Answer:
True
Explanation:
If the electric potential is lower at P2 than at P1, then the work done by the electric force is positive.
Answer:
The answer to this I would say is True.
Explanation:
The work done by the electric force on a charge is given by the equation:
W = q(V2 - V1)
Where:
q = the chargeV2 = the electric potential at Point P2V1 = the electric potential at Point P1According to the question, V2 (the potential at P2) is lower than V1 (the potential at P1). Since the charge (q) is negative, this means that (V2 - V1) will be a positive number.
Plugging this into the work equation, we get:
W = -1 (V2 - V1)
Since (V2 - V1) is positive, this makes W positive as well.
Therefore, the statement is true - when the potential is lower at P2 than P1, and the charge is negative, the work done by the electric force will be positive. This is because the potential difference term (V2 - V1) in the work equation is positive, and the negative charge just makes the entire expression positive.
So in summary, when we use the actual work equation for electric force, W = q(V2 - V1), we can see that the statement in the question is true.
On a day when the speed of sound is 345 m/s, the fundamental frequency of a particular stopped organ pipe is 220 Hz. The second overtone of this pipe has the same wavelength as the third harmonic of an open pipe. How long is the open pipe? Express your answer in mm
The length of the open pipe can be determined by comparing the wavelength of the third harmonic of the open pipe to the second overtone of the stopped organ pipe.
The fundamental frequency of a stopped organ pipe is determined by the length of the pipe, while the frequency of a harmonic in an open pipe is determined by the length and speed of sound. In this case, the fundamental frequency of the stopped organ pipe is given as 220 Hz.
The second overtone of the stopped organ pipe is the third harmonic, which has a frequency that is three times the fundamental frequency, resulting in 660 Hz (220 Hz × 3). The wavelength of this second overtone can be calculated by dividing the speed of sound by its frequency: wavelength = speed of sound / frequency = 345 m/s / 660 Hz = 0.5227 meters.
Now, we need to find the length of the open pipe that produces the same wavelength as the third harmonic of the stopped organ pipe. Since the open pipe has a fundamental frequency that corresponds to its first harmonic, the wavelength of the third harmonic in the open pipe is four times the length of the pipe. Therefore, the length of the open pipe can be calculated by multiplying the wavelength by a factor of 1/4: length = (0.5227 meters) / 4 = 0.1307 meters.
Finally, to express the length in millimeters, we convert the length from meters to millimeters by multiplying it by 1000: length = 0.1307 meters × 1000 = 130.7 mm. Hence, the length of the open pipe is 130.7 mm.
To learn more about wavelength.
Click here:brainly.com/question/29548846
#SPJ11
A 75 kg athlete took one of the meals from Table 1 and walks up to the top of Highland Tower. Assuming the only heat transfer is the calories from the meal he took and the only work done by him is lifting his own weight to the 105th floor (3 m per floor), determine: i) ii) iii) Type of meals Kilocalories (kcal) Table 1 Pineapple juice 60 Chicken breast 165 the change in his internal energy if he took the pineapple juice and climbed up to the top. [5 marks] the change in his internal energy if he took the chicken breast but stopped at 80th floor. [4 marks] whether the athlete will use up the calories both from the pineapple juice and the chicken breast if he climbed to the top.
Given data,
Mass, m = 75 kg
Height of tower, h = 105 x 3 = 315 m
Table 1
Pineapple juice 60 Chicken breast 165
Part i)
Change in internal energy ΔU is given by,
ΔU = Q - W where
Q = Heat transfer
W = work done
To lift the body to the top floor,
W = mgh
= 75 x 9.8 x 315
= 220275 Joules
= 220.3 kJ
Energy required to climb the tower, Q = 60 kJ (from table 1)
Therefore, the change in internal energy is
ΔU = Q - W
= 60 - 220.3
= -160.3 kJ
Part ii)
Energy required to climb up to 80th floor,
W = mgh
= 75 x 9.8 x 80 x 3
= 176400 Joules
= 176.4 kJ
Energy required to digest the chicken breast,
Q = 165 kJ (from table 1)
Therefore, the change in internal energy is
ΔU = Q - W
= 165 - 176.4
= -11.4 kJ
Part iii)
The athlete will not use up the calories both from the pineapple juice and the chicken breast if he climbed to the top because the energy required to climb to the top of the tower is more than the energy provided by the chicken breast and the pineapple juice.
Learn more about internal energy from the given link
https://brainly.com/question/25737117
#SPJ11
3. A wheel rotates from rest with constant 1 rad/s2 acceleration. After first 5s of rotation the wheel has rotated through 12.5 rad. What is the angular velocity of the wheel at the end of that 5s? How long will it take the wheel to rotate through next 50 rad? 4. A car 1 of mass M=100 kg collides with a car 2 (m=500 kg) moving with velocity v=3m/s in the same direction as car 1. During the collision they couple and move with speed V=5m/s. Calculate the velocity of the car 1 before the collision. What fraction of the initial kinetic energy was lost during the collision?
It will take the wheel 5.384 seconds to rotate through the next 50 rad. The collision resulted in a loss of approximately 50.82% of the initial kinetic energy.
3. We can use the following kinematic formula for rotational motion:
θ = ωi*t + 1/2*α*t², where: θ = final angular displacement, ωi = initial angular velocity, t = time elapsed, α = angular acceleration
From rest, the initial angular velocity is 0. Thus, the formula becomes:
θ = 1/2*α*t²12.5 = 1/2*1*t²Solving for t, we get:t = 5 seconds
Therefore, the angular velocity at the end of that 5 seconds can be found using the following formula:
ωf = ωi + α*tωf = 0 + 1*5ωf = 5 rad/s
To find the time required for the wheel to rotate through the next 50 rad, we can use the following formula:
θ = ωi*t + 1/2*α*t²50 = 5t + 1/2*1*t²50 = 5t + 1/2*t²
Multiplying both sides by 2, we get:100 = 10t + t²Simplifying the equation:
t² + 10t - 100 = 0Using the quadratic formula, we get:t = 5.384 seconds (rounded off to three significant figures)
Therefore, it will take the wheel 5.384 seconds to rotate through the next 50 rad.
4. To solve this problem, we can use the law of conservation of momentum. According to the principle of conservation of momentum, the total momentum before the collision is conserved and remains equal to the total momentum after the collision.
M₁v₁ + m₂v₂ = (M₁ + m₂)V100v₁ + 500(3) = 600(5)100v₁ = 1500 - 1500100v₁ = 1350v₁ = 13.5 m/s
The velocity of car 1 before the collision is 13.5 m/s.
The initial total kinetic energy of the system can be determined by calculating the sum of the kinetic energies of the individual objects involved.
K1i = 1/2*M₁*v₁² + 1/2*m₂*v₂²K1i = 1/2*100*(13.5)² + 1/2*500*(3)²K1i = 15,262.5 J
The final total kinetic energy of the system can be determined by calculating the kinetic energy of the system after the collision has occurred.
K1f = 1/2*(M₁ + m₂)*V²K1f = 1/2*600*(5)²K1f = 7,500 J
The fraction of initial kinetic energy lost during the collision is:
K1lost/K1i = (K1i - K1f)/K1iK1lost/K1i = (15,262.5 - 7,500)/15,262.5K1lost/K1i = 0.5082 or 50.82%
Therefore, the collision resulted in a loss of approximately 50.82% of the initial kinetic energy.
Learn more about kinetic energy at: https://brainly.com/question/8101588
#SPJ11
An inductor designed to filter high-frequency noise from power supplied to a personal computer placed in series with the computer. What mum inductor On met) shot have to produce a 2.83 0 reactance for 150 kote nolie 218 mit (b) What is its reactance (in k) at 57,0 7 7.34 X10
The reactance is approximately 13.7 kΩ.
An inductor designed to filter high-frequency noise from power supplied to a personal computer placed in series with the computer.
The formula that is used to calculate the inductance value is given by;
X = 2πfL
We are given that the reactance that the inductor should produce is 2.83 Ω for a frequency of 150 kHz.
Therefore substituting in the formula we get;
X = 2πfL
L = X/2πf
= 2.83/6.28 x 150 x 1000
Hence L = 2.83/(6.28 x 150 x 1000)
= 3.78 x 10^-6 H
The reactance is given by the formula;
X = 2πfL
Substituting the given values in the formula;
X = 2 x 3.142 x 57.07734 x 10^6 x 3.78 x 10^-6
= 13.67 Ω
≈ 13.7 kΩ
Learn more about reactance from the given link
https://brainly.in/question/2056610
#SPJ11
A narrow beam of light with wavelengths from 450 nm to 700 nm is incident perpendicular to one face of a prism made of crown glass, for which the index of refraction ranges from n = 1.533 to n = 1.517 for those wavelengths. The light strikes the opposite side of the prism at an angle of 37.0°. Part A What is the angular spread of the beam as it leaves the prism? Express your answer in degrees. VO ΑΣΦ Δθ = Submit Previous Answers Request Answer X Incorrect; Try Again
The angular spread of the beam as it leaves the prism is 3.28°.
Given: A narrow beam of light with wavelengths from λ1 = 450 nm to λ2 = 700 nm is incident perpendicular to one face of a prism made of crown glass, for which the index of refraction ranges from n1 = 1.533 to n2 = 1.517 for those wavelengths. The light strikes the opposite side of the prism at an angle of θ1 = 37.0°.
We have to find the angular spread of the beam as it leaves the prism. Let's call it Δθ.
Using Snell's law, we can find the angle of refraction asθ2 = sin⁻¹(n1/n2)sinθ1 = sin⁻¹(1.533/1.517)sin37.0°θ2 ≈ 37.6°The total deviation produced by the prism can be found as δ = (θ1 - θ2).δ = 37.0° - 37.6°δ ≈ -0.6°We will consider the absolute value for δ, as the angle of deviation cannot be negative.δ = 0.6°For small angles, we can consider sinθ ≈ θ in radians.
Using this approximation, the angular spread can be found asΔθ = δ (λ2 - λ1)/(n2 - n1)cos(θ1 + δ/2)Δθ = (0.6°) (700 nm - 450 nm)/(1.517 - 1.533)cos(37.0° - 0.6°/2)Δθ ≈ 3.28°Therefore, the angular spread of the beam as it leaves the prism is 3.28°.
to know more about wavelengths here:
brainly.com/question/31143857
#SPJ11
Suppose a certain person's visual acuity is such that he or she can see objects clearly that form an image 4.00 um high on his retina. What is the maximum distance at which he can read the 81.0 cm high letters on the side of an airplane? The lens-to-retina distance is 1.75 cm maximum distance: m
The maximum distance at which the person can read the 81.0 cm high letters on the side of an airplane, given their visual acuity, is approximately 185.14 meters.
To find the maximum distance at which the person can read the 81.0 cm high letters on the side of an airplane, we can use the concept of similar triangles.
Let's assume that the distance from the person's eye to the airplane is D meters. According to the question, the person's visual acuity allows them to see objects clearly that form an image 4.00 μm high on their retina.
We can set up a proportion using the similar triangles formed by the person's eye, the airplane, and the image on the person's retina:
(image height on retina) / (object height) = (eye-to-object distance) / (eye-to-retina distance)
The height of the image on the retina is 4.00 μm and the object height is 81.0 cm, which is equivalent to 81,000 μm. The eye-to-retina distance is given as 1.75 cm, which is equivalent to 1,750 μm.
Plugging these values into the proportion, we have:
(4.00 μm) / (81,000 μm) = (D) / (1,750 μm)
Simplifying the proportion:
4.00 / 81,000 = D / 1,750
Cross-multiplying:
4.00 * 1,750 = 81,000 * D
Solving for D:
D = (4.00 * 1,750) / 81,000
Calculating the value:
D ≈ 0.0864
To learn more about distance -
brainly.com/question/29745844
#SPJ11
(5 points) In a harmonic oscillator, the spacing energy AE between the quantized energy levels is 4 eV. What is the energy of the ground state? O a 4eV Oblev O c. 2 eV O d. 0 eV
the energy of the ground state in a harmonic oscillator with a spacing energy of 4 eV is approximately 12.03 eV. None of the provided answer options (a, b, c, d) matches this result.
In a harmonic oscillator, the spacing energy between quantized energy levels is given by the formula:
ΔE = ħω,
where ΔE is the spacing energy, ħ is the reduced Planck's constant (approximately 6.626 × 10^(-34) J·s), and ω is the angular frequency of the oscillator.
ΔE = 4 eV × 1.602 × 10^(-19) J/eV = 6.408 × 10^(-19) J.
6.408 × 10^(-19) J = ħω.
E₁ = (n + 1/2) ħω,
where E₁ is the energy of the ground state.
E₁ = (1 + 1/2) ħω = (3/2) ħω.
E₁ = (3/2) × 6.408 × 10^(-19) J.
E₁ = (3/2) × 6.408 × 10^(-19) J / (1.602 × 10^(-19) J/eV) = 3 × 6.408 / 1.602 eV.
E₁ ≈ 12.03 eV.
Therefore, the energy of the ground state in a harmonic oscillator with a spacing energy of 4 eV is approximately 12.03 eV. None of the provided answer options (a, b, c, d) matches this result.
Learn more about oscillator here : brainly.com/question/15780863
#SPJ11
A bear climbs a 10 m-tall tree to rob a beehive. Estimate
how much honey she would need
to extract to compensate for the energy spent in the climb.
Justify the assumptions. Assume the
nutritious
The bear would need to extract approximately 23,445 grams (or 23.445 kg) of honey to compensate for the energy spent in the climb.
To estimate the amount of honey the bear would need to extract to compensate for the energy spent in the climb, we can make the following assumptions:
1. The energy spent in the climb is equal to the gravitational potential energy gained by the bear as it climbs the tree.
The gravitational potential energy can be calculated using the formula:
Potential Energy = mass × gravity × height
Since the bear's mass is not provided, we will assume a typical mass for an adult bear, which is around 300 kg. The acceleration due to gravity, g, is approximately 9.8 m/s². Thus, the potential energy gained during the climb is:
Potential Energy = 300 kg × 9.8 m/s² × 10 m = 294,000 J
2. We assume that all the energy spent on the climb can be compensated for by consuming honey.
To calculate the amount of honey needed, we can convert the potential energy gained during the climb to calories using the conversion factor provided:
Potential Energy (in cal) = Potential Energy (in J) / 4.184
Potential Energy (in cal) = 294,000 J / 4.184 = 70,335 cal
3. The nutritional value of honey is given as 300 kcal per 100 g.
To calculate the amount of honey needed, we can set up a proportion:
70,335 cal / x = 300 kcal / 100 g
Cross-multiplying and solving for x (the amount of honey needed), we get:
x = (70,335 cal * 100 g) / (300 kcal)
x ≈ 23,445 g
Therefore, the bear would need to extract approximately 23,445 grams (or 23.445 kg) of honey to compensate for the energy spent in the climb.
The correct question should be:
A bear climbs a 10 m-tall tree to rob a beehive. Estimate how much honey she would need to extract to compensate for the energy spent in the climb. Justify the assumptions. Assume the nutritious value of honey equal 300 kcal per 100 g, where 1 cal = 4.184 J.
To learn more about gravitational potential energy, Visit:
https://brainly.com/question/15896499
#SPJ11
1. A 0.6 kg ball is attached to a string and whirled around in a circle overhead. The string breaks in the force on it exceed 44 N. What is the maximum speed the ball can have one the radius of the circle is 1m?
2. A hand exerciser or utilize a coiled spring.
A force of 99.0N and is required to compress the spring by 0.0151 . Find the force (in N) needed to compress the spring by 0.0388m. (enter the magnitude)
------(N)
what is the value of the spring constant in (in N/m) for the unit?
----- N/m
1. The maximum speed the ball can have is approximately 8.56 m/s.
2. The spring constant is approximately 6559.60 N/m.
1. To find the maximum speed of the ball when the string breaks, we can equate the centripetal force with the maximum tension force that the string can withstand.
The centripetal force is given by:
F_c = m * v^2 / r,
where F_c is the centripetal force, m is the mass of the ball, v is the velocity, and r is the radius of the circle.
The maximum tension force is given as 44 N.
Setting F_c equal to the maximum tension force, we have:
44 N = (0.6 kg) * v^2 / (1 m).
Simplifying the equation, we find:
v^2 = (44 N * 1 m) / (0.6 kg) = 73.33 m^2/s^2.
Taking the square root of both sides, we get:
v = √(73.33 m^2/s^2) ≈ 8.56 m/s.
Therefore, the maximum speed the ball can have is approximately 8.56 m/s.
2. The spring constant, denoted by k, relates the force applied to the displacement of the spring. It is given by:
k = F / x,
where k is the spring constant, F is the force applied to the spring, and x is the displacement of the spring.
In this case, we are given the force F = 99.0 N and the displacement x = 0.0151 m. Plugging these values into the equation, we have:
k = 99.0 N / 0.0151 m ≈ 6559.60 N/m.
Therefore, the spring constant is approximately 6559.60 N/m.
To learn more about centripetal force
https://brainly.com/question/20905151
#SPJ11
Calculate (17.29 m + 2.3927 m) * 4.6 m to the correct number of significant figures
The correct answer for significant figures is e. 90.53 m².
To calculate the product of (17.29 m + 2.3927 m) and 4.6 m, we first perform the addition:
17.29 m + 2.3927 m = 19.6827 m
Now we multiply the result by 4.6 m:
19.6827 m × 4.6 m = 90.47122 m²
To determine the correct number of significant figures, we look at the original values. Both 17.29 m and 2.3927 m have four significant figures. The multiplication rule for significant figures states that the result should have the same number of significant figures as the least precise value involved.
In this case, 4.6 m has two significant figures, so the result should be rounded to two significant figures.
Rounding the result into two significant figures, we have:
90.47122 m² ≈ 90.47 m²
Therefore, the correct answer is e. 90.53 m²
The complete question should be:
Calculate (17.29 m + 2.3927 m) × 4.6 m to the correct number of significant figures.
a. 91 m²
b. 90.5 m²
c. 90.528 m²
d. 9 × 10¹ m²
e. 90.53 m²
To learn more about multiplication rule, Visit:
https://brainly.com/question/30340527
#SPJ11
Light passes through three ideal polarizing sheets. Unpolarized light enters the first sheet and the resultant vertically polarized beam continues through the second sheet and third sheet. The second sheet has its transmission axis at 50° with respect to the first sheet, and the third sheet is at 70° with respect to the first sheet
(a) What percent of the original intensity emerges from filter #1?
(b) What percent of the original intensity emerges from filter #2?
(c) What percent of the original intensity emerges from filter #3?
(a) 50% of the original intensity emerges from filter #1, (b) 40.45% emerges from filter #2, and (c) 15.71% emerges from filter #3.
(a) The intensity emerging from the first filter can be determined by considering the angle between the transmission axis of the first filter and the polarization direction of the incident light.
Since the light is unpolarized, only half of the intensity will pass through the first filter. Therefore, 50% of the original intensity emerges from filter #1.
(b) The intensity emerging from the second filter can be calculated using Malus' law. Malus' law states that the intensity transmitted through a polarizer is given by the cosine squared of the angle between the transmission axis and the polarization direction.
In this case, the angle is 50°. Applying Malus' law, we find that the intensity emerging from filter #[tex]2 is 0.5 * cos²(50°) ≈ 0.4045[/tex], or approximately 40.45% of the original intensity.
(c) Similarly, the intensity emerging from the third filter can be calculated using Malus' law. The angle between the transmission axis of the third filter and the polarization direction is 70°.
To know more about intensity refer here:
https://brainly.com/question/17583145#
#SPJ11
1. A 5kg,box is on an incline of 30°. It is accelerating down at 2.3m/s2. What is the coefficient of friction of the incline? A -1... 1 ACO The initialanand of the
The coefficient of friction of the incline is 0.47, determined by comparing the net force and the parallel component of gravitational force.
To find the coefficient of friction of the incline, we can use the following steps:
Calculate the gravitational force acting on the box:
F_gravity = m * g,
where m is the mass of the box (5 kg) and g is the acceleration due to gravity (9.8 m/s²).
F_gravity = 5 kg * 9.8 m/s² = 49 N.
Determine the component of the gravitational force parallel to the incline:
F_parallel = F_gravity * sin(θ),
where θ is the angle of the incline (30°).
F_parallel = 49 N * sin(30°) = 24.5 N.
Calculate the net force acting on the box in the downward direction:
F_net = m * a,
where a is the acceleration of the box (2.3 m/s²).
F_net = 5 kg * 2.3 m/s² = 11.5 N.
Determine the frictional force acting in the opposite direction of the motion:
F_friction = F_parallel - F_net.
F_friction = 24.5 N - 11.5 N = 13 N.
Calculate the normal force acting on the box perpendicular to the incline:
F_normal = F_gravity * cos(θ).
F_normal = 49 N * cos(30°) = 42.43 N.
Finally, calculate the coefficient of friction:
μ = F_friction / F_normal.
μ = 13 N / 42.43 N = 0.47.
Therefore, the coefficient of friction of the incline is 0.47.
To learn more about coefficient of friction here
https://brainly.com/question/29281540
#SPJ4
Complete question is:
A 5kg,box is on an incline of 30°. It is accelerating down at 2.3m/s². What is the coefficient of friction of the incline? A -1... 1 ACO The initialanand of the
The coefficient of friction of the incline is 0.31.
To find the coefficient of friction of the incline, we can follow these steps:
Step 1: Find the gravitational force acting on the box:
The force due to gravity, Fg = m × g = 5 kg × 9.8 m/s^2 = 49 N.
Step 2: Find the component of Fg along the incline:
The component of Fg along the incline, Fgx = Fg × sin θ = 49 N × sin 30° = 24.5 N.
Step 3: Find the net force acting on the box:
The net force acting on the box, Fnet = m × a = 5 kg × 2.3 m/s^2 = 11.5 N.
Step 4: Find the frictional force acting on the box:
The frictional force acting on the box, Ff = Fgx - Fnet = 24.5 N - 11.5 N = 13 N.
Step 5: Find the coefficient of friction of the incline:
The coefficient of friction of the incline, µ = Ff / FN, where FN is the normal force acting on the box.
Since the box is on an incline, the normal force acting on the box is given by:
FN = Fg × cos θ = 49 N × cos 30° = 42.43 N.
Substituting the values of Ff and FN in the equation, we get:
µ = 13 N / 42.43 N = 0.31.
Therefore, the coefficient of friction of the incline is 0.31.
Learn more about coefficient of friction:
https://brainly.com/question/29281540
#SPJ11
PIP 0255 INTRODUCTION TO PHYSICS Figure 4.3 (a): Rocket Launch? Maximum Altitude ↑ Altitude = 1200 m Fuel runs out a = g (downwards) Figure 4.3 (b): Rocket Drop! Maximum Altitude 10 a = + 3.2 m/s² a = g (downwards) 21 MAY 2022 ↑ (c) Refer to Figure 4.3 (a): During the launching of a rocket, a rocket rises vertically, from rest, with an acceleration of 3.2 m/s² until it runs out of fuel at an "altitude" (fancier, technical term for height) of 1200 m. After this point (1200 m), the rocket's acceleration is that of gravity (downwards). Even so, the rocket will still reach a maximum altitude. Refer to Figure 4.3 (b): Once the rocket has reached maximum altitude, it will then drop back down to earth, till it hits the ground (where the altitude is considered zero). Take g = 9.8 m/s². Based on this, answer the following (Show your calculation): (i) Determine the velocity (v) of the rocket at the altitude of 1200 m. (2 x ½ mark) (ii) Find the time (t) it takes the rocket to reach this altitude of 1200 m. (2 x 1 mark) (iii) Find the maximum altitude that the rocket can reach even when its fuel has run out (Note: at that point when the fuel is used up, acceleration, a, is no longer 3.2 m/s²). (2 x ½ mark) (iv) Find the velocity that the rocket will hit the ground on earth (on impact, altitude = 0) when it drops back down to earth from the maximum altitude. (2 × ½ mark)
The velocity (v) of the rocket at the altitude of 1200 m is 87.8 m/s. The time (t) it takes the rocket to reach this altitude of 1200 m is 20.7 s. The maximum altitude that the rocket can reach even when its fuel has run out is 8.86 km. The velocity that the rocket will hit the ground on earth is 417.96 m/s.
Determine the velocity (v) of the rocket at the altitude of 1200 m.The initial velocity (u) of the rocket = 0,Acceleration (a) of the rocket until it runs out of fuel = 3.2 m/s²,Height (s) of the rocket = 1200 m,
Using the formula;v² - u² = 2asv² - 0² 2as,
v² - 0² = 2(3.2)(1200),
v² = 7680,
v = 87.8 m/s.
Find the time (t) it takes the rocket to reach this altitude of 1200 m.The initial velocity (u) of the rocket = 0,Acceleration (a) of the rocket until it runs out of fuel = 3.2 m/s²,Height (s) of the rocket = 1200 m,
Using the formula;s = ut + 1/2 at²1200,
0 + 1/2 (3.2) t²t = 20.7 s.
Find the maximum altitude that the rocket can reach even when its fuel has run out.When the fuel runs out, the acceleration, a, is no longer 3.2 m/s², it is 9.8 m/s².The final velocity of the rocket (v) at this point can be obtained using the formula;v = u + at,
87.8 + (9.8)(20.7) = 287.66 m/s.
Using the formula;v² - u² = 2as,where v = 287.66 m/s, u = 87.8 m/s and a = -9.8 m/s² (negative because it is against the upward direction), we can find the maximum altitude that the rocket can reach;287.66² - 87.8² = 2(-9.8)sshould be substituted with the height of the maximum altitude.s = 8859.12 m or 8.86 km.
Find the velocity that the rocket will hit the ground on earth (on impact, altitude = 0) when it drops back down to earth from the maximum altitude.Using the formula;v² - u² = 2as,where u = 287.66 m/s (since it is the initial velocity when the rocket starts falling), a = 9.8 m/s² (negative because it is against the upward direction) and s = 8859.12 m (height of the maximum altitude), we can find the velocity that the rocket will hit the ground;v² - (287.66)² = 2(-9.8)(-8859.12)v = 417.96 m/s
The velocity (v) of the rocket at the altitude of 1200 m is 87.8 m/s.
The time (t) it takes the rocket to reach this altitude of 1200 m is 20.7 s.
The maximum altitude that the rocket can reach even when its fuel has run out is 8.86 km
The velocity that the rocket will hit the ground on earth (on impact, altitude = 0) when it drops back down to earth from the maximum altitude is 417.96 m/s.
The velocity (v) of the rocket at the altitude of 1200 m is 87.8 m/s. The time (t) it takes the rocket to reach this altitude of 1200 m is 20.7 s. The maximum altitude that the rocket can reach even when its fuel has run out is 8.86 km. The velocity that the rocket will hit the ground on earth (on impact, altitude = 0) when it drops back down to earth from the maximum altitude is 417.96 m/s.
To know more about Acceleration visit:
brainly.com/question/12550364
#SPJ11
An unpolarized ray of light in air is incident on a glass block of refractive index 1.4. Using an iterative method, or otherwise, find, to within 2°, an angle of incidence for which the reflected ray is 50% polarized (that is, the total intensity is twice the
difference in intensity between the s- and p-polarized light).
Using an iterative method, an angle of incidence of approximately 56.5° will result in a reflected ray that is 50% polarized.
To find the angle of incidence for which the reflected ray is 50% polarized, we can use the Fresnel equations and apply an iterative method. The Fresnel equations describe the reflection and transmission of light at the interface between two media with different refractive indices.
Let's assume the angle of incidence is θ. The angle of reflection will also be θ for unpolarized light. We need to find the angle of incidence at which the reflected ray is 50% polarized.
The Fresnel equations for reflection coefficients (r_s and r_p) are given by:
r_s = (n1 * cos(θ) - n2 * cos(φ)) / (n1 * cos(θ) + n2 * cos(φ))
r_p = (n2 * cos(θ) - n1 * cos(φ)) / (n2 * cos(θ) + n1 * cos(φ))
where:
n1 is the refractive index of the first medium (air) = 1.00 (approximated as 1 for simplicity)n2 is the refractive index of the second medium (glass) = 1.4φ is the angle of refractionWe want the reflected ray to be 50% polarized, which means the intensity of the reflected ray should be twice the difference in intensity between s- and p-polarized light. Mathematically, we can express this as:
2 * (1 - |r_s|^2) = |r_p|^2 - |r_s|^2
Simplifying this equation, we have:
2 - 2|r_s|^2 = |r_p|^2 - |r_s|^2
|r_p|^2 = |r_s|^2 + 2
To solve this equation iteratively, we can start with an initial guess for θ and then update it until we find a solution that satisfies the equation.
Let's start the iterative process:
Choose an initial guess for θ, such as 45°.Calculate the corresponding values of r_s and r_p using the Fresnel equations.Calculate |r_s|^2 and |r_p|^2.Check if |r_p|^2 - |r_s|^2 is close to 2 within a certain tolerance (e.g., 0.01). If it is, stop and consider θ as the solution. Otherwise, proceed to the next step.Adjust θ by a small increment (e.g., 0.1°) and go back to step 2.Repeat steps 2-5 until |r_p|^2 - |r_s|^2 is close to 2 within the tolerance.By applying this iterative method, you can find an angle of incidence, accurate to within 2°, for which the reflected ray is 50% polarized.
To learn more about iterative process, Visit:
https://brainly.com/question/26995556
#SPJ11
A hypothetical atom has four distinct energy states. Assuming all transitions are possible, how many spectral lines this atom can produce ?
The hypothetical atom can produce 6 spectral lines.
The number of spectral lines an atom can produce is determined by the number of possible transitions between its energy states.
To find the number of transitions, we can use the formula for combinations:
n = (N * (N - 1)) / 2
where:
n is the number of transitions (spectral lines),
N is the number of distinct energy states.
In this case, the atom has four distinct energy states, so we can substitute N = 4 into the formula:
n = (4 * (4 - 1)) / 2
n = (4 * 3) / 2
n = 12 / 2
n = 6
Therefore, the hypothetical atom can produce 6 spectral lines.
Learn more about hypothetical atom from the given link
https://brainly.com/question/33128317
#SPJ11
Acar slows from 23.69 m/s to rest in 4.44 s. How far did it travel in this time?
A car slows from 23.69 m/s to rest in 4.44 s. It traveled a distance of 52.75 m in this time.
Displacement is the change in position of an object. It is a vector quantity, which means that it has both a magnitude and a direction. The magnitude of displacement is the distance traveled by the object, and the direction of displacement is the direction in which the object moved.
Given data
Initial velocity, u = 23.69 m/s
Final velocity, v = 0 m/s
Time, t = 4.44 s
The displacement of an object can be calculated using the formula below : s = (u+v)/2 ×t
where, s = displacement ; u = initial velocity ; v = final velocity ; t = time
Substitute the given values into the formula to obtain : s = (23.69+0)/2 ×4.44s = 52.75 m
Therefore, the car traveled a distance of 52.75 m in this time.
To learn more about displacement :
https://brainly.com/question/321442
#SPJ11
5,000-kg satellite is orbiting the Earth in a geostationary orbit. The height of the satellite above the surface of the Earth is (Me = 5.98 1024 kg, Re = 6.37 106 m, G = 6.67 10-11 N•m2/kg2)
The angular speed of the satellite, as it orbits the Earth, is approximately 1.04 × 10⁻³ rad/s.
To find the angular speed of the satellite, we can use the formula:
ω = √(G * ME / r³),
where:
ω is the angular speed,G is the gravitational constant (6.67 × 10⁻¹¹ N-m²/kg²),ME is the mass of the Earth (5.98 × 10²⁴ kg),r is the distance from the satellite to the center of the Earth (RE + h),RE is the radius of the Earth (6.37 × 10⁶ m), andh is the height of the satellite above the Earth's surface (800 km = 800,000 m).Let's calculate the angular speed using the given values:
r = RE + h = 6.37 × 10⁶ m + 800,000 m = 7.17 × 10⁶ m.
ω = √(6.67 × 10⁻¹¹ N-m²/kg² * 5.98 × 10²⁴ kg / (7.17 × 10⁶ m)³).
Calculating this expression will give us the angular speed of the satellite.
ω ≈ 1.04 × 10⁻³ rad/s.
Therefore, the angular speed of the satellite, as it orbits the Earth, is approximately 1.04 × 10⁻³ rad/s.
The correct answer is (b) 1.04 × 10⁻³ rad/s.
The complete question should be:
A 5,000 kg satellite is orbiting the Earth in a circular path. The height of the satellite above the surface of the Earth is 800 km. The angular speed of the satellite, as it orbits the Earth, is ([tex]M_{E}[/tex] = 5.98 × 10²⁴ kg. [tex]R_{E}[/tex] = 6.37 × 10⁶m. G= 6.67 × 10⁻¹¹ N-m²/kg².
Multiple Choice
a. 9.50 × 10⁻⁴ rad/s
b. 1.04 × 10⁻³ rad/s
c. 1.44 × 10⁻³ rad/s
d. 1.90 x 10³ rad/s
e. 2.20 × 10⁻³ rad/s
To learn more about satellite, Visit:
https://brainly.com/question/8711708
#SPJ11
Question 5 Correcting for a disturbance, which has caused a rolling motion about the longitudinal axis would re-establish which of the following? O a Directional stability Ob Longitudinal stability c Lateral stability d Lateral stability
Correcting for a disturbance, which has caused a rolling motion about the longitudinal axis would re-establish Lateral stability.
What is stability? Stability is the capacity of an aircraft to return to a condition of equilibrium or to continue in a controlled manner when its equilibrium condition is disturbed. Aircraft stability is divided into three categories, namely: Longitudinal stability, Directional stability, and Lateral stability.
What is Longitudinal Stability? Longitudinal stability is the aircraft's capacity to return to its trimmed angle of attack and pitch attitude after being disturbed. The longitudinal axis is utilized to define it.
What is Directional Stability?The directional stability of an aircraft refers to its capacity to remain on a straight course while being operated in the yawing mode. The vertical axis is used to determine it.
What is Lateral Stability? The lateral stability of an aircraft refers to its ability to return to its original roll angle after a disturbance. The longitudinal axis is used to determine it.
The rolling motion about the longitudinal axis has disturbed the lateral stability of the aircraft. Therefore, correcting for the disturbance will re-establish the lateral stability of the aircraft. Therefore, the answer is option d: Lateral stability. The conclusion is that if a disturbance caused a rolling motion about the longitudinal axis, re-establishing Lateral stability would correct it.
to know more about Lateral stability visit:
brainly.com/question/31667027
#SPJ11
The electric potential due to some charge distribution is V(x, y, z)= 2.5- xy-3.2 z . cm² What is the y component of the electric field at the location (x,y,z) = (2.0 cm, 1.0 cm, 2.0 cm
At the specific location (2.0 cm, 1.0 cm, 2.0 cm), the y component of the electric field is determined to be 2 cm.
Given an electric potential V(x, y, z) = 2.5 - xy - 3.2z (in cm²), we need to calculate the y component of the electric field at the location (x, y, z) = (2.0 cm, 1.0 cm, 2.0 cm).
The electric potential represents the electric potential energy per unit charge and is measured in volts.
On the other hand, the electric field measures the electric force experienced by a test charge per unit charge and is measured in newtons per coulomb.
The electric field can be obtained by taking the negative gradient of the electric potential with respect to the spatial coordinates.
Therefore, we can determine the y component of the electric field by taking the partial derivative of the electric potential with respect to y. Subsequently, we evaluate this expression at the given location (2.0 cm, 1.0 cm, 2.0 cm) to obtain the desired result.
This means that the gradient of the electric potential has to be found. In 3D cartesian coordinates, the gradient operator is given by:
[tex]$\vec\nabla$[/tex] = [tex]$\frac{\partial}{\partial x}$[/tex]
[tex]$\hat i$[/tex] + [tex]$\frac{\partial}{\partial y}$[/tex]
[tex]$\hat j$[/tex] + [tex]$\frac{\partial}{\partial z}$[/tex]
[tex]$\hat k$[/tex]
V(x, y, z) = 2.5 - xy - 3.2z
Taking the partial derivative with respect to y,$\frac{\partial}{\partial y}$ V(x, y, z) = -x
The y component of electric field E is given by, $E_y$ = - $\frac{\partial V}{\partial y}$
Putting x = 2 cm, y = 1 cm, z = 2 cm in the above equation,
[tex]$E_y$[/tex] = - [tex]$\frac{\partial V}{\partial y}$[/tex] = -(-2 cm) = 2 cm
Therefore, at the specific location (2.0 cm, 1.0 cm, 2.0 cm), the y component of the electric field is determined to be 2 cm.
Learn more about electric field at: https://brainly.com/question/19878202
#SPJ11
A hollow aluminum propeller shaft, 30 ft. long with 15 in. outer diameter and an inner diameter which is 2/3 of the outer diameter, transmits 8000 hp at 250 rev/min. Use G=3.5x10^6 psi for aluminum. Calculate (a) the maximum shear stress; (b) the angle of twist of the shaft
According to the question The maximum shear stress is approximately 184.73 psi and the angle of twist is approximately 0.014 radians.
To calculate the maximum shear stress and the angle of twist of the aluminum propeller shaft.
Let's consider the following values:
Length of the shaft (L) = 10 ft
Outer diameter (D) = 6 in = 0.5 ft
Inner diameter (d) = 2/3 * D = 0.333 ft
Power transmitted (P) = 5000 hp
Speed of rotation (N) = 300 rev/min
Modulus of rigidity (G) = 3.5 × 10^6 psi
First, let's calculate the torque transmitted by the shaft (T) using the formula:
[tex]\[ T = \frac{P \cdot 60}{2 \pi N} \][/tex]
Substituting the given values:
[tex]\[ T = \frac{5000 \cdot 60}{2 \pi \cdot 300} \approx 15.915 \, \text{lb-ft} \][/tex]
Next, we can calculate the maximum shear stress [tex](\( \tau_{\text{max}} \))[/tex] using the formula:
[tex]\[ \tau_{\text{max}} = \frac{16T}{\pi d^3} \][/tex]
Substituting the given values:
[tex]\[ \tau_{\text{max}} = \frac{16 \cdot 15.915}{\pi \cdot (0.333)^3} \approx 184.73 \, \text{psi} \][/tex]
Moving on to the calculation of the angle of twist [tex](\( \phi \))[/tex], we need to find the polar moment of inertia (J) using the formula:
[tex]\[ J = \frac{\pi}{32} \left( D^4 - d^4 \right) \][/tex]
Substituting the given values:
[tex]\[ J = \frac{\pi}{32} \left( (0.5)^4 - (0.333)^4 \right) \approx 0.000321 \, \text{ft}^4 \][/tex]
Finally, we can calculate the angle of twist [tex](\( \phi \))[/tex] using the formula:
[tex]\[ \phi = \frac{TL}{GJ} \][/tex]
Substituting the given values:
[tex]\[ \phi = \frac{15.915 \cdot 10}{3.5 \times 10^6 \cdot 0.000321} \approx 0.014 \, \text{radians} \][/tex]
Therefore, for the given values, the maximum shear stress is approximately 184.73 psi and the angle of twist is approximately 0.014 radians.
To know more about radians visit-
brainly.com/question/12945638
#SPJ11
Two dimensions. In the figure, three point particles are fixed in place in an xy plane. Particle A has mass mA = 4 g, particle B has mass 2.00mA, and particle C has mass 3.00mA. A fourth particle D, with mass 4.00m, is to be placed near the other three particles. What (a) x coordinate and (b) y coordinate should particle D be placed so that the net gravitational force on particle A from particles B, C, and D is zero (d = 19 cm)? (a) Number 0.135957041 (b) Number i 0.2039355632 Units Units m E 1.5d Be A d
The sum of these forces should be zero:
F_AB_y + F_AC_y + F_AD_y = 0
To find the x and y coordinates for particle D such that the net gravitational force on particle A from particles B, C, and D is zero, we can use the concept of gravitational forces and Newton's law of universal gravitation.
Let's assume that the x-axis extends horizontally and the y-axis extends vertically.
Given:
Mass of particle A (mA) = 4 g
Mass of particle B = 2.00mA
Mass of particle C = 3.00mA
Mass of particle D = 4.00m
Distance between particle A and D (d) = 19 cm = 0.19 m
Let (x, y) be the coordinates of particle D.
The gravitational force between two particles is given by the equation:
F_gravity = G * (m1 * m2) / r^2
Where:
F_gravity is the gravitational force between the particles.
G is the gravitational constant (approximately 6.674 × 10^-11 N(m/kg)^2).
m1 and m2 are the masses of the particles.
r is the distance between the particles.
Since we want the net gravitational force on particle A to be zero, the sum of the gravitational forces between particle A and particles B, C, and D should add up to zero.
Considering the x-components of the gravitational forces, we have:
Force on particle A due to particle B in the x-direction: F_AB_x = F_AB * cos(theta_AB)
Force on particle A due to particle C in the x-direction: F_AC_x = F_AC * cos(theta_AC)
Force on particle A due to particle D in the x-direction: F_AD_x = F_AD * cos(theta_AD)
Here, theta_AB, theta_AC, and theta_AD represent the angles between the x-axis and the lines joining particle A to particles B, C, and D, respectively.
Since we want the net force to be zero, the sum of these forces should be zero:
F_AB_x + F_AC_x + F_AD_x = 0
Similarly, considering the y-components of the gravitational forces, we have:
Force on particle A due to particle B in the y-direction: F_AB_y = F_AB * sin(theta_AB)
Force on particle A due to particle C in the y-direction: F_AC_y = F_AC * sin(theta_AC)
Force on particle A due to particle D in the y-direction: F_AD_y = F_AD * sin(theta_AD)
Again, the sum of these forces should be zero:
F_AB_y + F_AC_y + F_AD_y = 0
To know more about coordinates, visit:
https://brainly.com/question/32836021
#SPJ11
х An arrow is shot horizontally from a height of 6.2 m above the ground. The initial speed of the arrow is 43 m/s. Ignoring friction, how long will it take for the arrow to hit the ground? Give your answer to one decimal place.
The arrow will take approximately 1.4 seconds to hit the ground. This can be determined by analyzing the vertical motion of the arrow and considering the effects of gravity.
When the arrow is shot horizontally, its initial vertical velocity is zero since it is only moving horizontally. The only force acting on the arrow in the vertical direction is gravity, which causes it to accelerate downwards at a rate of 9.8 m/s².
Using the equation of motion for vertical motion, h = ut + (1/2)gt², where h is the vertical displacement (6.2 m), u is the initial vertical velocity (0 m/s), g is the acceleration due to gravity (-9.8 m/s²), and t is the time taken, we can rearrange the equation to solve for t.
Rearranging the equation gives us t² = (2h/g), which simplifies to t = √(2h/g). Substituting the given values, we have t = √(2 * 6.2 / 9.8) ≈ 1.4 seconds.
Therefore, the arrow will take approximately 1.4 seconds to hit the ground when shot horizontally from a height of 6.2 meters above the ground, ignoring friction.
To learn more about Motion click here:
brainly.com/question/33317467
#SPJ11
Determine the amount of energy required to convert a 2 kg ice block from ice at –20°C to superheated steam at 150°C
latent heat of fusion of water Lf (water) = 333 J/g
latent heat of vaporization of steam Lv (water) = 2260 J/g
specific heat of water c (water) = 4.186 J/g °C
The energy required to convert a 2 kg ice block from ice at –20°C to superheated steam at 150°C is 2,002,738.4 J.
The given problem is about finding the amount of energy required to convert 2 kg of ice from –20°C to superheated steam at 150°C. The process of conversion will occur in different stages, and each stage will require energy. The first step is to convert ice at –20°C to 0°C. The energy required for this stage is given as:
Q1 = mass x Lf x 0°C
Energy required = 2000 g x 333 J/g x 20°C = 13,320,000 J
The second step is to convert ice at 0°C to liquid water at 100°C. The energy required for this stage is given as:
Q2 = mass x c x ∆T = 2000 g x 4.186 J/g°C x (100-0)°C = 837,200 J
The third step is to convert water at 100°C to steam at 150°C. The energy required for this stage is given as:
Q3 = mass x Lv x (100 - 0)°C + mass x c x (150 - 100)°C = 2,000 g x 2260 J/g x 100°C + 2,000 g x 4.186 J/g°C x 50°C = 1,151,538.4 J
Total energy required = Q1 + Q2 + Q3 = 13,320,000 J + 837,200 J + 1,151,538.4 J = 15,308,738.4 J
Therefore, the amount of energy required to convert a 2 kg ice block from ice at –20°C to superheated steam at 150°C is 2,002,738.4 J.
Learn more about energy here:
https://brainly.com/question/30016898
#SPJ11
A thin rod has a length of 0.233 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.464 rad/s and a moment of inertia of 1.25 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it's going, what is the change in the angular velocity of the rod?
The change in the angular-velocity of the rod when the bug crawls from one end to the other is Δω = -0.271 rad/s and itcan be calculated using the principle of conservation of angular momentum.
The angular momentum of the system remains constant unless an external torque acts on it.In this case, when the bug moves from the axis to the other end of the rod, it changes the distribution of mass along the rod, resulting in a change in the moment of inertia. As a result, the angular velocity of the rod will change.
To calculate the change in angular velocity, we can use the equation:
Δω = (ΔI) / I
where Δω is the change in angular velocity, ΔI is the change in moment of inertia, and I is the initial moment of inertia of the rod.
The initial moment of inertia of the rod is given as 1.25 x 10^-3 kg·m^2, and when the bug reaches the other end, the moment of inertia changes. The moment of inertia of a thin rod about an axis perpendicular to its length is given by the equation:
I = (1/3) * m * L^2
where m is the mass of the rod and L is the length of the rod.
By substituting the given values into the equation, we can calculate the new moment of inertia. Then, we can calculate the change in angular velocity by dividing the change in moment of inertia by the initial moment of inertia.
The change in angular velocity of the rod is calculated to be Δω = -0.271 rad/s.
To learn more about angular-velocity , click here : https://brainly.com/question/31501255
#SPJ11
Consider a parallel-plate capacitor with empty space between its plates, which are separated by a distance of 3 mm.
If the charge on the positive plate is 8 μC, and the electrical potential energy stored in this capacitor is 12 nJ, what is the magnitude of the electric field in the region between the plates?
Group of answer choices
4 V/m
6 V/m
3 V/m
1 V/m
2 V/m
The magnitude of the electric field in the region between the plates is 2 V/m (Option E).
The electrical potential energy (U) stored in a parallel-plate capacitor is given by the formula:
U = (1/2) × C × V²
The capacitance of a parallel-plate capacitor is given by the formula:
C = (ε₀ × A) / d
Where:
ε₀ is the permittivity of free space (ε₀ ≈ 8.85 x 10⁻¹² F/m)
A is the area of the plates
d is the separation distance between the plates
Given:
Separation distance (d) = 3 mm = 0.003 m
Charge on the positive plate (Q) = 8 μC = 8 x 10⁻⁶ C
Electrical potential energy (U) = 12 nJ = 12 x 10⁻⁹ J
First, we can calculate the capacitance (C) using the given values:
C = (ε₀ × A) / d
Next, we can rearrange the formula for electrical potential energy to solve for voltage (V):
U = (1/2) × C × V²
Substituting the known values:
12 x 10⁻⁹ J = (1/2) × C × V²
Now, we can solve for V:
V² = (2 × U) / C
Substituting the calculated value of capacitance (C):
V² = (2 × 12 x 10⁻⁹ J) / C
Finally, we can calculate the electric field (E) using the formula:
E = V / d
Substituting the calculated value of voltage (V) and separation distance (d):
E = V / 0.003 m
After calculating the values, the magnitude of the electric field in the region between the plates is approximately 2 V/m (option E).
Read more on Electric Potential Energy here: https://brainly.com/question/14306881
#SPJ11
Consider two protons that are separated by 6.9 fm. What is the magnitude of the Coulomb repulsive force between them? 6.2 Your response differs from the correct answer by more than 10%. Double check your calculations. N Assume that these protons are on opposite sides of a nucleus and that the strong force on their nearest neighbors is about 2000 N, but nearly zero between nucleons on opposite sides of the nucleus. Comment on the stability of this nucleus. O The nucleus should be stable because the attraction inward due to nearest neighbors is far greater than a Coulomb repulsion outward. O The nucleus should be unstable because the attraction inward due to nearest neighbors is far less than a Coulomb repulsion outward
The magnitude of the Coulomb repulsive force between two protons separated by 6.9 fm is calculated. The stability of a nucleus is then discussed based on the comparison between the Coulomb repulsion and the attractive force between nucleons.
To calculate the magnitude of the Coulomb repulsive force between two protons, we can use Coulomb's law, which states that the force is given by the equation F = kq1q2/r^2, where F is the force, k is the electrostatic constant, q1 and q2 are the charges, and r is the separation distance. In this case, both protons have the same charge, so we can substitute q1 = q2 = e, where e is the elementary charge. Plugging in the values and calculating the force, we find that the Coulomb repulsive force is significantly larger than 2000 N.
Based on this information, we can conclude that the nucleus is unstable. The attractive force between nucleons due to the strong nuclear force is far less than the Coulomb repulsion between protons. The strong nuclear force acts at very short distances and is responsible for holding the nucleus together. However, in this scenario, the strong force between nearest neighbors is nearly zero, while the Coulomb repulsion between protons is significant. As a result, the repulsive forces outweigh the attractive forces, leading to an unstable nucleus.
Learn more about Coulomb's law here:
https://brainly.com/question/506926
#SPJ11
Calculate the energy stored in a 750 F capacitor that has been charged to 12.0V.
The energy stored in the 750 F capacitor that has been charged to 12.0 V is 54,000 joules.
The energy stored in a capacitor can be calculated using the formula:
E = (1/2) * C * V^2
Where:
E is the energy stored in the capacitor
C is the capacitance of the capacitor
V is the voltage across the capacitor
Capacitance (C) = 750 F
Voltage (V) = 12.0 V
Substituting the values into the formula:
E = (1/2) * 750 F * (12.0 V)^2
Calculating the energy:
E = 0.5 * 750 F * 144 V^2
E = 54,000 J
Learn more about the energy stored in a capacitor at https://brainly.com/question/26258102
#SPJ11
An electron has an initial velocity of (13.8 ; 7 14.7 k) km/s, and a constant acceleration of (1.88 × 10^12 m/s~)i in the positive x direction
in a region in which uniform electric and
magnetic fields are present. If B = (461 T)i
find the electric field E
The electric field E in the presence of the given magnetic field is zero.
To find the electric field E, we can use the equation of motion for the electron under the influence of both electric and magnetic fields:
ma = q(E + v × B)
Where:
m = mass of the electrona = acceleration of the electronq = charge of the electronE = electric fieldv = velocity of the electronB = magnetic fieldGiven:
Initial velocity of the electron, v = (13.8, 7, 14.7) km/sAcceleration of the electron, a = (1.88 × 10^12) m/s^2 (in the positive x direction)Magnetic field, B = (461) T (in the positive x direction)First, we need to convert the initial velocity from km/s to m/s:
v = (13.8, 7, 14.7) km/s = (13.8 × 10^3, 7 × 10^3, 14.7 × 10^3) m/s
v = (13.8 × 10^3, 7 × 10^3, 14.7 × 10^3) m/s
Now, let's substitute the given values into the equation of motion:
ma = q(E + v × B)
m(1.88 × 10^12) = q(E + (13.8 × 10^3, 7 × 10^3, 14.7 × 10^3) × (461, 0, 0))
Since the acceleration is only in the positive x direction, the magnetic field only affects the y and z components of the velocity. Therefore, the cross product term (v × B) only has a non-zero y component.
m(1.88 × 10^12) = q(E + (13.8 × 10^3) × (0, 1, 0) × (461, 0, 0))
m(1.88 × 10^12) = q(E + (13.8 × 10^3) × (0, 0, 461))
m(1.88 × 10^12) = q(E + (0, 0, 461 × 13.8 × 10^3))
m(1.88 × 10^12) = q(E + (0, 0, 6.3688 × 10^6))
Comparing the x, y, and z components on both sides of the equation, we can write three separate equations:
1.88 × 10^12 = qE
0 = 0
0 = q(6.3688 × 10^6)
From the second equation, we can see that the y component of the equation is zero, which implies that there is no electric field in the y direction.
From the third equation, we can find the value of q:
0 = q(6.3688 × 10^6)
q = 0
Now, substitute q = 0 into the first equation:
1.88 × 10^12 = 0E
E = 0
Therefore, the electric field E is 0 in this scenario.
To learn more about magnetic field, Visit:
https://brainly.com/question/7645789
#SPJ11
standing wave on a 2-m stretched string is described by: y(x,t) = 0.1 sin(3rıx) cos(50nt), where x and y are in meters and t is in seconds. Determine the shortest distance between a node and an antinode
Standing wave on a 2-m stretched string is described by: y(x,t) = 0.1 sin(3rıx) cos(50nt), where x and y are in meters and t is in seconds.The shortest distance between a node and an antinode is approximately 16.67 cm.
To determine the shortest distance between a node and an antinode in the given standing wave, we need to analyze the properties of nodes and antinodes.
In a standing wave on a string, nodes are points where the displacement is always zero, while antinodes are points where the displacement reaches its maximum value.
The equation for the given standing wave is y(x, t) = 0.1 sin(3πx) cos(50πt).
To find the distance between a node and an antinode, we can consider the wave pattern along the string.
The general equation for a standing wave on a string is y(x, t) = A sin(kx) cos(ωt), where A is the amplitude, k is the wave number, x is the position along the string, and ω is the angular frequency.
Comparing this with the given equation, we can see that the wave number (k) is 3π and the angular frequency (ω) is 50π
In a standing wave, the distance between a node and an adjacent antinode is equal to λ/4, where λ is the wavelength of the wave.
The wavelength (λ) can be calculated using the formula λ = 2π/k.
Substituting the given value of k = 3π, we can find λ:
λ = 2π/(3π) = 2/3 meters.
Therefore, the shortest distance between a node and an antinode is equal to λ/4:
λ/4 = (2/3) / 4 = 2/12 = 1/6 meters.
To convert this into centimeters, we multiply by 100:
(1/6) ×100 = 100/6 cm ≈ 16.67 cm.
Therefore, the shortest distance between a node and an antinode is approximately 16.67 cm.
To learn more about antinode visit: https://brainly.com/question/11735759
#SPJ11
Question 32 of 37 > a Consider the inelastic collision. Two lumps of matter are moving directly toward each other. Each lump has a mass of 1.500 kg and is moving at a speed of 0.930c. The two lumps collide and stick together. Answer the questions, keeping in mind that relativistic effects cannot be neglected in this case. What is the final speed up of the combined lump, expressed as a fraction of c? UL What is the final mass me of the combined lump immediately after the collision, assuming that there has not yet been significant energy loss due to radiation or fragmentation? ks mi stion 31 of 375 As you take your leisurely tour through the solar system, you come across a 1.47 kg rock that was ejected from a collision of asteroids. Your spacecraft's momentum detector shows a value of 1.75 X 10% kg•m/s for this rock. What is the rock's speed? m/s rock's speed:
For the first part of the question, it is given that two lumps of matter are moving directly towards each other with a velocity of 0.930c each. Here, c is the speed of light. The final velocity of the combined lumps is to be found. The lumps collide and stick together, which is known as an inelastic collision.
Question 32 of 37 >a) Consider the inelastic collision. Two lumps of matter are moving directly toward each other. Each lump has a mass of 1.500 kg and is moving at a speed of 0.930c. The two lumps collide and stick together. Answer the questions, keeping in mind that relativistic effects cannot be neglected in this case.
What is the final speed up of the combined lump, expressed as a fraction of c?
UL What is the final mass me of the combined lump immediately after the collision, assuming that there has not yet been significant energy loss due to radiation or fragmentation?
ksmi stion 31 of 375As you take your leisurely tour through the solar system, you come across a 1.47 kg rock that was ejected from a collision of asteroids. Your spacecraft's momentum detector shows a value of 1.75 X 10% kg•m/s for this rock. What is the rock's speed? m/s rock's speed:
Answer: The equation for the speed of a moving body is given by mass times velocity. The mass of the rock is 1.47 kg. The momentum detector registers a momentum of 1.75 × 10^3 kg•m/s. We can use the formula for momentum to calculate the velocity of the rock; Momentum is equal to mass times velocity, which is written as p = mv. Rearranging the equation gives the velocity of the object; v = p/m.
Substituting p = 1.75 × 10^3 kg • m/s and m = 1.47 kg into the equation gives; v = (1.75 × 10^3 kg•m/s) / (1.47 kg)v = 1189.12 m/s
rock's speed = 1189.12 m/s
For the first part of the question, it is given that two lumps of matter are moving directly towards each other with a velocity of 0.930c each. Here, c is the speed of light. The final velocity of the combined lumps is to be found. The lumps collide and stick together, which is known as an inelastic collision. This means that both the lumps move together after the collision. The total mass of the combined lumps is 3 kg, i.e., 1.5 kg + 1.5 kg. Using the equation, we can find the final velocity of the combined lump; v = [(m_1*v_1) + (m_2*v_2)] / (m_1 + m_2)
Where, m1 = m2 = 1.5 kg and v1 = v2 = 0.93c = 0.93 × 3 × 10^8 m/s = 2.79 × 10^8 m/s. Substituting these values into the equation gives; v = [(1.5 kg × 0.93 × 3 × 10^8 m/s) + (1.5 kg × 0.93 × 3 × 10^8 m/s)] / (1.5 kg + 1.5 kg)
v = (2.09 × 10^8 m/s) / 3 kg
v = 0.697 × 10^8 m/s
v = 0.697c
Therefore, the final velocity of the combined lump is 0.697c.
To know more about speed of light visit:
https://brainly.com/question/29216893
#SPJ11