Answer:
Option a.
Explanation:
To determine which is a balanced chemical reaction, see the stoichiometry.
Stoichiometry coefficients are the numbers that appear before the compounds. These numbers indicate moles of substance.
Notice that the number of elements must be the same in both sides of the equation.
In this case, option a is the balanced chemical reaction.
8HCl + 2KMnO₄ → 3Cl₂ + 2MnO₂ + 4H₂O + 2KCl
8 moles of HCl react to 2 moles of potassium permanganate in order to produce 2 moles of magnessium dioxide, 3 moles of chlorine, 2 moles of potassium chloride and 4 moles of water.
8 H, 8 Cl, 2 K, 2 Mn and 8 O
Enter a balanced equation for the reaction between solid nickel(II)(II) oxide and carbon monoxide gas that produces solid nickel and carbon dioxide gas. Express your answer as a chemical equation. Identify all of the phases in your answer.
Answer: A balanced equation for the given reaction is [tex]NiO(s) + CO \rightarrow Ni(s) + CO_{2}(g)[/tex].
Explanation:
The reaction equation will be as follows.
[tex]NiO(s) + CO \rightarrow Ni(s) + CO_{2}(g)[/tex]
Number of atoms on the reactant side is as follows.
O = 2C = 1Number of atoms on the product side is as follows.
Ni = 1O = 2C = 1Since number of atoms on both the reactant and product sides are equal. Hence, the reaction equation is balanced.
Thus, we can conclude that a balanced equation for the given reaction is [tex]NiO(s) + CO \rightarrow Ni(s) + CO_{2}(g)[/tex].
In water, Vanillin, C8H8O3, has a solubility of 0.070 moles of vanillin per liter of solution at 25C. What will be produced if 5.00 g of vanillin are added to 1 L of water at 25 C?
Answer:
The full amount (5.00 g) will be dissolved in 1 L of water at 25°C.
Explanation:
The molecular weight (MW) of Vanillin (C₈H₈O₃) is calculated from the chemical formula as follows:
MW(C₈H₈O₃) = (12 g/mol x 8) + (1 g/mol x 8) + (16 g/mol x 3) = 152 g/mol
If 0.070 mol of C₈H₈O₃ are soluble per liter of water at 25°C, the maximum mass that can be dissolved in 1 L is:
0.070 mol x 152 g/mol = 10.64 g
Since 5.00 g is lesser than the maximum amount that can be dissolved (10.64 g), the added amount will be completely dissolved in 1 L of water at 25°C.
What is the mass number of an ion with 106 electrons, 157 neutrons, and a +1 charge?
Answer:
264 g/mol
Explanation:
#electrons equal #protons = 106
Plus 1 charge => m protons = 106 + 1 = 107
Mass number: 107 + 157 = 264 g/mol
Draw the skeletal structure for: (E)-hept-5-en-2-one
Answer:
Draw the skeletal structure for: (E)-hept-5-en-2-one
Explanation:
The root word hept indicates that the given compound has seven carons in its longest chain.
-en- primary suffix indicates that the compound has one double bond in it.
2-one indicates that the compound has -C=O bond in the second carbon.
The prefix (E) indicates that the highest priority groups are on the opposite direction of the double bond.
The structure of the given molecule is:
What is the largest number
(of a single species) a specific area can support?
A. Population
B. Unlimited factor
C. Carrying capacity
D. Niche
Answer:
carrying capacity
Explanation:
Thus, the carrying capacity is the maximum number of individuals of a species that an environment can support. Population size decreases above carrying capacity due to a range of factors depending on the species concerned, but can include insufficient space, food supply, or sunlight.
If I have 25g of Sodium, how much Sodium Chloride will I theoretically create?
O 50g NaCl
0 58.3g NaCl
O 63.7g Naci
0 35.4g NaCl
Answer:
64 g
Explanation:
Step 1: Write the balanced equation
2 Na + Cl₂ ⇒ 2 NaCl
Step 2: Calculate the moles corresponding to 25 g of Na
The molar mass of Na is 22.98 g/mol.
25 g × 1 mol/22.98 g = 1.1 mol
Step 3: Calculate the moles of NaCl formed from 1.1 moles of Na
The molar ratio of Na to NaCl is 2:2. The moles of NaCl formed are 2/2 × 1.1 mol = 1.1 mol.
Step 4: Calculate the mass corresponding to 1.1 moles of NaCl
The molar mass of NaCl is 58.44 g/mol.
1.1 mol × 58.44 g/mol = 64 g
6. Which compound contains no ionic character?
Answer:
The compound which doesn't contains ionic character is HC, H-atom and CL- atom shares 1 electron a to form covalent bond....
. Gastric juice, the digestive fluid produced in the stomach, contains hydrochloric acid, HCl. Milk of Magnesia, a suspension of solid Mg(OH)2 in an aqueous medium, is sometimes used to neutralize excess stomach acid. Write a complete balanced equation for the neutralization reaction, and identify the conjugate acid-base pairs.
Answer:
Mg(OH)2 + 2HCI = MgCI2 + 2H2O
Explanation:
Please correct me if I am wrong
Given 200ul of a 0.5mg/ml stock solution of BSA, how much do you pipet into a test tube so that you are adding 5ug of BSA to the test tube
Answer: [tex]10\mu L[/tex] of volume needs to be pipetted out in the test tube.
Explanation:
We are given:
Mass of BSA to be formed = [tex]5\mu g=0.005mg[/tex] (Conversion factor: [tex]1mg=1000\mu g[/tex]
Volume of stock solution = [tex]200\mu L=0.2mL[/tex] (Conversion factor: [tex]1mL=1000\mu L[/tex]
It is also given that for the mass of BSA is 0.5 g, the volume used up is 1 mL
In order to have, 0.005 g, the volume of stock solution needed will be = [tex]\frac{1mL}{0.5g}\times 0.005g=0.01mL=10\mu L[/tex]
Hence, [tex]10\mu L[/tex] of volume needs to be pipetted out in the test tube.
The time required to pass one Faraday of electricity through a solution with a current of 0.3A is
Answer:
89.35 hour
Explanation:
Recall :
Charge on 1 electron = 1.6 × 10^-19 C
1 mole contains = 6.023 × 10^23
Therefore, the charge on 1 mole of electron will be :
Charge per electron × 1 mole :
(1.6 × 10^-19) * (6.023 * 10^23) = 96500 C = 1 Farad
1 Farad = 96500 C
Using the formula :
Q = Current(I) * time(t)
Q = I*t
t = Q/I
Current, I = 0.3 A
t = 96500 / 0.3
t = 321666.66 second
t = 321666.66 / 3600 = 89.35 hour
Consider the following chemical equilibrium: Now write an equation below that shows how to calculate from for this reaction at an absolute temperature . You can assume is comfortably above room temperature. If you include any common physical constants in your equation be sure you use their standard symbols, found in the ALEKS Calculator.
Answer:
Kp=Kc *(RT)+-3
Explanation:
The relation between Kp and Kc is given below:
Where,
Kp is the pressure equilibrium constant
Kc is the molar equilibrium constant
R is gas constant , R = 0.082057 L atm.mol⁻¹K⁻¹
T is the temperature in Kelvins
Δn = (No. of moles of gaseous products)-(No. of moles of gaseous reactants)
For the first equilibrium reaction:
Δn = (0)-(2+1) = -3
Thus, Kp is:
Kp=Kc *(RT)+-3
Consider the synthesis of water as shown in Model 3. A container is filled with 10,0 g of H, and
5.0 g of Oz
Which reactant (hydrogen or oxygen) is the limiting reactant in this case?
Answer:
Oxygen, O₂ is the limiting reactant
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2H₂ + O₂ —> 2H₂O
Next, we shall determine the masses of H₂ and O₂ that reacted from the balanced equation. This can be obtained as follow:
Molar mass of H₂ = 2 × 1 = 2 g/mol
Mass of H₂ from the balanced equation = 2 × 2 = 4 g
Molar mass of O₂ = 16 × 2 = 32 g/mol
Mass of O₂O from the balanced equation = 1 × 32 = 32 g
SUMMARY:
From the balanced equation above,
4 g of H₂ reacted with 32 g of O₂.
Finally, we shall determine the limiting reactant. This can be obtained as follow:
From the balanced equation above,
4 g of H₂ reacted with 32 g of O₂.
Therefore, 10 g of H₂ will react with
= (10 × 32)/4 = 80 g of O₂.
From the calculations made above, we can see that a higher mass (i.e 80 g) of O₂ than what was given (i.e 5 g) is required to react completely with 10 g of H₂. Therefore, O₂ is the limiting reactant.
Oxygen has been the limiting reactant in the reaction.
A limiting reactant can be defined as the reactant in the reaction in which the product concentration has been dependent.
The balanced equation for the formation of water has been:
[tex]\rm 2\;H_2\;+\;O_2\;\rightarrow\;2\;H_2O[/tex]
For the formation of reaction to form 2 moles of water, 2 moles of hydrogen reacts with 1 mole of oxygen.
The moles can be calculated as:
Moles = [tex]\rm \dfrac{weight}{molecular\;weight}[/tex]
The moles of Hydrogen in 10 g [tex]\rm H_2[/tex]:
Moles = [tex]\rm \dfrac{10}{2}[/tex]
Moles of hydrogen = 5 mol.
Moles of Oxygen in 5 grams Oxygen:
Moles = [tex]\rm \dfrac{5}{32}[/tex]
Moles of oxygen = 0.156 mol.
For the reaction with 2 moles of Hydrogen 1 mole of Oxygen has been required.
For reacting with 5 mol of Hydrogen, moles of oxygen required are:
Moles of oxygen = [tex]\rm \dfrac{1}{2}\;\times\;5[/tex]
Moles of oxygen required = 2.5 moles.
The available oxygen = 0.156 moles.
Since the moles of oxygen available is lesser than required, the formation of the product has been dependent on the concentration of the oxygen.
Thus, oxygen has been the limiting reactant in the reaction.
For more information about the limiting reactant, refer to the link:
https://brainly.com/question/14225536
Design an experiment to demonstrate phototropism.
Answer:
Object: To demonstrate phototropism
equipments: A black box, window with light source, a well watered potted plant.
Experiment: A wellwatered potted plant is placed inside a darkened black box that is having a small window on one side. This is called as phototropic chamber. Window is remain closed for a day the plant shows normal growth.
Whereas if window is opened atwo days it will be found that shoot tip bends and grows towards light proving that it is positively phototropic.
1. Arrange the following groups in order of decreasing priority that would allow you to determine E/Z, or R/S. Provide a string of letters (e.g. abcd) as an answer with the highest priority listed first, lowest priority last:
a) -CH3 b) -CH2OH c) -CH2NH2 d) -CH2BR
2. Arrange the following groups in order of decreasing priority that would allow you to determine E/Z, or R/S. Provide a string of letters (e.g. abcd) as an answer with the highest priority listed first, lowest priority last:
a) -F b) -CH2OH c) -CHO d) -CH3
1) The order of decreasing priority would allow determining E/Z or R/S is "dbca".
2) The order of decreasing priority would allow determining E/Z or R/S is "acbd".
What is absolute configuration?Absolute configuration can be described as to the spatial arrangement of atoms within a chiral molecular entity. Absolute configuration in organic molecules, where carbon is bonded to four different substituents.
The absolute configuration has used a set of rules to describe the relative positions around the chiral center atom. The most common labeling method is the descriptors R or S where R and S refer to Rectus and Sinister.
The group with the highest atomic number will get the highest priority and the group with the lowest atomic number substituents will get the lowest priority. Therefore, the order of priority is -CH₂Br > -CH₂OH > -CH₂NH₂ > -CH₃.
Therefore, the order of priority for the second part is -F > -CHO > -CH₂OH > -CH₃.
Learn more about absolute configuration, here:
https://brainly.com/question/14365822
#SPJ5
What are the equipments needed to determine the density of a liquid in laboratory ?
Answer:
A hydrometer is a special device used to determine the density of liquids.
Explanation:
I hope this helps you. Have a nice day!
According to Newton's law of universal gravitation, how do the masses of two
objects relate to the gravitational force between them?
A. As either mass increases, the gravitational force between them
increases.
B. As either mass increases, the gravitational force between them
decreases.
C. Gravitational force increases only when both masses increase.
D. Gravitational force increases only when both masses decrease.
Answer:
As either mass increases, the gravitational force between them
increases.
Explanation:
According to Newton's law of universal gravitation;
F α m1m2/r^2
That is, the force between two masses in a gravitational field is directly proportional to the product of the two masses and inversely proportional to their distance apart.
Hence, as either of the masses increase, the force of gravitation between the two masses increases. Hence the answer.
Calculate the Experimental Molar Volume in L/mol of the Hydrogen gas, H2, if the volume of H2 at STP is 52.8 mL and the mass of Magnesium metal, Mg, used in the experiment is 0.055 g.
Answer:
The Experimental Molar Volume in L/mol of the Hydrogen gas=23.36L/mol
Explanation:
We are given that
Volume of H2 at STP=52.8mL
Mass of magnesium metal ,M(Mg)=0.055g
We have to find the Experimental Molar Volume in L/mol of the Hydrogen gas.
Molar mass of Mg=24.305 g/mol
Number of moles=[tex]\frac{given\;mass}{molar\;mass}[/tex]
Using the formula
Number of moles of Mg=[tex]\frac{0.055}{24.305}[/tex]moles
Number of moles of Mg=0.00226moles
Number of moles of Mg=Number of moles of H2
Number of moles of H2=0.00226moles
Molar volume of Hydrogen gas (H2)=[tex]\frac{volume\;at\;STP}{No\;of\;moles\;H_2}[/tex]
Molar volume of Hydrogen gas (H2)=[tex]\frac{52.8}{0.00226}mL/mol[/tex]
Molar volume of Hydrogen gas (H2)=[tex]\frac{52.8}{0.00226}\times 10^{-3}L/mol[/tex]
[tex]1L=1000mL[/tex]
Molar volume of Hydrogen gas (H2)=23.36L/mol
Hence, the Experimental Molar Volume in L/mol of the Hydrogen gas=23.36L/mol
Increasing the temperature of a chemical reaction usually increases greatly the rate of the reaction. The most iportant reason for this is that increasing the temperature increases: _______.
A) the collision frequency
B) the probability factor
C) the fraction of collisions with energy greater than Bact
D) the energy of activation.
E) the amount of heat released in the reaction
Answer:
the fraction of collisions with energy greater than Eact
Explanation:
The activation energy of a reaction stands as a sort of energy barrier between reactants and products. It is only reactants that possesses energy greater than the activation energy that can be converted from reactants to products.
When the temperature of the system is increased, more particles acquire energy greater than the activation energy. Hence, the fraction of collisions with energy greater than the activation energy increases so the rate of reaction increases likewise.
We can use bond-line formulas to represent alkenes in much the same way that we use them to represent alkanes. Consider the following alkene: h5ch5e4 How many carbon atoms are sp2−hybridized in this alkene?
Answer:
2
Explanation:
The number of carbon atoms that are sp²-hybridized in this alkene is 2
Because all the single bonded carbon atoms in the alkene are sp²-hybridized
There are three(3) single formed via sp² orbitals and one ( 1 ) PI bond formed via Pure-P-orbital
attached below is the some part of the solution
Why do gases act more ideal at
lower pressures?
Answer:
Gases act more ideal at lower pressure beacuse the attractive forces between molecules will decrease or become less significant compared to the empty space between them.
Explanation:
Generally, a gas behaves more like an ideal gas at higher temperature and lower pressure as the potential energy due to intermolecular forces becomes less significant compared with the particles "kinetic energy" and the size of the molecules become less significant compared to the empty space between them.
Attractive forces between molecules, decrease the pressure of a reak gas, slowing the molecules and reducing collisions with the walls.The higher the value of a gas, the greater the attraction between molecules and the more easily the gas will compress.
HOPE IT HELPS MUCHanswered by: John Glenly Pillazo Mahusay
Which atomic model states that it is impossible to know the exact location of electrons around the nucleus?
Answer:
Bohr Model is the correct answer
Answer:
Electron -Cloud Model
Explanation:
Just took the quiz got 100%
An electron-dot structure is a convenient method of representing
A. The complete electron configuration of the atom.
B. all electrons of the atom.
C. valence electrons of an atom.
D. core electrons of an atom.
Answer:
all electrons of the atom
The number of periods/series in Mendeleev's Periodic table is
A. 10
B. 13
C. 12
D. 14
Answer: The number of series in Mendeleev's Periodic table is 12.
Explanation:
Horizontal rows present in the periodic table are called periods. Vertical rows in the periodic table are called series.
Mendeleev gave periodic table in the year 1869 by arranging elements according to their atomic weights a in tabular form.
Mendeleev's periodic table depicts 12 periods/series.
Thus, we can conclude that the number of periods/series in Mendeleev's Periodic table is 12.
Match the description with the type of precipitation being described.
1. Its formation requires very strong updrafts
2. Its formation requires falling through a layer of above freezing air
3. Precipitation from cumuliform clouds is typically of this nature
4. Precipitation from stratus clouds is typically of this nature
Options:
a. Hail
b. Drizzle
c. Shower
d. Freezing Rain
Answer:
1. Its formation requires very strong updrafts = a. Hail
2. Its formation requires falling through a layer of above-freezing air = d. Freezing Rain
3. Precipitation from cumuliform clouds is typically of this nature = c. Shower
4. Precipitation from stratus clouds is typically of this nature = Drizzle
Explanation:
Hail formation requires very strong updrafts, these updrafts are the upward moving air created in a thunderstorm. This period of noticeable thunderstorms creates hails.
Freezing rain requires the presence of warm air, it requires falling through a layer of above-freezing air to the colder air below to produce an ice coating on anything it drops on.
Showers are produced by cumuliform clouds which look like cotton balls. Since cumuliform clouds precipitate too, these clouds can have fluctuating rain in a day in the form of showers.
Drizzle which raises low visibility is considered a type of liquid precipitation since it also falls from a cloud. Drizzle which is obviously smaller in diameter when compared to that of raindrops, however, is common with stratus clouds.
Which 2 resonance forms destablize the carbocation intermediate if bezonitrile undergoes chlronation at the ortho or para positions
The question is incomplete, the complete question is shown in the image attached
Answer:
A and B
Explanation:
The electrophilic substitution of arenes yields a cation intermediate. The positive charge of the cation is delocalized over the entire ring.
The -CN group directs incoming electrophiles to the ortho/para position. The resonance structures for the chlorination of benzonitrile are shown in the question.
Recall that -CN is an electron withdrawing group. The resonance forms that destablize the carbocation intermediate are those in which the -CN group is directly attached to the carbon atom bearing the positive charge as in structures A and B.
What do phase diagrams demonstrate?
Select all that apply.
how the melting and boiling points of a substance change with pressure
how much heat will increase the temperature of a gram of a substance by 1°C
the pressure and temperature conditions in which a substance exists as a liquid, solid, or gas
a comparison of the temperature of a substance to the heat absorbed over time
Answer:
this answer is for first one
Explanation:
A higher evalations, where the atmospheric pressure is much lower, the boiling point increase with increased pressure up to the critical point where the gas and liquid properties become identical
An ionic compound contains an unknown ion X and has the formula X3N2. Ion X contains 10 electrons. Write down the chemical symbol of X?
Answer:
Mg3N2
Explanation:
it would be magnesium as it would loss to electron so it would have 10 electron. you can see in the picture above .
hope this helps :)
What is Heisnberg's uncertainity principle? Why it make sense only for microscopic particles.
Answer:
The uncertainty principle is one of the most famous (and probably misunderstood) ideas in physics. It tells us that there is a fuzziness in nature, a fundamental limit to what we can know about the behavior of quantum particles and, therefore, the smallest scales of nature.
You’re taking a walk on a warm fall morning. The temperature is about 70 degrees Fahrenheit, and you cannot see a cloud anywhere in the sky. You notice that the ground has no dew on it either. This means the
this means that you are wearing warm clothes in warm temperature .quite easy sir
I have an unknown volume of gas at a pressure of 0.50 atm and a temperature of 325 K. If I raise the pressure to 1.2 atm, decrease the temperature to 320 K, and measure the final volume to be 48 liters, what was the initial volume of the gas?
SHOW YOUR WORK
Answer:
the answer is 2.1 atm
Explanation:
the way people normally do it is by simply deciding the 325k with the 1.2