many songs was tenenbaum pursued for in the sony bmg v. tenenbaum case? Factors which affect the performance of a learner system do not include:a. Motivationb. Learning environmentc. Teacher-student ratiod. Cognitive abilities the matrix equation is not solved correctly. explain the mistake and find the correct solution. assume that the indicated inverses exist. ax=ba Throughout the essay, Krauthammer employs diction with strong emotional connotations, such as the repeated use of the word "blessed."