Which combination of units is equivalent to that used for force? Okg-m/s/s O kg⋅m-s² kg/(m/s²) O kg/m/s²

Answers

Answer 1

The unit of force is the newton (N), which is equivalent to kilogram-meter per second squared (kg⋅m/s²). It represents the product of mass and acceleration and is commonly used to quantify and describe forces.

The combination of units that is equivalent to the unit of force is the kilogram-meter per second squared (kg⋅m/s²), also known as the newton (N).

Force is a physical quantity that describes the interaction between two objects and their ability to change each other's motion.

In the International System of Units (SI), force is derived from the fundamental units of mass, length, and time.

The unit for mass is the kilogram (kg), which measures the amount of matter in an object. The unit for length is the meter (m), which measures the distance or displacement between two points.

The unit for time is the second (s), which measures the duration or interval of an event. When mass is multiplied by acceleration, which has units of meters per second squared (m/s²), the resulting unit is kg⋅m/s² or N.

The newton (N) is named after Sir Isaac Newton, a renowned physicist who made significant contributions to the study of forces and motion.

It is commonly used in various fields such as physics, engineering, and everyday life to quantify and describe forces acting on objects.

In summary, the correct combination of units equivalent to the unit of force is kg⋅m/s² or N, representing the product of mass and acceleration.

To know more about force refer here:

https://brainly.com/question/151926#

#SPJ11


Related Questions

Find the angle theta between the vectors. (Round your answer to two decimal places.)
u = (4, 3), v = (5, −12),
u, v
= u · v
theta = radians

Answers

Let's find the angle theta between the vectors u and v.  Recall that the dot product between two vectors is defined as the product of their magnitudes and the cosine of the angle between them.  

That isu · v = |u| |v| cos(theta)Rearranging this formula, we obtain

cos(theta) = (u · v) / (|u| |v|)  

Note that

|u| = [tex]sqrt(4^2 + 3^2)[/tex]

= 5 and

|v| =[tex]sqrt(5^2 + (-12)^2)[/tex]

= 13.

Therefore,

u · v = 4*5 + 3*(-12)

= -8

Thus,cos(theta) = -8 / (5 * 13)

= -8/65.

Now, let's find the angle theta using a calculator. The inverse cosine function (denoted cos^(-1)) of -8/65 is given bytheta = [tex]cos^(-1)(-8/65)[/tex]We can convert this angle to degrees or radians as required by the problem.  If we use degrees, then we have to convert the angle from degrees to radians using the formula radians = (pi / 180) * degrees.  If we use radians, then we simply leave the answer in radians.Let's use radians, and round to two decimal places. Thus,

theta = [tex]cos^(-1)(-8/65)[/tex]

≈ 1.84

Therefore, the angle between the vectors u and v is approximately 1.84 radians.

For more information on radians visit:

brainly.com/question/27025090

#SPJ11

Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the course, the frequency of the sound will be...?
The answer is unchanged. Can someone please show this through equations or explain why it remains unchanged? Don't just say doppler effect, please :)

Answers

If λ doubles, the frequency must remain constant, and this is why the frequency of the sound will be unchanged when you move twice as far away from the source.

What is Doppler Effect?

The Doppler Effect is an alteration in the apparent frequency of sound caused by the motion of the source, the observer, or both. The Doppler Effect may be used to calculate the relative speeds of the source and observer or to estimate the frequency of sound waves from a distant source, such as a star.  The Doppler Effect is referred to as the shift in the frequency of the sound. Mathematically, this shift in frequency is referred to as the Doppler shift. Doppler shift in sound

The Doppler shift in sound may be computed using the following equation:

fD= v/c × f0

where v is the relative velocity of the observer and the source c is the velocity of sound waves in a given mediumf0 is the frequency of the source f D is the frequency observed Suppose that a sound source is emitting waves uniformly in all directions.

If we use the formula v = λ f

to calculate the frequency of sound, we get the following formula

:f = v/λ

Therefore, if λ doubles, the frequency must remain constant, and this is why the frequency of the sound will be unchanged when you move twice as far away from the source.

To know more about Doppler Effect visit

https://brainly.com/question/28106478

#SPJ11

A sheet of metal is illuminated by photons with a wavelength of 325 nm and the emitted electrons are found to have a maximum kinetic energy of 1.25 eV. If the same metal is illuminated by 225 nm light, what will be the speed of emitted electrons? Give your answer in km/s to 3 significant digits.

Answers

The speed of the emitted electrons when the metal is illuminated by 225 nm light is approximately 1.611 km/s.

To calculate the speed of emitted electrons, we can use the concept of the photoelectric effect and the equation for the kinetic energy of an electron:

K.E. = (1/2) * m * v^2

Where:

K.E. is the kinetic energy of the electron

m is the mass of the electron

v is the velocity of the electron

Given:

Wavelength of incident light (λ1) = 325 nm = 325 * 10^-9 m

Maximum kinetic energy (K.E.) = 1.25 eV

Wavelength of new incident light (λ2) = 225 nm = 225 * 10^-9 m

First, we need to find the energy of a photon using the equation:

E = hc / λ

Where:

E is the energy of a photon

h is Planck's constant (6.62607015 x 10^-34 J·s)

c is the speed of light (2.998 x 10^8 m/s)

λ is the wavelength of the light

For λ1:

E1 = (6.62607015 x 10^-34 J·s * 2.998 x 10^8 m/s) / (325 * 10^-9 m)

E1 ≈ 6.089 x 10^-19 J

For λ2:

E2 = (6.62607015 x 10^-34 J·s * 2.998 x 10^8 m/s) / (225 * 10^-9 m)

E2 ≈ 8.808 x 10^-19 J

Next, we can calculate the speed of the emitted electrons for the new wavelength using the equation:

K.E. = E - Φ

Where:

Φ is the work function of the metal (minimum energy required to release an electron)

Assuming the work function remains the same for the metal:

K.E. = E2 - Φ

Since K.E. = (1/2) * m * v^2, we can rearrange the equation to solve for v:

v = √((2 * K.E.) / m)

Given that the mass of an electron (m) is approximately 9.10938356 x 10^-31 kg, we can substitute the values:

v = √((2 * (8.808 x 10^-19 J - Φ)) / (9.10938356 x 10^-31 kg))

To find the value of Φ, we can use the given maximum kinetic energy for the incident light with λ1:

1.25 eV = 1.25 x 1.6 x 10^-19 J

So, Φ = 6.089 x 10^-19 J - 1.25 x 1.6 x 10^-19 J

Now, we can substitute the values and calculate the speed of the emitted electrons:

v = √((2 * (8.808 x 10^-19 J - (6.089 x 10^-19 J - 1.25 x 1.6 x 10^-19 J))) / (9.10938356 x 10^-31 kg))

v ≈ 1.611 x 10^6 m/s

Converting the speed to kilometers per second:

v ≈ 1.611 x 10^6 m/s * (1 km / 1000 m) * (1 s / 1000 ms)

v ≈ 1.611 km/s (to 3 significant digits)

Therefore, the speed of the emitted electrons when the metal is illuminated by 225 nm light is approximately 1.611 km/s.

To know more about emitted electrons, visit:

https://brainly.com/question/28174467

#SPJ11

how can humans avoid the possible damaging effects of nanotechnology?

Answers

Nanotechnology is a rapidly expanding field with a wide range of applications, from medicine and electronics to energy and manufacturing. While the possibilities of nanotechnology are vast, there are potential risks associated with it, such as toxicity, environmental impact, and unintended consequences.

Here are some ways in which humans can avoid the possible damaging effects of nanotechnology:1. Regulation: Governments should put regulations in place to control the use and development of nanotechnology. These regulations should include safety standards and ethical guidelines for the research and development of nanotechnology.

2. Research: Researchers should conduct studies to determine the potential risks of nanotechnology and ways to minimize them. This research should include toxicology studies, environmental impact assessments, and assessments of unintended consequences.

3. Education: Educating the public about the potential risks of nanotechnology is essential. The public should be aware of the potential risks and how to protect themselves.

4. Proper use: The proper use of nanotechnology can also minimize the potential risks associated with it. For example, nanoparticles used in consumer products should be designed to minimize toxicity and should be used only when necessary.5. Disposal: The proper disposal of nanomaterials is also important to minimize the potential risks. Nanomaterials should be disposed of in a manner that minimizes their impact on the environment and human health.

To learn more about Nanotechnology visit;

https://brainly.com/question/26155132

#SPJ11

A person inhales and exhales 1.5 L of 38 °C air, evaporating of 0.04 g water from the lungs and breathing passages with each breath. The latent heat of vaporization of water is 2430 × 10³ J/kg. Use 1 L = 10-³m³. Density of air = 1.29 kg/m³, and the specific heat of air is 721 J/(kg°℃) (a) How much heat transfer occurs due to evaporation in each breath? Heat transfered in each breath = (b) What is the rate of heat transfer in watts if the person is breathing at a moderate rate of 18.0 breaths per minute? Rate of heat transfer= W (c) If the inhaled air had a temperature of 20 °C, what is the rate of heat transfer for warming the air? Think & Prepare 1. To raise the temperature of air from 20°C to 38°C, how much heat is required? 2. How will you calculate the mass of air from its volume and density? 3. Use the breathing rate to calcuate the rate of heat transfer in W. Rate of heat transfer= W (d) Discuss the total rate of heat transfer as it relates to typical metabolic rates. Will this breathing be a major form of heat transfer for this person? Total heat tranfer during to two processes W

Answers

In each breath, 0.04 g of water evaporates, resulting in a heat transfer of 97.2 J due to evaporation. At a breathing rate of 18 breaths per minute, the rate of heat transfer is 29.13 W. Additionally, warming the inhaled air from 20°C to 38°C contributes a heat transfer of 22.128 J. The total rate of heat transfer per breath is 119.328 J. However, compared to overall metabolic heat production, breathing is a minor form of heat transfer for this person.

(a) To calculate the heat transferred due to evaporation in each breath, we need to find the amount of heat required to evaporate the water.

The formula for heat transfer due to evaporation is Q = m × Lv, where Q is the heat transfer, m is the mass of water evaporated, and Lv is the latent heat of vaporization of water.

Here, m = 0.04 g and Lv = 2430 × 10³ J/kg. Converting the mass to kilograms, we get m = 0.04 × 10⁻³ kg. Substituting the values, we find Q = (0.04 × 10⁻³ kg) × (2430 × 10³ J/kg) = 97.2 J.

(b) The rate of heat transfer in watts can be calculated by dividing the total heat transfer by the time taken.

Given that the breathing rate is 18.0 breaths per minute, the time for each breath is 1 minute / 18 breaths = 1/18 minutes = (1/18) × 60 seconds.

Thus, the rate of heat transfer is 97.2 J / [(1/18) × 60 s] = 97.2 J / 3.33 s = 29.13 W.

(c) To calculate the rate of heat transfer for warming the air, we need to determine the amount of heat required to raise the temperature of air from 20°C to 38°C.

The formula for heat transfer due to temperature change is Q = m × c × ΔT, where m is the mass of air, c is the specific heat of air, and ΔT is the change in temperature.

We can calculate the mass of air using the density of air and the volume of air inhaled and exhaled in each breath. The volume of air is given as 1.5 L, which is equal to 1.5 × 10⁻³ m³.

The density of air is 1.29 kg/m³. Thus, the mass of air is (1.5 × 10⁻³ m³) × (1.29 kg/m³) = 1.935 × 10⁻³ kg. Substituting the values, we find Q = (1.935 × 10⁻³ kg) × (721 J/(kg°℃)) × (38°C - 20°C) = 22.128 J.

(d) The total rate of heat transfer for each breath is the sum of the heat transfer due to evaporation and the heat transfer for warming the air.

Thus, the total rate of heat transfer per breath is 97.2 J + 22.128 J = 119.328 J.

Considering the breathing rate of 18 breaths per minute, the total rate of heat transfer would be 119.328 J/breath × 18 breaths/minute = 2147.904 J/minute.

This form of heat transfer through evaporation and warming of inhaled air is relatively small compared to the overall metabolic heat production in the human body.

Metabolic rates are typically in the range of hundreds to thousands of watts, while the heat transfer rate in this case is only 2147.904 J/minute, equivalent to approximately 35.798 W.

Therefore, breathing alone is not a major form of heat transfer for this person compared to other metabolic processes.

To know more about heat transfer refer here:

https://brainly.com/question/282010#

#SPJ11

what is the approximate thermal energy in kj/mol of molecules at 75 ° c?

Answers

Answer:

if you like it please do appreciate

To calculate the approximate thermal energy in kilojoules per mole (kJ/mol) of molecules at a given temperature, you can use the Boltzmann constant (k) and the ideal gas law.

The Boltzmann constant (k) is approximately equal to 8.314 J/(mol·K). To convert this to kilojoules per mole, we divide by 1000:

k = 8.314 J/(mol·K) = 0.008314 kJ/(mol·K)

Now, we need to convert the temperature to Kelvin (K) since the Boltzmann constant is defined in Kelvin. To convert from Celsius to Kelvin, we add 273.15 to the temperature:

T(K) = 75°C + 273.15 = 348.15 K

Finally, we can calculate the thermal energy using the formula:

Thermal energy = k * T

Thermal energy = 0.008314 kJ/(mol·K) * 348.15 K

Thermal energy ≈ 2.894 kJ/mol

Therefore, at 75°C, the approximate thermal energy of molecules is approximately 2.894 kilojoules per mole (kJ/mol).

The heat capacity of one mole of water is approximately 75.29/1000 = 0.07529 kj/mol. This value represents the approximate thermal energy in kj/mol of water molecules at 75 ° C.

Thermal energy refers to the energy present in a system that arises from the random movements of its atoms and molecules. When a body has a temperature of 75 ° C, it has a thermal energy that depends on the type of molecules in it and their specific heat capacity.

In this context, we will consider the thermal energy in kj/mol of molecules at 75 ° C.Let's use water as an example to calculate the approximate thermal energy in kj/mol of molecules at 75 ° C. The specific heat capacity of water is 4.18 J/g °C, and the molar mass of water is 18.01528 g/mol. Therefore, the thermal energy in kj/mol of water molecules at 75 ° C can be calculated as follows:ΔH = mcΔt, whereΔH = thermal energy,m = mass of the sample,c = specific heat capacity of the sample,Δt = change in temperature

To know more about heat capacity visit:-

https://brainly.com/question/28302909

#SPJ11

Other Questions
8. Consider the following regressions: + B3X3 + u Y=Bo + B1X + BX Y = 10 + 1X + 72(X2X1)+73X3 Y=00 +0X +0X2 + u +03 (X3 + X - 2X) + u. (a) Rewrite the hypothesis 1 = 0 in te Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the course, the frequency of the sound will be...?The answer is unchanged. Can someone please show this through equations or explain why it remains unchanged? Don't just say doppler effect, please :) the questions on binet's original intelligence test were developed by: The below information was taken from the unadjusted trial balance and aging schedule of ABC Company on December 31, 2021 (fiscal year-end).Accounts and related balances on December 31, 2021 (before adjustment):Debit CreditAccounts Receivable $47,000Allowance for Doubtful Accounts $ 420Sales (all on credit) 400,000Sales returns 2,000Aging Schedule of Accounts Receivable:Age Amount % Uncollectible0-30 days $15,000 2%30-60 days 18,000 7%Over 60 days 14,000 13%Assume ABC Company uses the aging schedule of accounts receivable to determine uncollectible accounts receivable.Instructions:Determine the following:a) Bad Debt Expense for the year ending December 31, 2021. (2 marks)b) Allowance for Doubtful Accounts balance (after adjustment) on December 31, 2021.(2 marks)c) Carrying Amount (Net Realizable Value) of Accounts Receivable on the December 31, 2021balance sheet. (1 mark)QUESTION #2The following selected information relates to DEF Company for the fiscal years ending on December 31, 2020 and December 31, 2021:December 312021 20201. Sales (all on credit) $75,300 $61,5002. Accounts Receivable 9,400 9,2003. Allowance for Doubtful Accounts 1,300 1,0004. Collection of Previously Written-OffAccounts Receivable 55 70Note: 1. On December 31, 2021, DEF Company estimates that 2% of its credit sales for 2021 will becomeuncollectible.2. The above balances in Allowance for Doubtful Accounts are after adjustment at year-end.Instructions:a) Calculate the actual amount of Accounts Receivable that were written-off as uncollectible during2021.b) Prepare all the necessary journal entries related to Accounts Receivable and Allowance for DoubtfulAccounts for 2021. Use the date of December 31, 2021 for recording purposes. how can humans avoid the possible damaging effects of nanotechnology? In a monopolistically competitive industry:A.) to maximize profits, firms set MR = MC, and people would be better off if output were reduced.B.) output could be increased without an increase in total cost.C.) people would be better off if output were reduced.D.) a firm maximizes profits when MR = MC yet P > MC. T/F: children abosrbing their enviorments psych development adolscent write the chemical formula of the following complex ions. hexabromomanganate (iii) Suppose that we randomly sample 122 high school students to investigate an association between involvement in extracurricular activities and grades. We use the data to conduct a chi-square test of independence at the 5% level. In this results table, the observed count appears above the expected count in each cell. The expected counts are in parenthesis. What can we conclude? Good grades Poor grades Total Extracurricular activity What can we conclude? 16 11 (11.016) 5 (4.9836) Low a) There is a statistically significant association between involvement in extracurricular activities and grades. 93 70 (64.033) 23 (28.967) Moderate 13 10 (4,0492) b) There is not a statistically significant association between involvement in extracurricular activities and grades. 3 (8.9508) 84 High 38 122 Total c) Involvement in extracurricular activities helps students to perform better academically. d) Nothing, because the conditions for use of the chi-square test are not met. Statistic DF Value P-value Chi-square 2 14.487 0.0007 Identify the equation of the circle B with center B(4,6) and radius 7. a.(X 4)^2 + (Y-6)^2 = 49b.(X-4)^2 + (Y-6)^2 = 49c.(X-4)^2 + (Y-6)^2 = 7d.(X-4)^2 + (Y-6)^2 = 7 Comprehensive medical plans are characterized byA. a limited range of coverageB. a number of deductiblesC. low maximum benefitsD. coninsurance clause Solve for the remaining angles and side of the triangle described below. Round to the nearest thousandth: B = 100*, a = 2,c = 6 Answer How to enter your answer (opens in new window) b = A = C= find all values of c for which the vectors v1 = 1, c, 0 , v2 = 1, 0, 4 , and v3 = 0, 1, c are linearly independent Reflective Assignment 1 focuses you to think about concepts of identity and ideology as they relate to your values and worldviews. This assignment is completed and marked individually. You must complete Reflective Assignment 1 in order to participate in the group project. Reflective Assignment 2, the first component of the group project requires that you use material from Reflective Assignment 1 and work collaboratively with your assigned group members to identify a compelling topic to study for the final course project. Read the assignment instructions for Reflective Assignment 1 below. Instructions for Reflective Assignment 1 - Individual (15%) : Write a reflection on your identity. Write one paragraph for each of the following questions: 1. How has your sense of who you are been shaped by your environment (social institutions) and various ideological beliefs? Remember, ideological beliefs can include both the ways that you see and understand the world and the dominant narratives about the world that still influence you whether you agree or not. Refer to the ideology chart to be specific about the ideologies that influence you. Finally, consider the next set of questions in your answer: 2. How is your identity connected to characteristics of global citizenship as defined in the text? Identify a social issue that personally concerns you. State why this particular issue is important to you. Why do you see this as a social and not an individual issue? Your answers to these questions need to draw on concepts and ideas from Weeks 1-4 lesson modules and corresponding chapters in the OER textbook. Your submission should not exceed 500 words or one page. a mixture of two gases with a total pressure of 2.02 atm contains 0.70 atm of gas a. what is the partial pressure of gas b in atm? A sheet of metal is illuminated by photons with a wavelength of 325 nm and the emitted electrons are found to have a maximum kinetic energy of 1.25 eV. If the same metal is illuminated by 225 nm light, what will be the speed of emitted electrons? Give your answer in km/s to 3 significant digits. which of these neural injuries will the corneal reflex not test for? Explain four (4) emerging issues in the auditing profession and the work of an auditor in general. Which of the following statement is INCORRECT about the foundational assumption used in CVP analysis. A) The time value of money is ignored. B) Relative sales proportions of multiple products are known and constant.C) Behavior of revenue and costs can be graphed as a straight line. D) Only selling price and variable cost per unit are known and constant. INSTRUCTIONS: TIME: 2 HOURS CASE (20 Marks) Growing Government Regulations in IRs in Nepall Since 2046 BS (1990) the Nepalese Government has increased its regulation of the way employers treat employees. The Trade Union Act 2074 permits workers to join unions, the Minimum Wages Regulations, guarantees a minimum wage, the Industrial Enterprise Act ensures a safe and healthy environment, the Labour Act 2074 offers compensation to injured workers, the Payment of Wages Clause; checks fraudulent practices in the payment of wages to workers. The regulatory framework covering factories, union-management relations, compensation issues, dispute settlement, etc., is quite rigorous and elaborate. There are laws that prohibit discrimination and restrict the freedom of employers to make HR decisions in other areas as well. As the guardian of the economy and as a regulator of employment relations, the Nepal Government does not seem to loosen its grip in the near future. Experts believe that the trend toward increased governmental intervention will continue. They base their arguments on the current trends in developed countries in this area in the form of employer-sponsored health insurance schemes, greater job security, improved treatment, etc. Others, (especially private entrepreneurs), are not very optimistic about governments trying to regulate the employer-employee relations closely. Competitive pressures, deregulation of industry, rising wage bills, increasing number of older employees needing social security protection, inflationary pressures, heavy taxes and a host of other factors having a significant bearing on the profitability of a firm do not seem to support government's active intervention in industry. These experts contend that if Nepalese firms have to remain competitive in international markets, they should be freed from all types of control, especially those imposed by the government. Question 1 (5 Marks) Which trend do you think will occur in Nepalese IRS scenario and why? Question 2 (5 Marks) If government regulation continues to increase, how will IR/HR departments be affected? Question 3 (5 Marks) What is your opinion regarding increased government regulations? Will it benefit employers? Will it benefit employees? OR will it benefit both of them? HRMT 5310/FEB2022 Page 2 of 5 Question 4 (5 Marks) Why government of Nepal is more positive towards employees than employers? Justify your answer.