Answer:
Step-by-step explanation:
office at point A =(-7,-5) ........................in the form (x1,y1)
supermarket and point B = (-2,-6)........in the form (x2,y2)
home Home at point C = (4,-6).............in the from (x3,y3)
find the total distance from A to B + B to C
ABdist= sqrt[ (x2-x1)^2 + (y2-y1)^2 ]
ABdist = sqrt[ (-2-(-7))^2 + (-6-(-5))^2 ]
ABdist = sqrt[ (-2 + 7)^2 + (-6 +5)^2]
ABdist = sqrt[ [tex]5^{2}[/tex] + [tex](-1)^{2}[/tex]]
ABdist = sqrt[ 25 + 1 }
ABdist = [tex]\sqrt{26}[/tex]
BCdist= sqrt[ (x3-x2)^2 + (y3-y2)^2 ]
BCdist = sqrt[ (4-(-2))^2 + (-6-(-6))^2]
BCdist = sqrt[ 4+2)^2 + -6+6)^2 ]
BCdist = sqrt [ [tex]6^{2}[/tex] + [tex]0^{2}[/tex] ]
BCdist = [tex]\sqrt{36}[/tex]
BCdist = 6
total distance = [tex]\sqrt{26}[/tex] +6
The first answer looks good
Can someone help me with this problem
9514 1404 393
Answer:
x = 30°
Step-by-step explanation:
The lines will be parallel if and only if the sum of the marked angles is 180°:
4x +2x = 180°
6x = 180° . . . . . collect terms
x = 30° . . . . . . . divide by 6
7 women can bake 100 cookies in 14 days. How many would it take for 4 women to bake 240 cookies?
Answer:
it would take 30 and a half days to make 240 cookies
Matthew participates in a study that is looking at how confident students at SUNY Albany are. The mean score on the scale is 50. The distribution has a standard deviation of 10 and is normally distributed. Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale
Answer:
The percentage of people that could be expected to score the same as Matthew or higher on this scale is:
= 93.3%.
Step-by-step explanation:
a) Data and Calculations:
Mean score on the scale, μ = 50
Distribution's standard deviation, σ = 10
Matthew scores, x = 65
Calculating the Z-score:
Z-score = (x – μ) / σ
= (65-50)/10
= 1.5
The probability based on a Z-score of 1.5 is 0.93319
Therefore, the percentage of people that could be expected to score the same as Matthew or higher on this scale is 93.3%.
Write an equation that represents the line.
Use exact numbers
Put -3.0-3.45, -15, and -3.15 in order from least to greatest.
Answer:
-15 -3.45 -3.15 -3.0
Step-by-step explanation:
helppppppppppppppppppppppppppppppppppppppp
Answer:
the total square footage = 194
1.88 x 194 = 364.72
Step-by-step explanation:
Area for triangle ends.
A = [tex]\frac{2.5 (8)}{2}[/tex] (Times two, because there are two ends.)
Base of prism = 8 x 10 = 80
Sides of prism = 2(10 x 4.7 ) = 94 (What's the 2? There's two of them)
Add all together : 10 + 10 + 80 + 94 = 194
1.88 x 194 = 364.72
Solve the simultaneous equations
2x+3y20
2x+5=10
Answer:
[tex]x=\frac{5}{2} \\y=5[/tex]
( 5/2, 2 )
Step-by-step explanation:
Solve by substitution method:
[tex]2x+5=10\\\2x+3y=20[/tex]
Solve [tex]2x+5=10[/tex] for [tex]x[/tex]:
[tex]2x+5=10[/tex]
[tex]2x=10-5[/tex]
[tex]2x=5[/tex]
[tex]x=5/2[/tex]
Substitute [tex]5/2[/tex] for [tex]x[/tex] in [tex]2x+3y=20[/tex]:
[tex]2x+3y=20[/tex]
[tex]2(\frac{5}{2} )+3y=20[/tex]
[tex]3y+5=20[/tex]
[tex]3y=20-5[/tex]
[tex]3y=15[/tex]
[tex]y=15/3[/tex]
[tex]y=5[/tex]
∴ [tex]x=\frac{5}{2}[/tex] and [tex]y=5[/tex]
hope this helps....
Given: x + 2 < -5.
Choose the solution set.
{x | x R, x < -3}
{x | x R, x < 3}
{x | x R, x < -7}
{x | x R, x < 7}
Answer:
C
Step-by-step explanation:
x + 2 < -5
x < - 5 - 2
x < - 7
Answer:
{x| x R, x<-7}
Step-by-step explanation:
=> x+2<-5
=> x<-5-2
=> x<-7
A display case of disposable tablecloths are marked 5 for $3. If Peter has $21, how many plastic tablecloths can Peter get?
Answer:
35
Step-by-step explanation:
3x7=35
There are 60 students and 13 teachers on a bus .what is the ratio of students to teachers.
Find the area of the surface generated when the given curve is revolved about the y-axis. The part of the curve y=4x-1 between the points (1, 3) and (4, 15)
Answer:
Step-by-step explanation:
Let take a look at the given function y = 4x - 1 whose point is located between (1,3) and (4,15) on the graph.
Here, the function of y is non-negative. Now, expressing y in terms of x in y = 4x- 1
4x = y + 1
[tex]x = \dfrac{y+1}{4}[/tex]
[tex]x = \dfrac{1}{4}y + \dfrac{1}{4}[/tex]
By integration, the required surface area in the revolve is:
[tex]S = \int^{15}_{ 3} 2 \pi g (y) \sqrt{1+g'(y^2) \ dy }[/tex]
where;
g(y) = [tex]x = \dfrac{1}{4}y + \dfrac{1}{4}[/tex]
∴
[tex]S = \int^{15}_{ 3} 2 \pi \Big( \dfrac{1}{4}y + \dfrac{1}{4}\Big) \sqrt{1+\Bigg(\Big( \dfrac{1}{4}y + \dfrac{1}{4}\Big)'\Bigg)^2 \ dy }[/tex]
[tex]S = \dfrac{1}{2} \pi \int^{15}_{ 3} (y+1) \sqrt{1+\Bigg(\Big( \dfrac{1}{4}\Big ) \Bigg)^2 \ dy } \\ \\ \\ S = \dfrac{1}{2} \pi \int^{15}_{ 3} (y+1) \dfrac{\sqrt{17}}{4} \ dy[/tex]
[tex]S = \dfrac{\sqrt{17}}{8} \pi \int^{15}_{ 3} (y+1) \ dy[/tex]
[tex]S = \dfrac{\sqrt{17} \pi}{8} (\dfrac{1}{2}(y+1)^2)\Big|^{15}_{3} \\ \\ S = \dfrac{\sqrt{17} \pi}{8} (\dfrac{1}{2}(15+1)^2-\dfrac{1}{2}(3+1)^2 ) \\ \\ S = \dfrac{\sqrt{17} \pi}{8} *120 \\ \\\mathbf{ S = 15 \sqrt{17}x}[/tex]
A rectangular field 50 meters in width and 120 meters in length is divided into two fields by a diagonal line. What is the length of fence (in meters) required to enclosed one of these fields?
A-130
B-170
C-180
D-200
E-300
Answer:
E. 300
Step-by-step explanation:
A rectangle split in half diagonally yields 2 right triangles.
((For this problem, you are probably supposed to use the pythagorean theorem to find the diagonal length, and then calculate perimeter (length of fence around triangular field). In other words:
(sqrt( (50m)^2 + (120m)^2 )) + 50m + 120m)
))
By definition, the hypotenuse (diagonal) is the longest side.
This means that it must be longer than 120m.
If you add the 2 sides (50m + 120m), you get 170m.
Since the third side has to be longer than 120m, the answer _must_ be over 290m (170m + 120m).
300m is the only answer that fits.
math help plz
how to solve parabola and its vertex, how to understand easily and step by step with an example provided please
Answer:
The general equation for a parabola is:
y = f(x) = a*x^2 + b*x + c
And the vertex of the parabola will be a point (h, k)
Now, let's find the values of h and k in terms of a, b, and c.
First, we have that the vertex will be either at a critical point of the function.
Remember that the critical points are the zeros of the first derivate of the function.
So the critical points are when:
f'(x) = 2*a*x + b = 0
let's solve that for x:
2*a*x = -b
x = -b/(2*a)
this will be the x-value of the vertex, then we have:
h = -b/(2*a)
Now to find the y-value of the vertex, we just evaluate the function in this:
k = f(h) = a*(-b/(2*a))^2 + b*(-b/(2*a)) + c
k = -b/(4*a) - b^2/(2a) + c
So we just found the two components of the vertex in terms of the coefficients of the quadratic function.
Now an example, for:
f(x) = 2*x^2 + 3*x + 4
The values of the vertex are:
h = -b/(2*a) = -3/(2*2) = -3/4
k = -b/(4*a) - b^2/(2a) + c
= -3/(4*2) - (3)^2/(2*2) + 4 = -3/8 - 9/4 + 4 = (-3 - 18 + 32)/8 = 11/8
In a box of chocolates, 12 of the chocolates are wrapped in red foil. That is 30% of the chocolates in the box. How many chocolates are there?
Answer:
The answer is 40 chocolates in the box in total
3.
Salary: A sales clerk receives a monthly
salary of $500 plus a commission of 6% on all
sales over $3500. What did the clerk earn the
month she sold $8000 in merchandise?
Answer:
Step-by-step explanation:
I might be wrong but it 1900 in merchandise
The clerk earned a total of $770 for the month she sold $8000 in merchandise.
To calculate the clerk's earnings for the month she sold $8000 in merchandise, we need to consider her monthly salary and commission.
The clerk's monthly salary is $500, which is a fixed amount.
For the commission, we need to calculate the sales amount that exceeds $3500. In this case, the sales amount exceeding $3500 is $8000 - $3500 = $4500.
The commission is calculated as 6% of the sales amount exceeding $3500. Therefore, the commission earned by the clerk is 6% of $4500.
Commission = 6/100 * $4500
Commission = $270
Adding the monthly salary and commission, we can calculate the clerk's total earnings for the month:
Total earnings = Monthly salary + Commission
Total earnings = $500 + $270
Total earnings = $770
Therefore, the clerk earned a total of $770 for the month she sold $8000 in merchandise.
To know more about merchandise. here
https://brainly.com/question/27046371
#SPJ2
question:
A sequence is defined by the recursive function f(n + 1) = –10f(n).
If f(1) = 1, what is f(3)?
3
–30
100
–1,000
the answer is 100
Answer:
100
Step-by-step explanation:
f(1) = 1
f(2) = -10×f(1) = -10 × 1 = -10
f(3) = -10×f(2) = -10 × -10 × f(1) = -10 × -10 × 1 = 100
f(n) = -10 to the power of n-1
Answer:
c - 100
Step-by-step explanation:
Find a power series representation for the function. (Give your power series representation centered at x = 0.)
f(x) = x2 x 4 + 81
f(x) = [infinity] n = 0.
Answer:
attached below
Step-by-step explanation:
The Function; F(x) = x^2 / (x^4 + 81 )
power series representation
F(x) = x^2 / ( 81 + x^4 )
= ( x^2/81 ) / 1 - ( -x^4/81 )
attached below is the remaining part of solution
please help please help
Answer:
1. 3
2. D
3. KE
4. B
5. A
Step-by-step explanation:
those should be your answers
Answer:
1. 3
2. D
3. E and K
4. B
5. A
negative integers lie on the negative side of the number line(usually having a minus sign in front of them)
positive ones lie on the positive side( usually have no signs in front of them)
Pls answer this question
Answer:
x = 100 degree
Step-by-step explanation:
EF//GC => NF // OC
∠ANE=∠ONF [Vertically opposite angles]
∠ONF=80
In Quadrilateral OCFN,
NF // OC
∠ ONF + x = 180 [Linear Pair]
=> 80 + x = 180
=> x = 180-80
=> x = 100
Answer:
x=100°
Step-by-step explanation:
corresponding angles
Given sets X, Y, Z, and U, find the set Xn(X - Y) using the listing method.
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
Answer:
{f, a}
Step-by-step explanation:
Given the sets:
X = {d, c, f, a}
Y = {d, e, c}
Z ={e, c, b, f, g}
U = {a, b, c, d, e, f, g}
To obtain the set X n (X - Y)
We first obtain :
(X - Y) :
The elements in X that are not in Y
(X - Y) = {f, a}
X n (X - Y) :
X = {d, c, f, a} intersection
(X - Y) = {f, a}
X n (X - Y) = elements in X and (X - Y)
X n (X - Y) = {f, a}
The weight gain of beef steers were measured over a 140 day test period. the average daily gains (lb/day) of 10 steers on the same diet were as follows. The tenth steer had a weight gain of 4.02 lb/day.
3.89 3.51 3.97 3.31 3.21 3.36 3.67 3.24 3.27
determine the mean and median.
Answer:
[tex]\bar x = 3.545[/tex]
[tex]Median = 3.435[/tex]
Step-by-step explanation:
Given
[tex]x:3.89, 3.51, 3.97, 3.31, 3.21, 3.36, 3.67, 3.24, 3.27[/tex]
[tex]10th: 4.02[/tex]
Solving (a): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{3.89 +3.51 +3.97 +3.31 +3.21 +3.36 +3.67 +3.24 +3.27+4.02}{10}[/tex]
[tex]\bar x = \frac{35.45}{10}[/tex]
[tex]\bar x = 3.545[/tex]
Solving (b): The median
First, we sort the data; as follows:
[tex]3.21, 3.24, 3.27, 3.31, 3.36, 3.51, 3.67, 3.89, 3.97, 4.02[/tex]
[tex]n = 10[/tex]
So, the median position is:
[tex]Median = \frac{n + 1}{2}th[/tex]
[tex]Median = \frac{10 + 1}{2}th[/tex]
[tex]Median = \frac{11}{2}th[/tex]
[tex]Median = 5.5th[/tex]
This means that the median is the average of the 5th and 6th item
[tex]Median = \frac{3.36 + 3.51}{2}[/tex]
[tex]Median = \frac{6.87}{2}[/tex]
[tex]Median = 3.435[/tex]
Help please. Need to get this right to get 100%
Answer:
Step-by-step explanation:
[tex]f(x) = \frac{4}{x}\\\\f(a) = \frac{4}{a}\\\\f(a+h) = \frac{4}{a+h}\\\\\frac{f(a+h) - f(a)}{h} = \frac{\frac{4}{a+h} - \frac{4}{a}}{h}[/tex]
[tex]=\frac{\frac{4(a)}{(a+h)a} - \frac{4(a+h)}{a(a+h)}}{h}\\\\=\frac{\frac{4a - 4a - 4h}{a(a+h)}}{h}\\\\=\frac{\frac{ - 4h}{a(a+h)}}{h}\\\\= \frac{-4h}{a(a+h) \times h}\\\\= -\frac{4}{a(a+h)}\\\\[/tex]
A claim is made that the proportion of 6-10 year-old children who play sports is not equal to 0.5. A
random sample of 551 children aged 6-10 showed that 48% of them play a sport.
For each part below, enter only a numeric value in the answer box. For example, do not type "z =" or "t="
before your answers. Round each of your answers to 3 places after the decimal point.
(a) Calculate the value of the test statistic used in this test.
Test statistic's value
(b) Use your calculator to find the P-value of this test.
P-value =
(c) Use your calculator to find the critical value(s) used to test this claim at the 0.02 significance level. If
there are two critical values, then list them both with a comma between them.
Critical value(s) -
Answer:
a) -0.94
b) 0.3472
c) -2.327, 2.327
Step-by-step explanation:
A claim is made that the proportion of 6-10 year-old children who play sports is not equal to 0.5.
At the null hypothesis, we test if the proportion is of 0.5, that is:
[tex]H_0: p = 0.5[/tex]
At the alternative hypothesis, we test if the proportion is different from 0.5, that is:
[tex]H_1: p \neq 0.5[/tex]
The test statistic is:
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
In which X is the sample mean, [tex]\mu[/tex] is the value tested at the null hypothesis, [tex]\sigma[/tex] is the standard deviation and n is the size of the sample.
0.5 is tested at the null hypothesis:
This means that [tex]\mu = 0.5, \sigma = \sqrt{0.5*(1-0.5)} = 0.5[/tex]
A random sample of 551 children aged 6-10 showed that 48% of them play a sport.
This means that [tex]n = 551, X = 0.48[/tex]
(a) Calculate the value of the test statistic used in this test.
[tex]z = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
[tex]z = \frac{0.48 - 0.5}{\frac{0.5}{\sqrt{551}}}[/tex]
[tex]z = -0.94[/tex]
So the answer is -0.94.
(b) Use your calculator to find the P-value of this test.
The p-value of the test is the probability that the sample proportion differs from 0.5 by at least 0.02, which is P(|z| > 0.94), which is 2 multiplied by the p-value of Z = -0.94.
Looking at the z-table, z = -0.94 has a p-value of 0.1736.
2*0.1736 = 0.3472, so 0.3472 is the answer to option b.
(c) Use your calculator to find the critical value(s) used to test this claim at the 0.02 significance level.
Two-tailed test(test if the mean differs from a value), Z with a p-value of 0.02/2 = 0.01 or 1 - 0.01 = 0.99.
Looking at the z-table, this is z = -2.327 or z = 2.327.
The mean of 19 numbers is 1600. If 2000 is added in the number. Find the new mean
Answer:
Here's your answer .
hope it helps you
A river is 212 mile long. What is the length of the river on a map, if the scale is 1 inch : 50 miles?
Answer:
4.24 inches
Step-by-step explanation:
1 inch / 50 miles = x / 212 miles Cross multiply
1 inch * 212 miles = 50 miles * x Divide by 50 miles
1 inch * 212 miles / 50 miles = x
x = 4.24 inches.
How much is 0.24 of an inch?
0.24 * 50 = 12
So 0.24 inches represents 12 miles.
Olivia rides her scooter 3/4 mile in
1/3 hour. How fast, in miles per hour,
does she ride her scooter?
Answer:
2.25 miles per hr
Answer:
2.25 miles per hour
Step-by-step explanation:
speed = distance / time
speed = [tex]\frac{3}{4} / \frac{1}{3}[/tex] (take the reciprocal of [tex]\frac{1}{3}[/tex])
= [tex]\frac{3}{4} * 3[/tex]
= [tex]\frac{9}{4}[/tex] = 2.25 miles per hour
On Friday Evelyn sold 9 dresses and 20 pairs of pants. On Saturday she sold twice as many dresses and 10 more pants than Friday. How many dresses did Evelyn sell on Friday and Saturday?
Answer: 27 Dresses and 50 Pants
Step-by-step explanation:
If she sold 9 pairs of pants and
9 x 2 = 18
18 + 9 = 27
20 + 10 = 30
30 + 20 = 50
Evelyn sold 9 dresses and 20 pairs of pants on Friday, and on Saturday, she sold 18 dresses and 30 pairs of pants.
Evelyn's sales of dresses and pants over two days, Friday and Saturday. We'll use some mathematical expressions and reasoning to find out how many dresses Evelyn sold on each day.
Let's start by assigning some variables to represent the number of dresses and pants Evelyn sold on Friday and Saturday. We'll use "F" for Friday and "S" for Saturday. So, let [tex]D_F[/tex] be the number of dresses sold on Friday, [tex]D_S[/tex] be the number of dresses sold on Saturday, [tex]P_F[/tex] be the number of pants sold on Friday, and [tex]P_S[/tex] be the number of pants sold on Saturday.
According to the problem, on Friday, Evelyn sold 9 dresses, which can be expressed as:
[tex]D_F[/tex] = 9
She also sold 20 pairs of pants on Friday:
[tex]P_F[/tex] = 20
Now, let's move on to Saturday's sales. It says she sold twice as many dresses as Friday, which means the number of dresses on Saturday is double that of Friday's sales:
[tex]D_S = 2 * D_F[/tex]
Additionally, she sold 10 more pairs of pants on Saturday compared to Friday:
[tex]P_S = P_F + 10[/tex]
We already know that [tex]D_F = 9[/tex], so we can find the number of dresses sold on Saturday by substituting this value into the equation for [tex]D_S[/tex]:
[tex]D_S = 2 * 9 = 18[/tex]
Next, we'll calculate the number of pants sold on Saturday using the given information. Since [tex]P_F = 20[/tex], we can find [tex]P_S[/tex]:
[tex]P_S = 20 + 10 = 30[/tex]
So, to summarize, Evelyn sold 9 dresses and 20 pairs of pants on Friday, and on Saturday, she sold 18 dresses and 30 pairs of pants.
To know more about Equation here
https://brainly.com/question/15977368
#SPJ2
There are two points of the form (x,-4) that have a distance of 10 units from the point (3,2). Give the x value for one of those points.
Answer:
x = - 5
Step-by-step explanation:
[tex]Let \ (x _ 1 , y _ 1 ) \ and \ (x _ 2 , y _ 2 ) \ be \ the \ points. \\\\The \ distance \ between \ the \ points \ be ,\ d = \sqrt{(x_2 - x_1)^2 + ( y _ 2 - y_1)^2}[/tex]
Given : d = 10 units
And the points are ( x , - 4) and ( 3 , 2 ).
Find x
[tex]d = \sqrt{( 3 - x)^2 + ( -4 - 2)^2} \\\\10 = \sqrt{( 3 - x)^2 + ( -6)^2} \\\\10^2 = [ \ \sqrt{( 3 - x)^2 + 36} \ ]^2 \ \ \ \ \ \ \ \ \ [ \ squaring \ both \ sides \ ] \\\\100 = ( 3 - x )^2 + 36\\\\100 - 36 = ( 3 - x )^ 2\\\\( 3 - x ) = \sqrt{64}\\\\3 - x = \pm 8\\\\3 - x = 8 \ and \ 3 - x = - 8\\\\-x = 8 - 3 \ and \ -x = - 8 - 3\\\\-x = 5 \ and \ -x = - 11\\\\x = - 5 \ and \ x = 11\\\\[/tex]
Check which value of x satisfies the distance between the points.
x = 11
[tex]d = \sqrt{(3-11)^2 + (-2--4)^2} = \sqrt{(-8)^2 + (-2+4)^2}= \sqrt{64+4} = \sqrt {68} \ units[/tex]
does not satisfy.
x = - 5:
[tex]d = \sqrt{ (3 -- 5)^2 + ( - 4 - 2)^2} = \sqrt{8^2 + 6^2} = \sqrt{100} =10 \ units[/tex]
Therefore , x = - 5
Factor completely 4x2 − 8x + 4.
Given :-
4x² - 8x - 4 .To Find :-
To find the factorised form .Answer :-
Taking the given expression,
→ 4x² - 8x + 4
→ 4x² - 4x -4x + 4
→ 4x ( x - 1 ) -4( x -1)
→ (4x - 4)(x-1)
Hence the required answer is (4x - 4)( x - 1) .
I don’t think I got the right answer?
Answer:
it's third option the one who says 10 units up
What is the distance between -10.2 and 5.7?
Answer:
15.9
Step-by-step explanation:
The distance between -10.2 and 5.7 is 15.9 after plotting the points on a number line.
What is a number line?It is defined as the representation of the numbers on a straight line that goes infinitely on both sides.
It is given that:
Two numbers on a number line:
-10.2 and 5.7
As we know, a number is a mathematical entity that can be used to count, measure, or name things. For example, 1, 2, 56, etc. are the numbers.
Indicating the above numbers on a number line:
= 5.7 -(-10.5)
The arithmetic operation can be defined as the operation in which we do the addition of numbers, subtraction, multiplication, and division. It has a basic four operators that is +, -, ×, and ÷.
= 5.7 + 10.5
= 15.9
Thus, the distance between -10.2 and 5.7 is 15.9 after plotting the points on a number line.
Learn more about the number line here:
brainly.com/question/13189025
#SPJ5