Answer:
f(x) = 4/5(5/4)Step-by-step explanation:
correct me if I am wrong
Points A, B, C, and D lie on a line in that order. If AD/AC = 2/1 and AD/AB = 3/1, what is the value of AC/BD?
9514 1404 393
Answer:
3/4
Step-by-step explanation:
It might be easier to start by expressing the ratios with AD as the denominator.
AD/AC = 2/1 ⇒ AC/AD = 1/2
AD/AB = 3/1 ⇒ AB/AD = 1/3
From the latter, we have ...
(AD -AB)/AD = 1 -1/3 = 2/3 = BD/AD
Then the desired ratio is ...
AC/BD = (AC/AD)/(BD/AD) = (1/2)/(2/3) = (3/6)/(4/6)
AC/BD = 3/4
If f(x) = 4x ^ 2 - 4x - 8 and g(x) = 2x ^ 2 + 3x - 6 then f(x) - g(x) * i * s
Answer:
[tex]4 {x}^{2} - 4x - 8 - (2 {x}^{2} + 3x - 6) = 4 {x}^{2} - 4x - 8 - 2 {x}^{2} - 3x + 6 = 2 {x}^{2} - 7x - 2[/tex]
Can someone solve this for me and a couple more questions ?
Answer:
C. -4
Step-by-step explanation:
Answer:
(c) - 4
is your right answer
HELP PLEASE. Will give maximum points (100). I’m desperate. Will give brainiest for the correct answer, if wrong answer is given on purpose, I will report. Plz help.
Answer:
C, D, D.
Step-by-step explanation:
Problem 6)
We want to determine the equation of the graphed inequality.
First, let's determine the equation of the line for the inequality. We can see that it passes through the points (-2, 0) and (0, 2). Find the slope:
[tex]\displaystyle m=\frac{\Delta y}{\Delta x}=\frac{2-0}{0-(-2)}=\frac{2}{2}=1[/tex]
So, the slope of the line is one.
And since it passes through the point (0, 2), our y-intercept is two. Therefore, the equation of the line is:
[tex]y=x+2[/tex]
Next, notice that the shaded region is below the line. Also, the line itself is also shaded.
Since the shaded region is below the line, y is less than the graph of the line and since the line itself is shaded, our sign is less than or equal to.
Hence:
[tex]y \leq x + 2[/tex]
Our answer is C.
Problem 7)
We have the inequality:
[tex]-2x+8+5x>2x+1[/tex]
First, solve the inequality. Combine like terms:
[tex]3x+8>2x+1[/tex]
Subtract x from both sides:
[tex]x+8>1[/tex]
And subtract 8 from both sides:
[tex]x>-7[/tex]
Therefore, any value greater than -7 will satisfy the inequality.
Out of the choices, the only choice greater than -7 is -5.
So, our answer is D.
Problem 8)
We have the inequality:
[tex]5x+7\leq 8x-3+2x[/tex]
Again, solve the inequality. Combine like terms:
[tex]5x+7\leq 10x-3[/tex]
Subtract 5x from both sides:
[tex]7\leq 5x-3[/tex]
And add three to both sides:
[tex]10\leq 5x[/tex]
Divide both sides by five:
[tex]2\leq x[/tex]
Flip:
[tex]x\geq 2[/tex]
Therfore, any value greater than or equal to 2 will satisfy the inequality.
Out of the choices, the only choice greater than or equal to 2 is 2.
So, our answer is D.
At noon, ship A is 150 km west of ship B. Ship A is sailing east at 30 km/h and ship B is sailing north at 25 km/h. How fast is the distance between the ships changing at 4:00 PM?
Answer:
At 4:00 PM the distance between the two ships is 104.40 kilometers.
Step-by-step explanation:
Given that at noon, ship A is 150 km west of ship B, and ship A is sailing east at 30 km / h and ship B is sailing north at 25 km / h, to determine how fast is the distance between the ships changing at 4:00 PM the following calculation must be performed:
150 - (30 x 4) = 150 - 120 = 30
0 + (25 x 4) = 0 + 100 = 100
30 ^ 2 + 100 ^ 2 = X ^ 2
√ (900 + 10,000) = X
√10,900 = X
104.40 = X
Therefore, at 4:00 PM the distance between the two ships is 104.40 kilometers.
I need help with this
Answer:
Here,
Angle TUV + Angle NUV=TUV
By substituting the provided or given value ls in the question we obtain,
1+38x+66 Degree= 105x
1+66 Degree= 67x
67 Degree= 67x
1 Degree = x
x = 1 Degree
Therefore
Angle TUN=1+38x=39
Angle NUV=66 Degree
Therefore
1+38x+66 Degree= 105x
=39 Degree+66 Degree= 105 Degree
Therefore
Angle TUV=105 Degree
62. A chemist mixes 15 liters of 40 percent acid solution and 25 liters of 20 percent acid solution.
What percent of the mixture is acid?
40% of 15 L = 6 L of acid
20% of 25 L = 5 L of acid
This means the mixture contains a total of 11 L of acid, and with a total volume of 15 L + 25 L = 40 L, that means the mixture is at a concentration of
(11 L acid) / (40 L solution) = 0.275 = 27.5%
Which descriptions from the list below accurately describe the relationship
between AABC and ADEF? Check all that apply.
E
37
B
10
8
5 37
4
534 D
A 3 C
53°
D
6
F
A. Same area
O B. Same size
C. Congruent
D. None of the above
Hi
Answer:
D. None of the above
Step-by-step explanation:
Both triangles have the same shape but different size. Their area cannot be the same. Also, the ratio of their corresponding side lengths are the same.
Thus:
8/4 = 10/5 = 6/3 = 2
This implies that both triangles are similar.
Therefore, both triangles cannot have the same area, they are not of the same size and cannot be congruent to each other.
Prove that the square of an odd number is always 1 more than a multiple of 4
Answer:
By these examples you are able to see that the square of an odd number is always 1 more than a multiple of 4.
Step-by-step explanation:
For examples,
Let's consider squares of 3, 11, 25, 37 and 131.
[tex] {3}^{2} = 9[/tex]
8 is a multiple of 4, and 9 is more than 8.
[tex] {11}^{2} = 121[/tex]
120 is a multiple of 4 and 121 is one more than it.
[tex] {25}^{2} = 625[/tex]
624 is a multiple of 4 and 625 is one more than it.
[tex] {37}^{2} = 1369[/tex]
1368 is a multiple of 4 and 1369 is one more than 1368.
[tex] {131}^{2} = 17161[/tex]
17160 is a multiple of 4.
Determine the degree of the polynomial:
7m^6n^5
9514 1404 393
Answer:
11
Step-by-step explanation:
The degree of the given monomial is the sum of the exponents of the variables.
m has degree 6
n has degree 5
The degree of the monomial is 6+5 = 11.
what is the value of -3^2+(4+7)(2)?
Answer:
[tex] { - 3}^{2} + (4 + 7)(2) \\ = - 9 + 22 \\ = 13[/tex]
9. Mariah has 28 centimeters of reed
and 37/100 meters of reed for weaving
baskets. How many meters of reed
does she have? Write your answer as a
decimal and explain your answer. (The first time time I asked I forgot to put the 37/100)
Answer:
0.65m
Step-by-step explanation:
28cm is equal to 0.28m
37/100 is 37% of a metre so 0.37m
0.28 + 0.37 = 0.65m
Helpppppp ,would this just be -1.2?
Explanation:
The result of any absolute value function is never negative. It represents distance on a number line.
The distance from -1.2 to 0 on the number line is exactly 1.2 units.
So that's why |-1.2| = 1.2
In short, we erase the negative sign.
which of the following function shows the absolute value parent function FX=lxl shifted up
Answer:
The answer is C.
as for C . the value of f(x) increases by 7 and so the graph goes up by units 7.
OR
g(x) = |x| + 7
we know that |x| is f(x), so :-
g(x) = f(x) + 7
and since f(x) is plot on y- axis the graph climbs the y axis by 7 units
*The graph shifts right or left for the other functions*
f(x)=2x1 + 16x2 + 7x3 + 4x4 -> min
Step-by-step explanation:
f(x)=(2x-1)square=0
it can be 0 or greater than 0
Hence,maximum value of (2x- 1)square=0
maximum value of (2x- 1square)+3=0+3=3
11 Emilio makes metal fences.
He is making a fence using this design.
1.44 m
DO NOT WRITE IN THIS AREA
1.8 m
.
The fence will need
3 horizontal metal pieces of length 1.8m
2 tall metal pieces of length 1.44 m
5 medium metal pieces
6 short metal pieces as shown on the diagram.
The heights of the tall, medium and short metal pieces are in the ratio 9:8:7
.
How many metres of metal in total does Emilio need to make the fence?
Answer:
Step-by-step explanation: 7 3 13 31
3 × 1.8 long pieces Calculate the ratios
2 × 1.44 9 tall vertical piece 1.44 / 9 = x / 9 x = 1.44
5 × ___ 8 medium vertical pieces 1.44 / 9 = x / 8 x = 1.28
6 × ___ 7 short vertical pieces 1.44 / 9 = x / 7 x = 1.12
3 × 1.8 long pieces
2 × 1.44 9 tall vertical piece 1.44 / 9 = x / 9 x = 1.44
5 × 1.28 8 medium vertical pieces 1.44 / 9 = x / 8 x = 1.28
6 × 1.12 7 short vertical pieces 1.44 / 9 = x / 7 x = 1.12
3 × 1.8 long pieces = 5.4 m
2 × 1.44 9 tall vertical piece = 2.88 m
5 × 1.28 8 medium vertical pieces = 6.4 m
6 × 1.12 7 short vertical pieces = 6.72 m
Total = 21.4 m
write the following in set builder form C={1,4,9,16,25}
Answer:
C={n : n=i^2 where i belongs to Natural_numbers and 1 <= i <= 5}
I need help with this word problem.
Answer:
$3.22 per square feet
Step-by-step explanation:
To solve, I usually set up an equation:
sq ft = 12 1/2 = 1
$ 40.21 x
Then, use cross multiplication.
(12 1/2)x=40.21
Divide both sides by 12 1/2 or 12.5
x = 3.2168
Round to the hundredths place [because we're dealing with money]
$3.22
I hope this helps!
Answer:
3.22 per sq ft
Step-by-step explanation:
Take the total cost and divide by the amount of tiles
40.21 / 12.5
3.2168 per sq ft
Rounding to the nearest cent
3.22 per sq ft
calculate limits x>-infinity
-2x^5-3x+1
Given:
The limit problem is:
[tex]\lim_{x\to -\infty}(-2x^5-3x+1)[/tex]
To find:
The value of the given limit problem.
Solution:
We have,
[tex]\lim_{x\to -\infty}(-2x^5-3x+1)[/tex]
In the function [tex]-2x^5-3x+1[/tex], the degree of the polynomial is 5, which is an odd number and the leading coefficient is -2, which is a negative number.
So, the function approaches to positive infinity as x approaches to negative infinity.
[tex]\lim_{x\to -\infty}(-2x^5-3x+1)=\infty[/tex]
Therefore, [tex]\lim_{x\to -\infty}(-2x^5-3x+1)=\infty[/tex].
2. About 40 millions of aluminum cans can be recycled each month in the US. A quarter of these aluminum cans are used to make one aluminum boat. How many aluminum boats can be made in one year in the US?
Answer:
48
Step-by-step explanation:
About 40 millions of aluminum cans can be recycled each month in the US. A quarter of these aluminum cans are used to make one aluminum boat. How many aluminum boats can be made in one year in the US?
Given that:
Approximate Number of cans that can be recycled per month in the US = 40 million
Fraction of recycled cans that can be used to make an aluminum boat = 1/4
The number of aluminum boats that can be made in the US in one year :
If about 40 million cans are recycle per month :
The number of boat that can be made from each monthly recycled aluminum cans will be :
Number of monthly recycled can needed to make one boat:
1/4 * 40 million = 10 million cans
Hence, 40,000,000 / 10,000,000 = 4
4 aluminum boats can be made in one month :
Number of months in a year = 12
Number of aluminum boats that can be made in a year :
4 per month * 12 = 48 aluminum boats
ABCD-EFGH what does y=?
Answer:
y = 3
Step-by-step explanation:
Given that the shapes are similar then the ratios of corresponding sides are equal, that is
[tex]\frac{AB}{EF}[/tex] = [tex]\frac{CD}{GH}[/tex] , substitute values
[tex]\frac{3}{2}[/tex] = [tex]\frac{4.5}{y}[/tex] ( cross- multiply )
3y = 9 ( divide both sides by 3 )
y = 3
1 point
What is the slope of a line perpendicular to 3x + 4y = -2?
Answer:
4/3
Step-by-step explanation:
In slope-intercept form [tex]y=mx+b[/tex], [tex]m[/tex] represents the slope of the line.
Let's write [tex]3x+4y=-2[/tex] in slope-intercept form by isolating [tex]y[/tex]:
[tex]3x+4y=-2,\\4y=-3x-2,\\y=-\frac{3}{4}x-\frac{1}{2}[/tex]
Therefore, the slope of this line is [tex]\frac{-3}{4}[/tex]. To find the slope of a line perpendicular to it, multiply the reciprocal of the slope by -1 (take the negative reciprocal).
Therefore, the slope of a line perpendicular to [tex]3x+4y=-2[/tex] is:
[tex]m_{perp}=-(-\frac{4}{3})=\boxed{\frac{4}{3}}[/tex]
Answer:
4/3
Given equation :-
3x + 4y = -2 4y = -3x - 2 y = (-3x - 2)/4 y = -3/4 x - 1/2Slope :-
m = -3/4Slope of perpendicular line :-
m' = -(1/m )m' = -( 1 ÷ -3/4 ) m' = -1 * -4/3 m = 4/3In 1980, the median age of the U.S. population was 30.0; in 2000, the median age was 35.3. Consider 1980 as the starting point (time zero) for this problem. Create an explicit exponential formula for the median age of the U.S. population t years after 1980, assuming the median age has exponential growth.
Answer: [tex]30e^{0.00813x}[/tex]
Step-by-step explanation:
Given
Median age in 1980 is [tex]30[/tex]
It is [tex]35.3[/tex] in year 2000
Suppose the median age follows the function [tex]ae^{bx}[/tex]. Consider 1980 as starting year. Write the equation for year 1980
[tex]\Rightarrow 30=ae^{b(0)}\\\Rightarrow 30=a[/tex]
For year 2000
[tex]\Rightarrow 35.3=30e^{20b}\\\\\Rightarrow \dfrac{30e^{20b}}{30}=\dfrac{35.3}{30}\\\\\Rightarrow e^{20b}=1.17666\\\\\Rightarrow b=0.00813[/tex]
After t years of 1980
[tex]\Rightarrow 30e^{0.00813x}[/tex]
The marked price of a bicycle is Rs 2000. If the shopkeeper allows some discount and a customer
bought it for Rs 1921 including 13% VAT, how much amount was given as the discount?
Answer:
Discount amount = $328.73
Step-by-step explanation:
Below is the calculation for the discount amount:
The marked price of bicycle = 2000
Purchase price = Rs 1921
VAT = 13%
First find the purchase price excluding VAT = 1921 - (13% of 1921) = 1671.27
Discount amount = 2000 - 1671.27
Discount amount = $328.73
2.6.58
The lot in the figure shown, except for the house, shed, and driveway, is lawn. One bag of lawn fertilizer
costs $15.00 and covers 3,000 square feet.
Please help :)
Answer:
50 bags ;
£750
Step-by-step explanation:
The dimension of the rectangular lawn is 500ft by 300 ft
The area of the lawn an e obtained thus :
Area of rectangle = Length * width
Area of rectangle = 500 ft * 300 ft
Area of rectangle = 150000 feets
1 bag of fertilizer covers 3000 feets
The minimum bags of fertilizer required :
Area of rectangle / Area covered by 1 bag of fertilizer
Minimum bags of fertilizer required :
(150,000 / 3000) = 50 bags
50 bags of fertilizer
Cost per bag = 15
Total cost = 15 * 50 = £750
4/5×1 1/9÷2 2/3. please help me
Answer:
1/3
Step-by-step explanation:
when you change the mixed numbers to improper fractions, you get 4/5 * 10/9 ÷ 8/3. you can flip the 8/3 to 3/8 and change the division sign to multiplication, because dividing by a fraction is the same as multiplying by its reciprocal. you can cancel some things and ultimately you get 1/3
Solve the following system of equations
Answer:
Given Two equations :-
[tex]3x {}^{2} - 2 {y}^{2} = 57 .\: .\: .\: . \:(i) \\ - 2 {x}^{2} + 3 {y}^{2} = -23.\: .\: .\: . \:(ii)[/tex]
multiplying eq.(i) by 2 eq.(ii) by 3.[tex](3x {}^{2} - 2 {y}^{2} = 57 ) \times 2 .\: .\: .\: . \:(i) \\ ( - 2 {x}^{2} + 3{y}^{2} = - 23) \times 3.\: .\: .\: . \:(ii)[/tex]
[tex]6x {}^{2} - 4 {y}^{2} =114 .\: .\: .\: . \:(i) \\ - 6 {x}^{2} + 9 {y}^{2} = - 69.\: .\: .\: . \:(ii)[/tex]
[tex]0 + 5 {y}^{2} = 45 \\ 5y {}^{2} = 45 [/tex]
diving both sides by 5[tex] {y}^{2} = 9[/tex]
taking Square root[tex]y = + - 3[/tex]
placing this value of y² in eq. (i)3x²- 2×9 = 57
3x² - 18 = 57
adding 18 to both sides3x² = 57 + 18
3x²= 75
diving both sides by 3x² = 25
x = ± 5
So, the values of x are +5 and -5 and the values of y are +3 and -3Which statement about y=x^2-14x+45 is true
Is 237405 divisible by 11
Hello!
237405 | 11 ?
237405 : 11 = 21582,(27)
Answer: false
Good luck! :)
Hello,
Is 237405 divisible by 11?
a=sum of digits in rank odd : 5+4+3 = 12
b=sum of digits in rank even: 0+7+2=9
Calculate the difference: d=a-b=12-9 =3
d is not a multiple of 11 so, then number 237405 is not divisible by 11.
A wiper blade of a car is of length 24 cm sweeping through an angle of begin mathsize 18px style text 120° end text end style. The total area cleaned at one sweep of the blade is
Answer:
[tex]A=603.18\ cm^2[/tex]
Step-by-step explanation:
The length of a blade, r = 24 cm
The sweeping angle is 120°.
We need to find the total area cleaned at one sweep of the blade. The area of sector is given by :
[tex]A=\dfrac{\theta}{360}\times \pi r^2[/tex]
[tex]A=\dfrac{120}{360}\times \pi \times 24^2\\\\=603.18\ cm^2[/tex]
So, the total area cleaned at one sweep of the blade is [tex]603.18\ cm^2[/tex].