Answer:
d. the conjugate base of the weak acid
Explanation:
The strong base (BOH) is completely dissociated in water:
BOH → B⁺ + OH⁻
The resulting conjugate acid (OH⁻) is a weak acid, so it remains in solution as OH⁻ ions.
By other hand, the weak acid (HA) is only slightly dissociated in water:
HA ⇄ H⁺ + A⁻
The resulting conjugate base (A⁻) is a weak base. Thus, it reacts with H⁺ ions from water to form HA, increasing the concentration of OH⁻ ions in the solution.
Therefore, the resulting solution will have a pH > 7 (basic).
or each conjugate acid-base pair, identify the first species as an acid or base and the second species as the conjugate acid or base of the first. A) CH3COOH and B) CH3COO- A. is _____ B. is _________ C) CH3O- and D) CH3OH C. is _____ D. is _________
Answer:
A. an acid
B. a base
C. conjugate base
D. conjugate acid
Explanation:
This question appears incomplete because it is starting with a "or".
However, the available question can still be answered.
An acid (according to "Bronsted-Lowry") is a chemical compound/specie that can donate hydrogen ion(s) in a reaction while a base is the compound/specie that can receive hydrogen ion(s). From this definition, it can be deduced that CH₃COOH (ethanoic acid) is an acid (weak acid) because it can donate an hydrogen ion while CH₃COO⁻ is a base because it can receive a hydrogen ion.
Also, a conjugate acid is the compound formed when an acid has donated a hydrogen ion to a base (i.e it is a base with hydrogen ion attached to it) while a conjugate base is the acid that has lost it's hydrogen ion. Thus, the conjugate acid in the question is CH₃OH while the conjugate base in the question is CH₃O⁻.
A. an acid
B. a base
C. conjugate base
D. conjugate acid
It takes to break a carbon-hydrogen single bond. Calculate the maximum wavelength of light for which a carbon-hydrogen single bond could be broken by
The question is incomplete, the complete question is;
It takes 412. KJ/mol to break a carbon-hydrogen single bond. Calculate the maximum wavelength of light for which a carbon-hydrogen single bond could be broken by absorbing a single photon. Round your answer to significant digits.
Answer:
289 nm
Explanation:
The energy of the photon = 412 × 10^3/6.02 × 10^23 = 6.84 × 10^-19 J
From;
E = hc/λ
h= Plank's constant
c= speed of light
λ = wavelength
λ = hc/E
λ = 6.6 × 10^-34 × 3 × 10^8/6.84 × 10^-19
λ = 2.89 × 10^-7 m
λ = 289 nm
You are stowing items and come across an aerosol bottle of hairspray. What should you do? Please choose all that apply
Answer:stow the hairspray
Explanation:
For each pair of elements, indicate which one you would expect to have the greater electron affinity (E.A.) (i.e. mathematically this means the more negative value of EA):
The question is incomplete, the complete question is shown in the image attached to this answer
Answer:
1) K
2) F
3) Si
4) Br
Explanation:
If an element has a more negative value of electron affinity, then it has a greater ability to attract an electron.
In each of the following pairs of elements, one element has a more negative electron affinity for certain reasons.
Between K and Ca, the incoming electron in K goes into a 4s orbital which is lower in energy and more stable. For Ca, the electron goes into a 3d orbital which is more unstable.
Between Ne and F, Ne already has a filled outermost shell hence the incoming electron goes into the higher energy 3s level. In F, the electron goes into the 2p level and completes it. Hence F has a more negative electron affinity.
Let us recall that half filled and completely filled orbitals are exceptionally stable. Hence, the electron affinity of Si is more negative than that of P because in P, the electron goes into an exceptionally stable half filled orbital.
Recall that the more the value of Zeff, the more negative the electron affinity hence electron affinity increases across a period; hence, Br has a more negative value of electron affinity than Se.
Identify the options below that are results of adding a catalyst to a chemical system.
The reaction rates are increased.
The reaction quotient is unaffected.
The reaction quotient decreases.
The equilibrium constant is unaffected.
Answer:
The correct options are a, b and d
Explanation:
A catalyst is a substance that increases the rate of a chemical reaction by reducing the activation energy. Le Catelier's principle explains how a substance or an "action" can affect a reaction in equilibrium.
The principle states that when a change is made to the conditions of a reacting system at equilibrium, the position of the equilibrium moves to counteract the change made. These changes are change in temperature, pressure, volume and/or concentration. These changes will either cause the equilibrium to shift forward or backward.
However, the presence of a catalyst DOES NOT affect a chemical equilibrium/equilibrium constant nor does it affect the reaction quotient because the same amount of reactants and products are available just as in uncatalyzed reaction except that the reaction proceeds faster (which does not affect equilibrium).
The rate of reaction is given as the time required by the reactant to convert into the product. The addition of catalyst increases the rate of reaction, while the reaction quotient and the equilibrium remain unaffected.
What is a catalyst?A catalyst is a chemical or compound that adds to the reaction and lowers the activation energy by providing an alternative path to the reaction.
The catalyst takes part in the reaction but did not consume in the chemical reaction.
The equilibrium and the reaction quotient are dependent on the conversion of the reactant to the product. The catalyst is not used in the reaction and thus did not affect the reaction quotient or the equilibrium.
Hence, options A, B, and D are correct for the use of catalysts in the chemical reaction.
Learn more about catalysts, here:
https://brainly.com/question/17052831
Please please help me
Part A: Calculate the mass of butane needed to produce 75.6g of carbon dioxide.
Part B: Calculate the mass of water produced when 5.48g of butane reacts with excess oxygen.
Answer:
Multiply the number of moles of butane by its molar mass, 58.12g/mol, to produce the mass of butane. Mass of butane = 18.8g.
Explanation:
Part B:
The mass of water produced when 4.86 g of butane(C4H10) react with excess oxygen is calculated as below
calculate the moles of C4H10 used = mass/molar mass
moles = 4.86g/58 g/mol =0.0838 moles
write a balanced equation for reaction
2 C4H10 + 13 O2 = 8 CO2 + 10 H2O
by use of mole ratio between C4H10 to H2O which is 2:10 the moles of
H20= 0.0838 x10/2 = 0.419 moles of H2O
mass = moles x molar mass
=0.419 molx 18 g/mol = 7.542 grams of water is formed
The tools shown in the diagram are used for gardening Each tool is made up
of two levers that are attached to each other. The handles are the input arms,
and the cutting blades are the output armo
Hand shears
Lopper
Which tool has a greater mechanical advantage, and why?
A. The lopper, because the input work is the same as the output work
B. The hand shears, because their shorter handles transfer force
more quickly to the cutting blade
C. The hand shears, because you can apply less total force to the
handles with one hand
D. The lopper, because its longer handles can produce more output
force with less input force
Answer:
D
Explanation:
The longer handles distribute the force across a longer distance.
What is the molarity of a solution if 325ml of the solution contains 46.8 grams of NaHCO3?
Answer:
1.714 M
Explanation:
We'll begin by calculating the number of mole in 46.8 g of NaHCO₃. This can be obtained as follow:
Mass of NaHCO₃ = 46.8 g
Molar mass of NaHCO₃ = 23 + 1 + 12 + (3×16)
= 23 + 1 + 12 + 48
= 84 g/mol
Mole of NaHCO₃ =?
Mole = mass / molar mass
Mole of NaHCO₃ = 46.8 / 84
Mole of NaHCO₃ = 0.557 mole
Next, we shall convert 325 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
325 mL = 325 mL × 1 L / 1000 mL
325 mL = 0.325 L
Thus, 325 mL is equivalent to 0.325 L.
Finally, we shall determine the molarity of the solution. This can be obtained as shown below:
Mole of NaHCO₃ = 0.557 mole
Volume = 0.325 L
Molarity =?
Molarity = mole / Volume
Molarity = 0.557 / 0.325
Molarity = 1.714 M
Therefore the molarity of the solution is 1.714 M
Name two natural sources of esters.
Answer:
"Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries."
Explanation:
How many protons are in Oxygen-18 and how many neutrons are in Copper-65? Please include steps for solving both!
Answer: There are 8 protons in oxygen-18 and 36 neutrons in copper-65.
Explanation:
An atom contains three sub-atomic particles, that is, protons, neutrons and electrons.
The atomic number is the total number of protons present in an atom. For oxygen-18, the atomic mass is 18.
Atomic mass is the sum of total number of protons and electrons present in an atom. As the atomic number of an oxygen atom is 8 so the number of protons present in oxygen-18 is 8.
The atomic mass of copper is 65 and for a copper atom, the atomic number is 29. Hence, the number of neutrons for copper-65 is as follows.
Atomic mass = no. of protons + no. of neutrons
65 = 29 + no. of neutrons
no. of neutrons = 65 - 29 = 36
Thus, we can conclude that there are 8 protons in oxygen-18 and 36 neutrons in copper-65.
Me please answer as follows
Answer:
no reaction occurs .that is no product
The first law of thermodynamics defines chemical energy. defines entropy. is a statement of conservation of energy. provides a criterion for the spontaneity of a reaction.
Answer: The first law of thermodynamics is a statement of conservation of energy.
Explanation:
According to the first law of thermodynamics, heat provided to a system is actually the sum of internal energy and work done by the system or on the system.
Mathematically, [tex]\Delta Q = \Delta U + \Delta W[/tex]
The first law of thermodynamics also means that energy can neither be created nor it can be destroyed. Hence, energy is conserved.
Thus, we can conclude that the first law of thermodynamics is a statement of conservation of energy.
How many moles of
H
C
l
are in
44.1
mL
of a
1.26
M
H
C
l
solution?
Answer: There are 0.0556 moles present in 44.1 mL of a 1.26 M HCl solution.
Explanation:
Given: Volume = 44.1 mL (1 mL = 0.001 L) = 0.0441 L
Molarity = 1.26 M
Molarity is the number of moles of a substance present in liter of a solution.
Therefore, moles of HCl are calculated as follows.
[tex]Moles = \frac{moles}{Volume (in L)}\\1.26 M = \frac{moles}{0.0441 L}\\moles = 0.0556 mol[/tex]
Thus, we can conclude that there are 0.0556 moles present in 44.1 mL of a 1.26 M HCl solution.
A sample of oxygen gas is compressed from 30.6 L to 1.8 L at constant temperature pressure of 1.8 atm. Calculate the amount of energy in joules when the system releases 1.5 KJ of heat?
Answer:
the change in the internal energy of the system is 3,752.67 J
Explanation:
Given;
initial volume of the gas, V₁ = 30.6 L
final volume of the gas, V₂ = 1.8 L
constant pressure of the gas, P = 1.8 atm
Energy released by the system, Q = 1.5 kJ = 1,500 J
Apply pressure-volume work equation, to determine the work done on the gas;
w = -PΔV
w = -P(V₂ - V₁)
w = - 1.8 atm(1.8 L - 30.6 L)
w = 51.84 L.atm
w = 51.84 L.atm x 101.325 J/L.atm
w = 5,252.67 J
The change in the internal energy of the system is calculated as;
ΔU = Q + w
Since the heat is given out, Q = - 1,500 J
ΔU = -1,500 J + 5,252.67 J
ΔU = 3,752.67 J
Therefore, the change in the internal energy of the system is 3,752.67 J
Senario: 2 years ago, a fruit was smuggled into California on a plane from an exotic, far away land. The homeowner saw that the fruit had maggots and tossed it into the backyard, hoping the seed would grow. The larvae hatched out and moved throughout the area. This fictitious insect will destroy fruit and has the possibility of spreading disease killing the trees. The insect consumes plants in the Prunus species of stone fruits? Look up the plant genus Prunus.
Discussion: The insect has spread over a large area of Southern California, discovered at UC Riverside. What steps would you do to control or eradicate the destructive exotic insect?
PLZ HELP THX WITH COLLEGE LEVEL EXPERICENCE
Answer:
The best existing methods of control—artemisinin-based drug treatment and insect control with chemical sprays and treated bednets—can reduce the burden of disease substantially, and can even eliminate the disease in some regions,
hope this will help you more
5. The Rf of ibuprofen was found to be 0.32 when t-butyl methyl ether was used as the development solvent. What effect would there be on the Rf of ibuprofen if acetone had been used to develop the TLC plate?
Answer:
The Rf value of ibuprofen increases
Explanation:
TLC involves the elution of a solute using a mobile phase(solvent). The stationary phase is made of an adsorbent such as silica.
The extent of interaction between the solute and the mobile phase affects the Rf value. The greater the interaction between the solute and the solvent, the greater the Rf value.
On the other hand, the polarity of the solvent and the solute also affects the Rf value. If the solvent is changed from t-butyl methyl ether to acetone, the Rf value for ibuprofen increases because ibuprofen is polar and acetone is also polar hence there is greater interaction between the solvent and solute.
Plz help me ASAP in my final project I am ready to pay 20$
If mercury barometer is replaced by water barometer, height of water column
i. will be less than that of Hg Column
ii. will be greater than that of Hg column iii. will be equal to that of Hg column
iv. will be none of these
Answer:
answer is first one 1 will be less then that of hg coloumn
The molar mass of a compound can be determined by the freezing point depression method. The solution must be relatively dilute and you must know the molal freezing point depression constant of the solvent, Kf. Which statement regarding Kf is true?
A. Kf should be small so that the solvent will not sublimate.
B. Kf will change depending on what solute is dissolved in the solvent.
C. Kf should be negative so the freezing point of the solution will decrease.
D. Kf should be large so the temperature change will be large enough to measure.
Answer:
K should be large so the temperature change will be large enough to measure.
Explanation:
Let us recall that;
∆T = k m I
Where;
∆T= change in boiling point
K= freezing point constant
m= molality
i= Van't Hoff factor
Since the change in temperature depends on k, the larger the value of k the larger the temperature change(Ts - Tb). Hence; K should be large so the temperature change will be large enough to measure.
Ts= freezing temperature of pure solvent
Tb= freezing temperature of solution
When taking a measurement with a pH meter, keep the instrument in the _______storage solution or water until it is needed. Rinse the pH meter with
_______deionized water or acetone and gently pat dry. Place the meter in the sample solution, and record the measurement when the pH _______stabilizes or reaches the maximum value
Answer:
storage solution , deionized water, stabilizes
Explanation:
A pH meter is a scientific device or instrument that is used to measure the pH of a given aqueous solution thereby determining the nature of the solution whether it is acidic or basic or neutral.
While using the pH meter or taking the measurement using the pH meter --
it should be kept in a storage solution for effective working.Before using the device, it is rinsed with a deionized water and pat dry.Record the measurements when the pH meter stabilizes.Mava=mbvb ma x5.0ml = 5.2ml x 0.10m
Answer:
[tex]M_{a}[/tex] = 0.104 m
Explanation:
This expression is used to determine either the mass or volume of an acid or a base used during titration process.
So that;
[tex]M_{a}[/tex][tex]V_{a}[/tex] = [tex]M_{b}[/tex][tex]V_{b}[/tex]
[tex]M_{a}[/tex] is the mass of the acid
[tex]V_{a}[/tex] is the volume of the acid
[tex]M_{b}[/tex] is the mass of the base
[tex]V_{b}[/tex] is the volume of the base
Given that:
[tex]M_{a}[/tex] x 5.0 m l = 5.2 ml x 0.10 m
[tex]M_{a}[/tex] x 5.0 = 0.52 m
[tex]M_{a}[/tex] = [tex]\frac{0.52}{5.0}[/tex]
= 0.104
[tex]M_{a}[/tex] = 0.104 m
The mass of the acid used is 0.104 m.
A. Consider the following neutral electron configurations in which n has a constant value. Which configuration would belong to the element with the most negative electron affinity, Eea?
1. 2s2
2. 2s2 2p2
3. 2s2 2p5
4. 2s2 2p6
B. Arrange the following elements from greatest to least tendency to accept an electron.
Rank from greatest to least tendency to accept an electron. To rank items as equivalent, overlap them.
1. Sr
2. Sn
3. Rb
4. Te
5. I
Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.
Vocabulary: dipole, dipole-dipole force, dipole-induced dipole force, electronegativity, intermolecular force, ionic bond, London dispersion force, molecule, nonpolar, nonpolar covalent bond, partial charges, polar, polar covalent bond, valence electron Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. A big bully is having a tug-of-war with a small child. There is a ball attached to the middle of the rope. Toward whom will the ball move
Answer:
Towards the big bully
Explanation:
If a big bully and a small child are involved in a thug of war, it is clear that the bully is stronger than the child and he/she will pull the rope used in the thug of war with a greater force.
By so doing, the ball attached at the centre of the rope will naturally be drawn towards the stronger bully.
1. Calculate the percent recovery of benzoic acid, naphthalene and 3-nitroaniline if you were able to collect 10.75 g of benzoic acid, 5.41 g of naphthalene, and 7.81 g of 3-nitroaniline from a set of extractions. The starting mass of the mixture was 25.04 g. (0.6 pt) 2. Describe why it is important to use sodium hydroxide and hydrochloride acid in this experiment. Why was it necessary to initially start off with a 5% solution of the acid or base for this experiment
Explanation:
1.)
mass = 25.04
percentage recovery
[tex]benzoic acid = \frac{10.75}{25.04} = 0.4293*100 = 42.93%\\[/tex]
[tex]naphtalene =\frac{5.41}{25.04} = 0.2160*100 = 21.60\\3-nitroaniline=\frac{7.81}{25.04} =0.3119*100=31.19[/tex]
2. This experiment has these compounds, benzoic acid (which is an acid), naphthalene (this is neutral) and 3-nitroaniline (this is a base).
to extract, 5 percent of NaOH has to be used in order for benzoic acid to become with sodium hydroxide. the salt would then dissolve in H2O, the other two remaining are going to dissolve in organic layer. and this would make benzoic acid to leave the mix.
we make use of 5 percent of HCl so that the 3-nitroaniline will turn into ammonium salt with the hcl, then the ammonium salt would dissolve in water and naphtalene would become soluble in organic layer. when this happens we would then have the three compounds separated.
What salt will be produced by the neutralization reaction between hydrochloric acid (HCI) and
the base calcium hydroxide (Ca(OH)2)? Which part of the salt produced will be the conjugate
base of the acid, and which will be the conjugate acid of the base? Write the balanced
equation.
Please help due todayyyy!?!
Answer:
The produced salt is calcium chloride, CaCl₂, whose cation, Ca²⁺, is the conjugate acid of the base and the anion, Cl⁻ the conjugate base of the acid.
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary for us to set up the chemical equation between calcium hydroxide and hydrochloric acid:
[tex]2HCl+Ca(OH)_2\rightarrow CaCl_2+2H_2O[/tex]
It means that the produced salt is calcium chloride, CaCl₂, whose cation, Ca²⁺, is the conjugate acid of the base and the anion, Cl⁻ the conjugate base of the acid.
Regard"
Which event would be impossible to explain by using John Dalton's model of the atom?
Answer:
That is, the atom is a solid and indivisible mass. However, the fenomenom by which an iron atom emits particles when it is struck by light (known as the photoelectric effect) can not be explaind by this indivisible atom model.
15. You are interested in separating 4-methylbenzoic acid from 1,4-dimethoxybenzene using a procedure similar to the extraction procedure we used in lab. You plan to use sodium bicarbonate instead of sodium hydroxide. a) Show the reaction between salicylic acid and sodium bicarbonate. Label the acid, base, conjugate acid, conjugate base. b) Give the pKa values of the acid and conjugate acid. c) Which base will work better, sodium hydroxide or sodium bicarbonate
Solution :
a). The separation of 4-methylbenzoic acid from 1,4-dimethoxybenzene will work but it will result in lower recovery.
In the reaction of acid-base to form a sodium 4 - methoxy benzoate, that is soluble in the water, 4-methoxy benzoic acid reacts with the sodium bicarbonate to give sodium 4-methoxybenzoate as well as carbonic acid.
b). The pKa for the 4-methoxybenzoic acid is [tex]4.46[/tex], and that of carbonic acid is [tex]6.37[/tex]
c). The Keq for the reaction is [tex]10(6.37 - 4.46) = 101.91[/tex]
Therefore, the equilibrium lies to the right and also the reaction favors the products and the separation works.
But the recovery will be low when compared to the extraction with Sodium hydroxide as the strong base will drive the equilibrium further to the right position, thus neutralizing all the acids virtually. And the weak base will partially neutralize the acid.
A compound has a formula mass of 228.0 and an empirical formula of C2H4O3. What is the molecular formula
Answer:
C₆H₁₈O₉
Explanation:
First we calculate the molar mass of the compound represented by the empirical formula:
Molar Mass = (Molar mass of C) * 2 + (Molar Mass of H) * 4 + (Molar Mass of O) * 3Molar Mass = 12 * 2 + 1 * 4 + 16 * 3 = 76 g/molThen we divide the given formula mass by the calculated molar mass:
228 / 76 = 3Thus we multiply by 3 the subscripts in the empirical formula:
The molecular formula is C₆H₁₈O₉Water has a density of 1.00 g/mL. If you put an object that has a density of 0.79 g/mL into water, it will sink to the bottom.
ANSWER please
True
False
Answer:
False
Explanation:
An object with a density less than the density of water will float.
And an object that is denser than water (more than 1.00g/mL) will sink when placed in water.